
Objective: The aim was to determine if indices of the 
autonomic nervous system (ANS), derived from the electro-
dermal activity (EDA) and electrocardiogram (ECG), could be 
used to detect deterioration in human cognitive performance 
on healthy participants during 24-hour sleep deprivation.

Background: The ANS is highly sensitive to sleep 
deprivation.

Methods: Twenty-five participants performed a desktop- 
computer-based version of the psychomotor vigilance task 
(PVT) every 2 hours. Simultaneously with reaction time (RT) 
and false starts from PVT, we measured EDA and ECG. We 
derived heart rate variability (HRV) measures from ECG 
recordings to assess dynamics of the ANS. Based on RT val-
ues, average reaction time (avRT), minor lapses (RT > 500 
ms), and major lapses (RT > 1 s) were computed as indices 
of performance, along with the total number of false starts.

Results: Performance measurement results were 
consistent with the literature. The skin conductance level, 
the power spectral index, and the high-frequency com-
ponents of HRV were not significantly correlated to the 
indices of performance. The nonspecific skin conductance 
responses, the time-varying index of EDA (TVSymp), and 
normalized low-frequency components of HRV were sig-
nificantly correlated to indices of performance (p < 0.05). 
TVSymp exhibited the highest correlation to avRT (–0.92), 
major lapses (–0.85), and minor lapses (–0.83).

Conclusion: We conclude that indices that account for 
high-frequency dynamics in the EDA, specifically the time-
varying approach, constitute a valuable tool for understanding 
the changes in the autonomic nervous system.

Application: This can be used to detect the adverse 
effects of prolonged wakefulness on human performance.

Keywords: electrodermal activity, heart rate variability, 
autonomic nervous system, prolonged wakefulness, per-
formance

Introduction
This work presents the results of correla-

tion analysis between indices of performance 
on the psychomotor vigilance task (PVT) and 
noninvasive measures of the autonomic nervous 
system (ANS) based on heart rate variabil-
ity (HRV) and electrodermal activity (EDA), 
during a 24-hour period of sleep deprivation. 
We recently conducted a study looking at the 
effects of prolonged wakefulness on participants 
performing the error awareness task (EAT) 
(Posada-Quintero, Bolkhovsky, Reljin, & Chon, 
2017). We observed that high frequency (HF) 
dynamics of EDA known as the skin conduc-
tance responses (SCRs) were more sensitively 
correlated to sleep deprivation than were the 
slow dynamics, defined as the skin conduc-
tance level (SCL). However, we could not 
directly compare with other studies looking at 
performance deterioration as a byproduct of 
prolonged wakefulness, because most studies 
measured participants’ response to the PVT, not 
the EAT (Posada-Quintero et al., 2017). The 
PVT, which measures a person’s reaction time 
(RT) to the presentation of concurrent stimuli, is 
a widely used standard for studying the effects 
of prolonged wakefulness, mainly because it has 
a proven strong correlation with both lack of 
sleep as well as with the circadian rhythm (Lim 
& Dinges, 2008). PVT allows us to observe the 
lapses or short periods of nonaction produced by 
deterioration of vigilant attention and has been 
proven to work as an indirect measure of sleep 
deprivation (Dinges, 1995).

Early detection is valuable for mitigating the 
consequences of performance deterioration due 
to the effects that sleep deprivation produces on 
human physiology. Human performance deteri-
oration causes accidents in jobs that frequently 
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require working long hours, repetitive tasks, or 
late-night shifts (Costa, 1996), resulting in a 
large social and economic cost (Leger, 1994; 
Lyznicki, Doege, Davis, & Williams, 1998). 
Sleep deprivation also causes a marked effect on 
the ANS (Liu, Verhulst, Massar, & Chee, 2015; 
Michail, Kokonozi, Chouvarda, & Maglaveras, 
2008; Zhong et al., 2005). In response to stress-
ors of any kind, the ANS compensates by alter-
ing the balance between the parasympathetic 
and the sympathetic nervous systems. A pre-
dominantly parasympathetic tone is not an 
appropriate response to the fatigue stressor as it 
should elicit sympathetic activity instead, indi-
cating a progression toward a state of decom-
pensation and failure of physiological functions 
(Baharav et al., 1995; Cooke et al., 2006; Fur-
man, Baharav, Cahan, & Akselrod, 2008; 
Michail et al., 2008; Winchell & Hoyt, 1997). 
Alternatively, the body benefits from a predomi-
nantly sympathetic response to fatigue (Appen-
zeller, 1987). The ANS is a preferred target for 
the development of an objective physiological 
measure of the effects of prolonged wakeful-
ness, because of its high sensitivity to sleep 
deprivation (Fullagar et al., 2015; Izawa, Sug-
aya, Yamamoto, Ogawa, & Nomura, 2010; Koss 
& Davison, 1976; Tobaldini et al., 2013).

HRV is a noninvasive tool that allows for 
quantitative assessment of the ANS dynamics 
(Task Force of the European Society of Cardiol-
ogy and the North American Society of Pacing 
and Electrophysiology, 1996). In the frequency 
domain, the low-frequency (LF) components 
(0.045 to 0.15 Hz) of HRV are influenced by 
both the sympathetic and parasympathetic func-
tions; the HF components (0.15 to 0.4 Hz) are 
only influenced by the parasympathetic nervous 
system (Task Force of the European Society of 
Cardiology and the North American Society of 
Pacing and Electrophysiology, 1996). Spectral 
indices of HRV have been used to assess the 
dynamics of the ANS, and it was suggested that 
the markers of parasympathetic and sympathetic 
activities are largely found in the HFs and LFs, 
respectively (Task Force of the European Soci-
ety of Cardiology and the North American Soci-
ety of Pacing and Electrophysiology, 1996). The 
effects of sleep deprivation on HRV have been 
extensively studied, with different levels of  

success (Chua et al., 2012; Fogt, Cooke, Kalns, 
& Michael, 2011; Fogt, Kalns, & Michael, 2010; 
Glos, Fietze, Blau, Baumann, & Penzel, 2014; 
Nakano et al., 2000; Pagani et al., 2009; Vicente, 
Laguna, Bartra, & Bailón, 2016; Viola, James, 
Archer, & Dijk, 2008; Zhong et al., 2005). In 
general, these studies found that HRV alone has 
a limited potential to delineate the effects of 
sleep deprivation.

EDA measures the changes in electrical con-
ductance of the skin. EDA is highly correlated to 
sweat production and is considered a pure assay 
of sympathetic activity because there is no para-
sympathetic innervation of eccrine sweat glands 
(Dawson, Schell, & Filion, 2007). As a result, 
EDA has gained popularity as a possible nonin-
vasive tool for the separate assessment of the 
skin sympathetic activities (Boucsein, 2012; 
Colbert, Spaulding, Larsen, Ahn, & Cutro, 2011; 
Freeman & Chapleau, 2013). Traditional analy-
sis of EDA signals is performed in the time 
domain, consisting of evaluation of the SCLs 
and SCRs (Boucsein et al., 2012). The LF 
dynamics of the EDA signal are exhibited in the 
SCL and the rapid phase fluctuations are demon-
strated in the SCRs. Furthermore, indices based 
on spectral analyses of EDA (time-invariant and 
time-variant) have been recently reported as 
good surrogate measures of sympathetic dynam-
ics (Posada-Quintero, Florian, Orjuela-Cañón, 
& Chon, 2016; Posada-Quintero, Florian, 
Orjuela-Cañón, Aljama-Corrales, et al., 2016). 
The combination of time and frequency infor-
mation derived from the analysis of EDA 
improved the consistency and sensitivity of the 
technique (Posada-Quintero, Florian, Orjuela-
Cañón, & Chon, 2016) when compared to using 
either only the time or frequency features.

Recent literature emphasizes the importance 
of EDA for the assessment of sympathetic func-
tion to better understand the altered reactions of 
sleep-deprived people (Liu et al., 2015; Miró, 
Cano-Lozano, & Buela-Casal, 2002). However, 
those studies did not explore the occurrence of 
rapid shifts (usual in the EDA signal) but focused 
only on the changes in SCL (low components of 
the signal). In a previous study, we found sig-
nificant changes in the higher frequency compo-
nents of EDA after 18 hours of sleep deprivation 
(Posada-Quintero et al., 2017). Hence, we 
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expect that changes in the higher frequencies of 
the EDA signal correlate with the observed dete-
rioration of participant performance resulting 
from prolonged wakefulness. To evaluate this 
conjecture, we measured psychomotor vigilance 
with a commonly run test used as a measure of 
performance in humans during a 24-hour sleep 
deprivation period and concurrently collected 
HRV and EDA data.

Materials And Methods
Participants

For this study, 25 healthy volunteers (14 
males and 11 females; ages ranging from 18 to 
45) were recruited. The sample size was chosen 
to be large enough for detecting differences in 
performance and for determining correlation. 
A sample size of 25 is sufficient to be able to 
detect differences in the PVT measures with a 
power higher than 0.95 based on the variance 
of previous studies that have reported on similar 
metrics (Chua et al., 2012; Dorrian, Rogers, & 
Dinges, 2005). Furthermore, this sample size 
allows us to detect a correlation higher than 0.75 
with a power of 0.9 (Zar, 1999).

We kept the participants awake for at least 24 
hours, with constant experimenter observation 
throughout the experiment to ensure the validity 
of the study. Seven days prior to the experiment, 
we gave the participants a data sheet to record 
their sleep schedule for the 7 days, to indicate 
compliance to the experimental constraints and 
expose potential outliers. Participants were com-
pensated for their time but were not compensated 
for their level of performance. The study protocol 
was approved by the University of Connecticut 
Institutional Review Board in compliance with all 
applicable federal regulations governing the pro-
tection of human participants. All participants 
gave written informed consent in accordance with 
the Declaration of Helsinki.

Protocol
We instructed the participants to avoid all 

ingestion of stimulants and depressants 48 hours 
prior to the start of the experiment. We pro-
vided food during the experiment, to make sure 
the participants followed the dietary constraints 
of this study. Participants were required to be  

present at the experimental facility, located at the 
University of Connecticut, no more than 2 hours 
after waking up on the morning they started the 
experiment. Each participant performed a PVT 
trial every other hour (for a total of 12 trials, with 
Trial 12 occurring after 25 hours of sleep depri-
vation) during the 24-hour period. To complete 
all trials, participants remained in the facility for 
more than 25 hours. The first trial was used for 
training purposes and took place during the first 
hour after arrival.

A GSR amplifier FE116 (fully isolated AC 
excitation and automatic zeroing low voltage 
amplifier, 22 mVrms at 75 Hz, ADINSTRU-
MENTS) was used to collect EDA data, and an 
HP 78354A ECG monitor (Hewlett-Packard, 
FDA approved) was used to collect ECG data. 
The level of the EDA device was adjusted to 
zero at the start of every trial for calibration pur-
poses. Five minutes prior to each task trial start-
ing, we placed the electrodes to collect EDA 
data (stainless steel) on the middle and index 
fingers of each participant’s nondominant hand. 
For recording ECG data, three hydrogel Ag/
AgCl electrodes were placed on the participant’s 
chest. During every trial, ECG and EDA data 
were simultaneously recorded. No filtering was 
applied to the data during the recording.

The PVT measures speed of reaction to visual 
stimuli over a period of time, for the purpose of 
assessing sustained attention. Participants used 
an application on a desktop computer (Khitrov 
et al., 2014) to perform the task for 10-minute 
trials throughout the course of their study. The 
same computer was used for all participants. 
During the 10-minute period, participants were 
presented with stimuli, in the form of numbers 
appearing on the screen. Participants were asked 
to click the mouse as fast as possible whenever 
they saw a number appear. The interstimuli 
interval was randomly determined and initiated 
within 2 to 10 seconds. For all the stimuli pre-
sented during the 10-minute period, RT was 
computed between the appearance of the num-
bers and left button click on the mouse, as well 
as false starts (responses with no stimuli).

Physiological Indices of the ANS
Data acquired while the participants were 

performing the PVT were used to compute  
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noninvasive measures of the ANS based on 
EDA and spectral analysis of HRV. To procure 
quality of physiological data, participants were 
asked to keep torso (where ECG electrodes were 
placed) and nondominant hand (where EDA 
was collected) still while performing the trials.

Indices of EDA.  Time- and frequency-
domains analysis was used to compute indices 
of EDA. In the time domain, the EDA signal 
was decomposed into tonic and phasic compo-
nents, using the convex optimization approach 
(Greco, Valenza, Lanata, Scilingo, & Citi, 
2016). The SCL (expressed in microsiemens, 
µS), an index related to the slow shifts of EDA, 
was computed as the mean value of the tonic 
component of EDA taken during a 2-minute 
period (Boucsein et al., 2012). The SCRs are the 
rapid transient events contained in the phasic 
component of the EDA signal. Given that the 
stimuli presented to the participants were all 
identical (click the mouse as fast as possible 
whenever they saw a number appear) and 
repeated multiple times, characterization of 
individual SCRs is not appropriate. The fre-
quency of nonspecific SCRs (NSSCRs) was 
measured as the number of SCRs whose ampli-
tude is higher than a given threshold (0.05 µS, 
in this study), per minute (Boucsein et al., 
2012). NSSCRs were extracted automatically 
utilizing the convex optimization approach 
(Greco et al., 2016). In this study, for each trial, 
the first 2 minutes of EDA data were extracted 
while the participant was performing the PVT, 
to compute SCL and NSSCRs. Figure 1 shows 
EDA and HRV data collected during baseline 
and PVT task stages, for a given participant and 
trial. Notice the increase of SCL and SCR 
amplitudes and frequencies during PVT.

The power spectral measures were computed 
using the same 2 minutes of EDA data used to 
compute time-domain measures. Welch’s peri-
odogram method with 50% data overlap was 
used to calculate the time-invariant spectra of 
the EDA. A 128-datapoint length Blackman 
window was applied to each segment, the power 
spectrum of each windowed segment was com-
puted using the fast Fourier transform, and the 
average of the power spectra was computed. The 
power in the range from 0.045 to 0.25 Hz was 
integrated to compute the time-invariant spectral 

index of EDA (EDASymp [µS2]). EDASymp 
was previously found to be sensitive to cognitive 
stress (Posada-Quintero, Florian, Orjuela-
Cañón, Aljama-Corrales, et al., 2016).

For the time-varying analysis, we used vari-
able frequency complex demodulation (VFCDM). 
VFCDM provides accurate amplitude estimates 
and one of the highest time-frequency resolu-
tions (Chon, Dash, & Ju, 2009). As defined in a 
previous study, the VFCDM time-frequency 
representation of EDA was used to obtain the 
time-varying index of EDA (TVSymp). The 
TVSymp is calculated using the components 
that account for the power in the 0.08 to 0.24 Hz 
range (Posada-Quintero, Florian, Orjuela-
Cañón, & Chon, 2016).

Indices of HRV.  To compute HRV indices, 4 
minutes of clean ECG segments were extracted 
from the data while the participant performed 
the PVT trials. The noise and motion artifacts of 
the ECG data were reduced using a band-pass 
filter (0.05–40 Hz). For HRV analysis, the R 
peaks were detected using a publicly available 
algorithm (Nygaards & Sörnmo, 1983; Vidau-
rre, Sander, & Schlögl, 2011). R peaks were 
manually corrected to ensure that all beats were 
correctly detected. Subsequently, the RR inter-
val series for each trial were computed. The RR 
interval series were converted to an evenly 
time-sampled signal (4 Hz) by cubic spline 
interpolation. The Welch’s periodogram with 
50% data overlap was used to compute the 
power spectra of HRV. A 256-point Blackman 
window was applied to the segments. The 
power spectra were calculated for each win-
dowed segment, and the average of the power 
spectra was computed.

The LF (HRVLF [ms2]) and the HF index 
(HRVHF [ms2]) were computed by integrating 
the frequency ranges of 0.045 to 0.15 Hz and 
0.15 to 0.4 Hz, respectively. Normalized ver-
sions of these two (HRVLFn and HRVHFn, in 
normalized units [n.u.]) were computed by 
dividing the indices by the total power of HRV 
(Task Force of the European Society of Cardiol-
ogy and the North American Society of Pacing 
and Electrophysiology, 1996). HRVLF and 
HRVLFn are used as indices of sympathetic 
tone. Likewise, HRVHF and HRVHFn are used 
as indices of parasympathetic control.
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Statistics
The physiological measures of the ANS 

obtained in this study include SCL, NSSCRs, 
EDASymp, TVSymp, HRVLF, HRVLFn, 
HRVHF, and HRVHFn. To assess participants’ 
performance during every trial, four indices 
were computed based on RT measures and 
false starts: average reaction time (avRT), total 
amount of minor lapses (RT > 500 ms), major 
lapses (RT > 1 s), and false starts during the 
PVT. Among the many possible measures that 
can be obtained from PVT trials, the number of 
minor lapses is often used as the primary depen-
dent variable in testing the performance dete-
rioration under prolonged wakefulness (Lim & 
Dinges, 2008). All four indices are inversely 
correlated to participants’ performance (e.g., 
higher avRT represents lower performance).

Repeated measurements analysis was 
deployed to evaluate the significance of differ-
ences in the indices of HRV, EDA, and PVT 
between trials, due to sleep deprivation. Normality 

of the EDA and HRV indices throughout the 12 
trials was tested using the one-sample Kol-
mogorov-Smirnov test (Massey, 1951; Miller, 
1956; Wang, Tsang, & Marsaglia, 2003). If non-
normality was found, nonparametric statistical 
techniques were used.

For repeated measurements analysis in nor-
mally distributed data, the one-way analysis of 
variance (ANOVA) was performed to test for 
significant differences between trials. When 
data were nonnormally distributed, we used the 
Friedman test (Friedman, 1937), a nonparamet-
ric statistical test similar to the parametric 
repeated-measures ANOVA. The Bonferroni 
method was used for correction of multiple 
comparisons.

Correlation coefficients between mean values 
of PVT measures (avRT, minor lapses, major 
lapses, and false starts) and measures of ANS 
(indices of EDA and HRV) of the participants 
(over the 12 runs, 24-hour test) were computed. 
Pearson’s correlation coefficient (r) was used for 

Figure 1. EDA (top) and HRV (bottom) data during baseline (left) and PVT task (right) 
stages, for a given participant and trial.
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avRT, as it was normally distributed. As major 
lapses, minor lapses, and false starts indices 
were found nonnormally distributed, Spear-
man’s (rs) correlation coefficient was used. The t 
test was used to assess the statistical significance 
of correlation coefficient (the null hypothesis 
was that the product moment correlation coeffi-
cient was zero) (Spiegel, 1961).

For evaluating the suitability of the indices of 
ANS to detect the effects of prolonged wakeful-
ness, the receiver operating characteristic (ROC) 
curve was computed for each index of ANS 
(Metz, 1978). For this, the values of the indices 
of performance above the mean plus 1 SD (for 
each individual participant) were considered as 
instances of performance deterioration (Class 
1). All other values were considered normal 
(Class 0). To assess the performance of the 
detectors, the area under the curve (AUC) (an 
estimate of the probability that a specific index 
will assign to a positive instance a higher value 
than to a negative) was computed for each ROC 
curve (Hanley & McNeil, 1982).

Results
Indices of performance and noninvasive 

measures of ANS obtained during the 24-hour 
sleep deprivation period are shown in Figures 2, 
3, and 4. The figures display the mean ± stan-
dard error of the mean (SEM) for PVT, HRV, 
and EDA indices, respectively. SCL, TVSymp, 
HRVLF, HRVLFn, HRVHF, HRVHFn, minor 
lapses, and false starts were found normally 
distributed throughout the 12 trials. NSSCRs, 
EDASymp, and major lapses did not meet 
the normality criteria. Multicomparison tests 
exhibited statistically significant effects of sleep 
deprivation in avRT, major lapses, minor lapses, 
HRVHFn, and TVSymp. Significant differences 
between trials are marked in the figures.

AvRT exhibits high variability with time dur-
ing the first 16 hours of the experiment, followed 
by an increase starting after 18 hours of sleep 
deprivation. The maximum deterioration of 
avRT (minimum performance) was observed 
during the trial at 22 hours. Major lapses were 
stable during the first 20 hours of the experiment 

Figure 2. Indices of performance in PVT. Mean value ± SEM for avRT, major lapses, 
minor lapses, and false start values obtained during the 24-hour period of sleep deprivation. 
Symbols indicate significant difference: * to Trials 1 to 5; † to Trials 1 to 8; ¥ to Trials 1 to 
9; ‡ to Trials 1 to 7; ◊ to Trials 1, 2, 4, 5, and 8.
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and then exhibited an increase after 22 hours. 
Minor lapses were stable during the first 16 
hours, except for an increase at 12 hours, and 
also increased by the end of the experiment (22 
hours). False starts were particularly high during 
the second trial, then stabilized to lower values 
with a minimum at 14 hours, and then increased 
for the remainder of the experiment.

As for the indices of EDA, changes in SCL 
were not as sensitive an indicator of perfor-
mance deterioration (PVT measures). SCL 
exhibited a stable value throughout the experi-
ment, with a decrease at Hour 20, followed by a 
recovery to initial values. However, frequency 
of NSSCRs index was more sensitive than SCL 
as it was stable during the first 18 hours of the 
experiment, with an increase at 12 hours, and 
then a decrease in value after 20 hours. Simi-
larly, EDASymp exhibited an increase during 
the first three trials, then exhibited decreased 
values until 18 hours, and showed another 
decrease after 20 hours. TVSymp was the most 
sensitive as it was stable during the first 12 
hours, then decreased for Trials 7 (14 hours) 

through 10 (20 hours), and presented a signifi-
cant decrease at Trial 11 (22 hours), compared to 
Trial 3 (6 hours).

HRVLF showed a trend of increase at the 4th 
hour, remained stable until Trial 4 (8th hour), 
then showed a trend of decrease at the 10th hour, 
and had a noticeable increase at 22 hours. HRV-
LFn showed decreases and increases during the 
24-hour period. It exhibited minima at 12 hours, 
18 hours, and 24 hours and maxima at 4, 14, and 
20 hours. HRVHF decreased at 4 hours, then 
was stable until 8 hours, then decreased until 
reaching a minimum at 14 hours, and recovered 
to higher values toward the end of the experi-
ment. HRVHFn was similar, but opposite, to 
HRVLFn. It exhibited minima at 4, 12, and 22 
hours and maxima at 10 and 20 hours. Signifi-
cant differences in HRVHFn were found in Tri-
als 11 (with respect to Trials 1 and 5) and 12 
(with respect to Trial 1).

Table 1 includes the results of correlation  
and detection analysis. In total, 32 correlations 
were computed between indices of ANS (HRV 
and EDA) and performance, and 32 detector 

Figure 3. Indices of EDA. Mean value ± SEM for SCL, NSSCRs, EDASymp, and TVSymp 
obtained during the 24-hour period of sleep deprivation. Symbols indicate significant 
difference: * to Trial 3.
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performances were evaluated using the ROC 
AUC. TVSymp exhibited the highest statisti-
cally significant correlation to avRT, major lapses, 
and minor lapses (–0.92, –0.85, and –0.83, respec-
tively). NSSCRs and HRVLFn also exhibited sta-
tistically significant correlation to those three 
measures of PVT, although lower than that of 
TVSymp. HRVHFn was moderately correlated to 
minor lapses. As for detection analysis as quanti-
fied by the ROC, TVSymp exhibited the highest 
AUC value for avRT (0.74), major lapses (0.72), 
and false starts (0.59), whereas AUC for HRVLFn 
was slightly higher for minor lapses (0.69), com-
pared to TVSymp (0.68). Figure 5 includes the 
scatterplots of the raw data for the significant cor-
relations found between indices of ANS and indi-
ces of performance.

Discussion
We have observed that TVSymp, an index 

accounting for higher frequencies of EDA, was 
strongly correlated to indices of performance in 
PVT. Other measures like NSSCRs, HRVLFn, 

HRVLF, and HRVHF exhibited lower correla-
tion, whereas other indices did not show sig-
nificant correlation. Furthermore, TVSymp was 
the most sensitive detector of the deterioration 
of performance. This suggests that the effects 
of sleep deprivation on autonomic response 
were more noticeable at the skin level than at 
the cardiac level. Assessment techniques using 
information from both HRV and EDA provide 
central and peripheral noninvasive autonomic 
assessment, respectively. Based on our results, 
EDA can potentially assess and predict the 
effect of prolonged wakefulness in the auto-
nomic response and task performance of indi-
viduals, which can then be used to prevent 
unfortunate (usually fatal) consequences.

HRV has been widely used to understand the 
effects of sleep deprivation. However, results 
have been inconclusive. In a past study, a group 
of volunteers were kept awake for 40 hours per-
forming a constant routine; the authors found 
that HRV was generally reduced after prolonged 
wakefulness (Viola et al., 2008). These results 

Figure 4. Indices of HRV. Mean value ± SEM for HRVLF, HRVLFn, HRVHF, and 
HRVHFn obtained during the 24-hour period of sleep deprivation. Symbols indicate 
significant difference: * to Trials 1 and 5; † to Trial 1.
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revealed a smaller decline in HRV due to pro-
longed wakefulness, compared to sleeping con-
ditions. Another group of participants underwent 
36 hours of wakefulness, revealing an increase 

in sympathetic autonomic modulation and a 
decrease in parasympathetic autonomic modula-
tion during daytime (Zhong et al., 2005). In this 
study, they found diminished spectral indices of 

Table 1: Correlation and Detection Analysis

avRT Major Lapses Minor Lapses False Starts

r AUC rs AUC rs AUC rs AUC

EDA SCL 0.21 0.48 0.25 0.50 0.24 0.44 0.24 0.50
  NSSCR –0.80* 0.60 –0.71* 0.64 –0.65* 0.65 –0.45 0.45
  EDASymp –0.24 0.66 –0.19 0.64 –0.19 0.63 0.03 0.56
  TVSymp –0.92** 0.74 –0.85** 0.72 –0.83** 0.68 –0.57 0.59
HRV HRVLF 0.33 0.45 0.33 0.49 0.35 0.44 0.59 0.44
  HRVLFn –0.77* 0.68 –0.66* 0.69 –0.64* 0.69 –0.53 0.56
  HRVHF 0.26 0.51 0.28 0.53 0.32 0.44 0.2 0.37
  HRVHFn –0.57 0.70 –0.56 0.69 –0.58* 0.56 –0.48 0.44

Note. AUC = area under the curve of the ROC curve; EDASymp = sympathetic component of the EDA; HRVLF =  
low-frequency components of heart rate variability (HRV); HRVLFn = normalized low-frequency components of 
HRV; NSSCRs = nonspecific skin conductance responses; r = Pearson’s correlation coefficient; rs = Spearman’s 
correlation coefficient; SCL = skin conductance level; TVSymp = time-varying index of sympathetic tone.
*p < .05. **p < .001.

Figure 5. Scatterplots of the raw data for correlation analysis. Top row: avRT; middle 
row: major lapses; bottom row: minor lapses; left column: TVSymp; center column: 
NSSCRs; right column: HRVLFn.
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HRV for healthy participants performing a 
repetitive cognitive test. Another study did not 
find a significant increase in sympathetic modu-
lation during daytime (diminished overall HRV) 
after one night of wakefulness (Pagani et al., 
2009). Other researchers found a moderate cor-
relation of spectral indices of HRV with partici-
pants’ performance in PVT during sleep depri-
vation (Chua et al., 2012). In our previous study 
(Posada-Quintero et al., 2017), few significant 
differences were found in HRV parameters 
throughout the experiment. Only HRVLF exhib-
ited a significant increase after 20 hours. 
Although results look opposite to the present 
study, the test implemented was different and its 
effects on ANS are also distinct.

Literature on the effect of sleep deprivation 
using EDA as a measure is not ample. The litera-
ture provides inconsistent results on changes in 
the slow and phasic shifts of EDA during sleep 
deprivation but highlights the methodological 
limitations of these studies (single case studies, 
measurements taken only once or twice during 
the test, or lack of statistical analysis) (Horne, 
1978). Another study found an increase in latency 
and reduction in amplitude of event-elicited 
SCRs after 36 hours of sleep deprivation, but 
PVT was not measured (McCarthy & Waters, 
1997). Using a simple RT test, a recent study 
reported a correlation in the reduction of SCL 
and the impairment of the RT (Miró et al., 2002). 
Another study examined how the sympathetic 
nervous system (assessed using the SCL) con-
tributes to altered reactiveness in sleep-deprived 
persons (Liu et al., 2015). The latter two studies 
only analyzed the slow shifts represented in the 
SCL. Additionally, in our recent study involving 
healthy participants who underwent cognitive 
stress tests post-24-hour sleep deprivation, we 
found statistically significant changes in the 
indices that represent higher frequencies of EDA 
(NSSCRs, EDASymp, and TVSymp), not  
present in the LF shifts in level (SCL) (Posada-
Quintero et al., 2017). For these studies, the 
above mentioned SCL and SCR indices of EDA 
were not directly compared to PVT, as the latter 
data were not simultaneously acquired.

In the present study, we found a strong cor-
relation between three of the obtained indices of 
performance of PVT and TVSymp. TVSymp 

incorporates both frequency- and time-domain 
information of EDA in one index. In particular, 
TVSymp’s high correlation to avRT, major 
lapses, and minor lapses indicates that it can be 
used to detect the deterioration in performance 
produced by sleep deprivation (higher than 
0.83). Among EDA indices, we found the weak-
est correlation of SCL and EDASymp to the 
indices of performance. Indices of HRV exhib-
ited moderate absolute correlation, with a maxi-
mum value of 0.68. These differences of correla-
tion of the indices of EDA and HRV to perfor-
mance measures provide evidence that the 
effects of sleep deprivation on the autonomic 
response are stronger at the peripheral level than 
at the central level. We can also speculate that 
the reduction of fast sympathetic innervation at 
the skin level produced by prolonged wakeful-
ness (at least during a 24-hour period), observ-
able in the higher frequency components of the 
EDA signal, causes a decrease in humans’ capac-
ity to react in a timely manner.

HF components of EDA are known to be 
evoked by central (hypothalamus, medulla) or 
peripheral (pre- and postganglionic peripheral 
nerve) mechanisms (Koss & Davison, 1976) and 
have been linked to attention and stimulus nov-
elty (Hochberg, Kling, & Riggs, 1971). TVSymp 
more sensitively captures this effect, as it com-
prises both the time and frequency dynamics of 
EDA in a single measure. TVSymp has been 
shown to be a sensitive measure of arousal 
caused by different stressors, including physical 
and cognitive (Posada-Quintero, Florian, 
Orjuela-Cañón, & Chon, 2016). As HRV only 
reflects the dynamics of ANS, it is not as sensi-
tive for detecting such decreases in RT, in com-
parison with TVSymp, for example.

It is expected that PVT, EDA, and HRV indi-
ces measured during a 24-hour period of wake-
fulness were sensitive to both circadian rhythms 
and sleep deprivation. Nevertheless, it is known 
that sleep deprivation causes an overall increase 
of RTs and increased errors of omission and 
commission (Lim & Dinges, 2008). In fact, this 
is the effect we observe on the measures of per-
formance of PVT collected in this study (Figure 
2), as there was a significant trend of increasing 
RT and decreasing accuracy toward the end of 
the 24-hour period. In the top panels of Figure 2, 
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the first data points were collected after 2 hours 
of testing and the last 3 data points were taken 
after the participant was awake for at least 18 
hours. By then, usually 4 to 8 AM, effects of the 
circadian rhythm would cause a decrease in the 
RT. Instead, we observed in Figure 3 a continued 
trend of increase in the RT, lapses, and false 
starts. Hence, such a trend with consistent 
increase in sleep deprivation indicates that par-
ticipants are more affected by sleep deprivation 
than by the circadian rhythm. Similar results can 
be seen in some indices of EDA (NSSCRs, 
EDASymp, and TVSymp; Figure 3), with the 
same interpretation. It should be noted that we 
do observe a recovery (increase) in those indices 
in the panels of Figure 3 at 24 hours, which is 
likely due to the circadian effect. In the PVT 
measures, toward the end of the experiment 
(Trial 12), there is recovery or return to low val-
ues (better performance). This may suggest that 
in addition to possible circadian effects, the par-
ticipants may have tried to stay focused and 
vigilant, causing a “final spurt,” which was 
noticeable in both PVT and some ANS measures 
(Figures 2, 3, and 4).

In this study, we computed NSSCRs automat-
ically utilizing the convex optimization approach 
(Greco et al., 2016). There are other automatic 
ways to count spontaneous SCRs, extract ampli-
tude or other measures of a single causal SCR, 
and deal with motion artifacts and superposition 
on the SCRs (Bach & Friston, 2013; Benedek & 
Kaernbach, 2010; Chaspari, Tsiartas, Stein, Cer-
mak, & Narayanan, 2015). However, the spectral 
and time-varying indices utilize widely imple-
mented and relatively simple digital-processing 
techniques and do not rely on either manual or 
automatic SCR detection, which is usually more 
complex and time consuming.

Conclusion
We studied the effects of prolonged wake-

fulness on human performance and autonomic 
response. Participants performed the standardized 
PVT task every 2 hours during a 24-hour period, 
and indices of EDA and HRV were collected 
during every trial. We found high correlation 
between the most relevant indices for assessing 
performance in PVT (avRT, major lapses, and 
minor lapses), and the physiological index of 

EDA that represents higher frequencies of the 
signal, TVSymp. We conclude that this index of 
EDA can be used for creating or improving tech-
niques to assess and predict impaired cognitive 
performance and prevent consequences caused by 
the effects of prolonged wakefulness.
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Key Points
•• Measurements of performance of PVT in sleep-

deprived participants collected in this study were 
consistent with those previously reported in the 
literature.

•• The SCL (slow shifts of EDA), the power spec-
tral index (EDASymp), and the HF components 
of HRV (HRVHF and HRFHFn) did not show sig-
nificant correlations to the measurements of per-
formance of PVT.

•• The NSSCRs, the time-varying index of EDA 
(TVSymp), and normalized LF components of 
HRV (HRVLFn) were significantly correlated to 
measurements of performance (p < .05).

•• TVSymp exhibited the highest correlation to avRT 
(–0.92), major lapses (–0.85), and minor lapses 
(–0.83) (p < .001).

•• Indices that account for HF dynamics in the EDA, 
specially the TVSymp, constitute a valuable tool 
for understanding the changes in the ANS and 
detect the effects of prolonged wakefulness on 
human performance.
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