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Abstract— Objective: The purpose of this manuscript is to 

demonstrate that a new algorithm for estimating arterial 

oxygen saturation can be effective even with data corrupted by 

motion artifacts (MAs). Methods: OxiMA, an algorithm based 

on the time-frequency components of a photoplethysmogram 

(PPG),  was evaluated using 22-minute datasets recorded from 

10 subjects during voluntarily-induced hypoxia, with and 

without subject-induced MAs. A Nellcor OxiMax transmission 

sensor was used to collect an analog PPG while reference 

oxygen saturation and pulse rate (PR) were collected 

simultaneously from an FDA-approved Masimo SET® Radical 

RDS-1 pulse oximeter. Results: The performance of our 

approach was determined by computing the mean relative 

error between the PR/oxygen saturation estimated by OxiMA 

and the reference Masimo oximeter. The average estimation 

error using OxiMA was 3 beats/minute for PR and 3.24% for 

oxygen saturation, respectively. Conclusion: The results show 

that OxiMA has great potential for improving the accuracy of 

PR and oxygen saturation estimation during MAs. Significance: 

This is the first study to demonstrate the feasibility of a 

reconstruction algorithm to improve oxygen saturation 

estimates on a dataset with MAs and concomitant hypoxia. 

 
Index Terms— Motion Artifacts, Oxygen Saturation 

Monitoring, Hypoxia, Pulse Rate Monitoring, 

Photoplethysmogram, PPG, Pulse Oximetry, Signal Processing. 

 

I.    INTRODUCTION 

ITAL signs and clinical symptoms have been shown to 

be poor predictors of hypoxia, and in order to justify 

oxygen therapy, measurement of arterial oxygen saturation 

by pulse oximetry is being increasingly recommended [1]. 

Arterial oxygen saturation reflects the relative amount of 

oxyhemoglobin in the arterial blood. Pulse oximetry is the 

most common method to measure arterial oxygen saturation 

(which is then referred to as “SpO2”), as oxygenated 

hemoglobin and reduced hemoglobin have significantly 

different optical absorbance spectra. Specifically, at a red 

wavelength of about 660 nm, there is a significant difference 

in light absorbance between reduced (Hb) and oxygenated 

hemoglobin (HbO2). A measurement of the percent oxygen 

saturation of blood is defined as the ratio of the concentration 

of oxyhemoglobin to the total concentration of hemoglobin 

present in the blood. Pulse oximetry relies on the principle 

that PPG fluctuations originate from changes in arterial 

blood volume caused by each heartbeat, where the total PPG 

magnitude depends on the amount of arterial blood entering 

a peripheral vascular bed; the optical absorbance of the 

blood, skin and tissue; and the wavelength of the light used 

to illuminate the blood. PPGs can be used to derive not only 

the SpO2 and pulse rate (PR), but also other vital 

physiological information [2-5]. Using a pulse oximeter as a 

multi-purpose vital sign monitor has clinical appeal, since it 

is familiar to clinicians and comfortable for the patient [6]. 

In healthy persons, SpO2 is typically near 98% at sea level. 

A lower reading indicates a level of hypoxia. SpO2 readings 

below 95% are usually a cause for concern, indicating the 

need for supplemental oxygen therapy. In certain 

individuals, such as those with chronic respiratory or cardiac 

diseases, SpO2 readings below 95% may be considered 

normal. However, in general, SpO2 readings between 90% 

and 95% represent mild hypoxia, while those between 85% 

and 90% indicate serious hypoxia, and readings below 85% 

indicate critical hypoxia [7].  
Although there are many promising applications for pulse 

oximeters, currently, they are primarily used on immobile 

patients. This is because motion artifacts (MAs) result in 

unreliable SpO2 and PR estimations [6, 8-17]. Clinicians 

have consequently cited motion artifacts in pulse oximetry as 

the most common cause of false alarms, loss of signal, and 

inaccurate readings [18]. Motion artifacts are caused by 

many phenomena including variations in light coupling 

between tissues and the sensor, mechanical pulsation of 

typically non-pulsatile tissue, variations in sensor contact 

pressure, and mechanical pulsation of arterial blood 

asynchronous with the true pulse rate.  

In practice, MAs are difficult to remove since the 

corrupted signal component does not have a predefined 

narrow frequency band and its frequency spectrum often 

overlaps with that of the clean PPG [19]. Hence, it is 

necessary to develop robust algorithms that are capable of 

reconstructing the motion-corrupted signal and removing 

MAs.   
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Several techniques have been described in the literature 

for MA detection and removal. Some methods are based on 

adaptive filtering [8, 20-22]. In [23], Diab et al. applied an 

adaptive noise filter technique (a ‘correlation canceler’) to 

reduce undesired components that are in the frequency band 

of the desired signal, by dynamically changing the filter 

transfer function. Other techniques are based on the concept 

of blind source separation (BSS). The concept of BSS is to 

reconstruct a set of signals from a set of mixed signals which 

are assumed to contain both the clean and noisy waveforms 

[6]. Independent component analysis (ICA) [24], canonical 

correlation analysis (CCA) [25], principle component 

analysis (PCA) [26], and singular spectrum analysis (SSA) 

are some of the more popular BSS techniques [6, 27]. In [9], 

Kim and Yoo proposed the use of a basic ICA algorithm with 

block interleaving to reduce MAs. Frequency-domain-based 

ICA was suggested by Krishnan et al. [10]. However, the 

statistical independence or low correlation assumptions in 

ICA do not hold in a PPG contaminated by MA [11]. 

Salehizadeh et al. [6] introduced a MA removal algorithm 

using SSA. The idea was to use SSA to decompose the 

corrupted segment adjacent to the clean segment and choose 

the SSA components in the corrupted segment that had a 

similar frequency range to that of the adjoining clean 

components. Although the algorithm performs well for 

slowly time-varying dynamic changes, it cannot be applied 

in scenarios where PR varies quickly, which can occur when 

a subject is exercising at a rapid pace. Using accelerometer 

data has also been shown to be helpful in removing MA. For 

instance, Fukushima et al. [12] suggested a spectrum 

subtraction technique to remove the spectrum of 

accelerometer data from that of a corrupted PPG. 

Accelerometer data can also be used to reconstruct the 

observation model for Kalman filtering [13].   

Three noteworthy algorithms recently published for PR 

estimation during motion and physical activities are 

TROIKA, JOSS and SpaMA [28-30] in which time-

frequency spectrum estimation, and spectral peak tracking 

and verification, are used to estimate and monitor PR during 

intensive physical activity. All three algorithms make use of 

both PPG and accelerometer information to obtain an 

accurate estimation of PR during a treadmill experiment. 

Although these techniques yield accurate PR estimations 

during physical activities, SpO2 estimations were not 

performed.  

In [31-33], other techniques were introduced to estimate 

the blood oxygen saturation from the magnitudes of selected 

peaks contained in the frequency-domain spectra of the red 

and infrared PPGs. The method proposed by Athan et al. was 

an approach to estimate SpO2 from PPG signals in the 

frequency domain according to the magnitude of the highest 

peak in the spectrum [35].  This method works well when 

there are minimal motion artifacts and the PPG signal is 

robust.  Hence, this method is likely to suffer in SpO2 

estimation accuracy when there are significant motion 

artifacts and the signal quality of the PPG signal is not 

optimal.  The work by Rusch et al. examines the estimation 

of SpO2 also using the spectral domain.  Specifically, the 

work examines both the FFT and discrete cosine 

transformation (DCT) to estimate SpO2 [33].  The authors 

reported similar results with both approaches, although in 

certain instances the FFT method worked better than DCT, 

and vice versa.  However, this work appears to assume that 

motion artifacts are minimal, hence, both the FFT and DCT 

methods’ accuracy in estimating SpO2 may suffer when 

significant noise is present.  The patent by Kaestle et al. also 

proposed a method based on spectral analysis of red and 

infrared PPG signals to estimate SpO2 [34]. To account for 

noise and motion artifacts, the method is designed to look for 

ten features derived from spectral analysis of PPG.  Based on 

the characteristics of the individual spectral peak features, 

point scores are assigned.  Those spectral peaks with higher 

point scores are identified as belonging to a blood pulse.  

However, it is not clear from the patent how one determines 

the threshold at which point scores indicate that a peak is 

associated with a blood pulse.  It is stated that an average 

value formulation or historical evaluation are carried out to 

determine the point score threshold value, but it is left 

nebulous and thus unclear how the threshold value can be 

obtained.  While this method tries to address noise and 

motion artifacts, the ten spectral features of the method will 

vary commensurate with the degree of motion and noise 

artifacts. Moreover, the point scoring approach for each of 

the ten features appears to be arbitrary, as it is empirically 

derived. These approaches by Athan, Rusch, and Kaestle rely 

on the calculation of SpO2 using ratios of the magnitudes of 

individual spectral peaks.  
In this paper, a time-frequency based approach is 

presented to accurately estimate both SpO2 and PR based on 

PPG reconstructions: time-domain waveforms that are 

reconstructed based on the optimal selection of frequency-

domain components that are believed to represent these 

PPGs and not the accompanying motion artifact The 

algorithm, termed motion artifact removal for oxygen 

saturation estimation (OxiMA), is comprised of six distinct 

stages: (1) time-frequency spectral analysis, (2) signal 

decomposition, (3) spectral filtering, (4) PR extraction and 

tracking, (5) signal reconstruction, and (6) SpO2 estimation.  

We show in the Results section that the OxiMA algorithm 

provides accurate PR and SpO2 estimates even during 

motion.  Other similar algorithms (e.g. TROIKA and JOSS), 

as noted above, did not demonstrate their ability to obtain 

SpO2 estimations, as they were designed for PR estimations 

in the presence of intense motion artifacts. 

 

II.    MATERIALS AND EXPERIMENTS 
 

The OxiMA algorithm was evaluated on a lab-controlled 

dataset that was recorded during voluntarily-induced 

hypoxia. In an IRB-approved study (Docket 15-012M, 

Worcester Polytechnic Institute) which involved 10 subjects, 

one set of data was collected from each subject for a duration 

of 22 minutes. Ten males between the ages of 23 and 58 years 

old were recruited for this study (mean age of 27 years). 

Reference SpO2 and PR were collected from an FDA-

approved Masimo SET® Radical RDS-1 pulse oximeter 

(mounted on the left hand), while a Nellcor OxiMax sensor 

(mounted on the right hand) was simultaneously used to 

collect an analog PPG signal (see Fig. 1).  A National 

Instruments NI USB-6008 12-bit, multifunction I/O, data 
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acquisition system was used to acquire and digitize the 

analog PPG signal at a rate of 512 samples per second. The 

AC (time-varying) and DC (baseline) components of the 

PPGs were obtained via MATLAB by filtering the red (R) 

and infrared (IR) composite PPGs with 4th-order band-pass 

(0.5 - 12 Hz) and low-pass (0.5 Hz cutoff frequency) zero-

phase digital filters, respectively. 

The protocol for this experiment is presented in Table I. 

Each subject sat in a chair and was asked to rebreathe into a 

1-gallon bag for four two-minute intervals. Each interval was 

followed by a 1-minute rest period and then a 2-minute rest 

period. During the first and third times the subject rebreathed 

into the bag, they were asked to remain still. During the 

second and fourth times the subject rebreathed into the bag, 

they were asked to introduce motion artifacts into the 

measurement. The motion performed was typically 

excessive flexion and extension of the wrist and digits. 

Subjects were not instructed to move in any particular way, 

but it was observed that flexion and extension seemed easiest 

for subjects. Each subject wore a disposable nose clip to 

prevent accidental breathing of room air. The Masimo 

reference sensor placed on the left hand remained motionless 

for the entire duration of the study. The PPG signal from this 

sensor was collected without motion in order to be a clean 

reference signal to use for comparison with the reconstructed 

PR and SpO2 estimations using the proposed algorithm. 

Subjects had at least two minutes of rest between successive 

breathing maneuvers, with more time if requested.  An 

informed consent was required of each subject prior to data 

recording. 

This sequence of data allowed us to test the efficacy of 

the OxiMA algorithm while a subject experienced different 

levels of short term hypoxia accompanied by motion 

artifacts.  For reference, other clinical studies showed that 

SpO2 levels in patients suffering from mild to moderate sleep 

apnea can drop to about 80% for short periods of time (23-

70 sec) without irreversible physiological effects [34]. 

 

III.    METHODOLOGY 

 

The procedure for the OxiMA algorithm is presented in 

Table II. Details of each stage will be described in 

subsections A through F. 

 

A. Time-Frequency Spectral Analysis 

 

In order to compute the time-frequency spectrum, a 

variable frequency complex demodulation (VFCDM) 

technique was adopted [35]. Table III presents the VFCDM 

procedure. 

By taking a K-second window of the PPG, computing the 

VFCDM spectrum of the windowed segment, and then 

sliding the window along the entire dataset, we can estimate 

a time-varying spectrum. There is no overlap between the 

sliding time windows. The window segment length, K, is set 

to 8 seconds and is shifted by 8 seconds.  As an example, the 

IR PPG, an 8-second window of the IR PPG, and the 

resultant VFCDM time-frequency spectrum of recording #6 

are represented in Fig. 2. The next section details how the 

PPGs are decomposed into their frequency components 

using VFCDM. 

 

B. Signal Decomposition 

 

We can now decompose the original PPG into sinusoidal 

modulations using VFCDM (see Table III): 

TABLE I 

EXPERIMENTAL PROTOCOL 

Start Time  

(minutes) 

Event Duration 

(minutes) 

End 

Time 

(minutes) 

0 Rest (Baseline) 2 2 

2 Bag Breathing 

(No Motion) 

2 4 

4 Rest (Oxygen 

Recovery) 

1 5 

5 Rest 2 7 

7 Bag Breathing 

(Motion) 

2 9 

9 Rest (Oxygen 

Recovery) 

1 10 

10 Rest 2 12 

12 Bag Breathing 

(No Motion) 

2 14 

14 Rest (Oxygen 

Recovery) 

1 15 

15 Rest 2 17 

17 Bag Breathing 

(Motion) 

2 19 

19 Rest (Oxygen 

Recovery) 

1 20 

20 Rest 2 22 

 

 
Figure 1: Data collection flow chart. 

 

𝑥(𝑡) = ∑ 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡{𝑖}

𝑁

𝑖=1

 

= 𝑑𝑐(𝑡) +  ∑  𝐴𝑖(𝑡)𝑐𝑜𝑠(2𝜋𝑓𝑖(𝑡) + 𝜙𝑖(𝑡))

𝑁

𝑖=1
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where 𝑑𝑐(𝑡) is the DC term, and 𝐴𝑖(𝑡), 𝑓𝑖(𝑡) and 𝜙𝑖(𝑡) are 

instantaneous amplitude, frequency, and phase calculated 

from step (4) in Table III. We can thus decompose the PPG 

using the VFCDM procedure into 12 components that cover 

N=12 fixed frequency bands, each with a distinct central 

frequency. Fig. 3 shows the twelve components decomposed 

from the IR PPG for a representative subject; 12 components 

are also obtained from the red PPG but are not shown. 

Among the twelve frequency bands, bands 1 through 5 

correspond to the frequency range of [0.5 Hz to 3 Hz], which 

typically encompasses the true PR, accounting for both 

reduced and elevated pulse rates. 

The next step is to determine which components out of 

these 5 candidates’ frequencies should be chosen to 

reconstruct the signal so that the most accurate estimation of 

PR and SpO2 can be obtained.  The subsequent sections C 

through F detail our strategies to optimally select 

frequencies, estimate PRs, and reconstruct the PPGs so that 

more accurate SpO2 estimates can be made. 

 

C. Spectral Filtering 

 

After obtaining the power spectral density during each 

window, the PR is assumed to be confined to the range [0.5 

Hz – 3 Hz], which takes into account both at-rest and high 

PR values due to either tachycardia or exercise.  Next, for PR 

estimation, the strategy is to keep only those frequencies that 

correspond to the highest and second-highest peaks in each 

column of the time-frequency spectrum (TFS) matrix. This 

and the next steps of OxiMA are adopted from our 

previously-developed algorithm SpaMA [30]. The main 

difference here is that the procedure is implemented on the 

VFCDM time-frequency matrix for each segmented 

window. 

In general, the PR component in the spectrum of the PPG 

for each window can relate to one of three possible cases: (1) 

the PPG quality is good and is devoid of motion and noise 

artifacts, (2) the PPG is misshapen but the true PR 

component is mostly present, and (3) the true PR component 

is weak or absent.  For the ideal case (1), the PR can be 

extracted and is represented by the largest frequency 

component in the PPG spectrum. For case (2), the PR 

component’s spectral power is smaller than the motion 

component’s spectral power, and the frequency related to the 

second highest peak in the spectrum is interpreted as the true 

PR.  In case (3), the missing PR value can be interpolated 

TABLE II 

OXIMA ALGORITHM: PR AND SPO2 ESTIMATION 

Stage 1. Time-Frequency Spectral Analysis 

1.1. Downsample PPG from the original sampling frequency of 512 
Hz to 20 Hz. 

1.2. Compute the VFCDM based time-frequency spectrum (TFS). 

Stage 2. Signal Decomposition  

2.1. Decompose the PPG into its frequency components according 
to frequency bands in the TFS. 

Stage 3. Spectral Filtering 

3.1. Consider PR to be in the range of [0.5 Hz – 3 Hz]. 

3.2. Assume that the largest two peaks and their corresponding 
frequencies in the filtered PPG spectrum can provide PR 

information.  

Stage 4. Pulse Rate Tracking and Extraction 

Case (1): Determine if the largest frequency component is within 10 

bpm of the previous PR. If not, proceed to case (2). 

Case (2): Determine if the second largest frequency component is 
within 10 bpm of the previous PR. If not, proceed to case (3).  

Case (3): Determine if the PR cannot be extracted from the 

spectrum and in this case use the previous PR, or, for offline 
implementation, cubic spline interpolation can be applied to fill 

in the missing PR information. 

Stage 5. PPG Reconstruction 

5.1. Reconstruct the PPG using the summation of VFCDM 

components with frequencies closest to the selected PR during 
each window. That is, use only the components within the 

anticipated PR range. 

Stage 6. Oxygen Saturation Estimation 

6.1. Calculate SpO2 estimations from reconstructed infrared and red 

PPGs using the following empirical calibration equation:  

𝑆𝑝𝑂2(%) = 110 − 25𝑅 

where 

𝑅 =
𝐴𝐶𝑅𝑒𝑑 𝐷𝐶𝑅𝑒𝑑⁄

𝐴𝐶𝐼𝑅 𝐷𝐶𝐼𝑅⁄
 

 

 

 
(b)  

 
(c) 

 

Figure 2: Time- and frequency-domain representations for recording #6: 

(a) Infrared PPG, (b) Zoomed-in PPG, (c) VFCDM TF spectrum of the 

PPG shown in (b). 
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using the cubic spline approach, assuming that the motion 

artifacts are short lasting. Fig. 4 depicts the above three cases.  

In Fig. 4a and b, the true PR is close to the highest or second-

highest peak respectively, while in Fig. 4c, the true PR is far 

from the dominant peak(s) in the spectrum. We can assume 

that as long as the PPG data are clean, the PR equals the 

frequency component with the highest power (peak) in each 

column of the TFS matrix. When the data are corrupted by 

MAs, the PR may not be represented by the largest frequency 

component, but rather by the second-largest. In the worst 

case (3), the dominant frequencies are no longer associated 

with the expected pulse rate at all.  

The first step of the spectral filtering procedure is to select 

only the two largest spectral peaks and their associated 

frequencies in each column of the TFS. Hence, the original 

TFS (Fig. 2c) can be processed to select only the two largest 

spectral peaks (see Fig. 5).  This step in the OxiMA algorithm 

involves retaining only the two largest frequency peaks 

(during each time window) that fall within the defined PR 

range (30-180 bpm).  

  

D. Pulse Rate Tracking and Extraction  

 

The next step after processing the TFS is the extraction of 

PR. The PR tracking procedure is as follows.  Assuming that 

we have knowledge of the initial PR, the PR during each 

window is extracted by comparing the frequencies of the 

spectral peaks to the previous PR value [30]. 

If the largest peak is within 10 bpm of the previous PR 

value (𝑃𝑅𝑘−1 ± 10), it is chosen; if not, we check whether 

or not the second largest peak is within the 10 bpm range.  If 

the PR value deviates by more than 10 bpm, the PR from the 

previous window is used. Fig. 5b illustrates the tracking of 

PR based on this procedure. 

 

E. PPG Reconstruction 

 

After PR values during each time window are estimated 

from the time-frequency spectrum, the signal reconstruction 

step of the OxiMA algorithm is performed.  Once the red and 

infrared PPGs are reconstructed, more accurate estimates of 

SpO2 can be made. 

Given the estimated PR values for each 8-sec window as 

detailed in the preceding sections C through D, we now 

reconstruct the time-domain signal x(t) as denoted in Eq. (1) 

using only the first five components as described in Section 

B.  This reconstructed signal will improve the accuracy of 

SpO2 estimations.  We assume that the reconstructed signal 

is dominated by the true PR, thus, represents the true PPG. 

 

F. Oxygen Saturation Estimation 

 

In order to accurately estimate SpO2, red and infrared 

PPGs with clearly separable DC and AC components are 

required.  Let the pulsatile components of the red and  

 

Figure 3: VFCDM signal decomposition of recording #6 (zoomed-in 

one min segments). The twelve components are obtained from the IR 

PPG. 
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TABLE III 

VFCDM ALGORITHM PROCEDURE 

Consider a sinusoidal signal 𝑥(𝑡) to be a narrow-band oscillation with 

a time-varying modulating frequency 𝑓(𝜏), instantaneous 

amplitude 𝐴(𝑡), phase 𝜙(𝑡), and low frequency component 𝑑𝑐(𝑡): 

𝑥(𝑡) = 𝑑𝑐(𝑡) + 𝐴(𝑡) cos (∫ 2𝜋𝑓(𝜏)𝑑𝜏 + 𝜙(𝑡) 
𝑡

0

) 
 

(𝑖) 

Step (1) We can extract the instantaneous amplitude information 𝐴(𝑡) 

and phase information 𝜙(𝑡) by first multiplying (i) by 𝑒−𝑗 ∫ 2𝜋𝑓(𝜏)𝑑𝜏
𝑡

0  

which results in the following: 

𝑧(𝑡) = 𝑥(𝑡)𝑒−𝑗 ∫ 2𝜋𝑓(𝜏)𝑑𝜏
𝑡

0  

= 𝑑𝑐(𝑡)𝑒−𝑗 ∫ 2𝜋𝑓(𝜏)𝑑𝜏
𝑡

0 + (
𝐴(𝑡)

2
) 𝑒𝑗𝜙(𝑡)

+ (
 𝐴(𝑡)

2
) 𝑒

−𝑗(∫ 4𝜋𝑓(𝜏)𝑑𝜏
𝑡

0 +𝜙(𝑡))
 

 
 

(𝑖𝑖) 

Step (2) If 𝑧(𝑡) is filtered with an ideal low-pass filter (LPF) with a 

cutoff frequency 𝑓𝑐 < 𝑓0, where 𝑓0 is the center frequency of interest, 

then the filtered signal 𝑧𝑙𝑝(𝑡) will contain only the component of 

interest: 

 𝑧𝑙𝑝(𝑡) =
𝐴(𝑡)

2
𝑒𝑗𝜙(𝑡) 

 
Step (3) By changing the center frequency, followed by using the 

variable frequency approach as well as the LPF, the signal, 𝑥(𝑡), can 

be decomposed into sinusoidal modulations, 𝑑𝑖, by the variable 

frequency complex demodulation technique as follows:  

𝑥(𝑡) =  ∑ 𝑑𝑖

i

 

= 𝑑𝑐(𝑡) + ∑ 𝐴𝑖(𝑡) cos (∫ 2𝜋𝑓𝑖(𝜏)𝑑𝜏 + 𝜙𝑖(𝑡)
𝑡

0

)

𝑖

            (𝑖𝑖𝑖) 

Step (4) The instantaneous amplitude, phase, and frequency of 𝑥(𝑡) in 

(iii) can be calculated using the Hilbert transform:  

𝑌(𝑡) = 𝑖𝑚𝑎𝑔 (𝑧𝑙𝑝(𝑡)) =  𝐻[𝑋(𝑡)] =
1

𝜋
∫

𝑋(𝑡′)

𝑡 − 𝑡′
𝑑𝑡′ 

𝑋(𝑡) = 𝑟𝑒𝑎𝑙(𝑧𝑙𝑝(𝑡)) 

𝐴(𝑡) = 2|𝑧𝑙𝑝(𝑡)| = √𝑋2(𝑡) + 𝑌2(𝑡)                         (𝑖𝑣) 

           𝜙(𝑡) = arctan (
𝑖𝑚𝑎𝑔 (𝑧𝑙𝑝(𝑡))

𝑟𝑒𝑎𝑙 (𝑧𝑙𝑝(𝑡))
) = arctan (

𝑌(𝑡)

𝑋(𝑡)
)        (𝑣) 

𝑓(𝑡) = 𝑓0 +
1

2𝜋

𝑑𝜙(𝑡)

𝑑𝑡
                                (𝑣𝑖) 
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infrared PPG be denoted as 𝐴𝐶𝑅𝑒𝑑 and 𝐴𝐶𝐼𝑅, and let the 

baseline components be denoted as 𝐷𝐶𝑅𝑒𝑑  and 𝐷𝐶𝐼𝑅, 

respectively.  Then, the ‘ratio-of-ratios’ is defined as [19, 

20]:  

SpO2 is then estimated according to the following empirical 

linear approximation given by [33]: 

 

Fig. 6e represents the estimated SpO2 values obtained 

from the OxiMA reconstructed signal in comparison to the 

reference Masimo SpO2 values and the estimated SpO2 prior 

to signal reconstruction. 

(a) 

(b) 

 
(c) 

Figure 4:  Three possible cases of PR estimation:  

(a) True PR is close to the highest peak of the spectrum, 
 (b) True PR is close to the second highest peak,  

(c) True PR is not close to any of the prominent peaks in the spectrum. 
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𝑅 =
𝐴𝐶𝑅𝑒𝑑 𝐷𝐶𝑅𝑒𝑑⁄

𝐴𝐶𝐼𝑅 𝐷𝐶𝐼𝑅⁄
 

 
(2) 

 

𝑆𝑝𝑂2(%) = 110 − 25𝑅 
 
(3) 

 

(a)

(b) 

Figure 5:  PR Extraction (recording #6): (a) PR from the first 
and second prominent components of each spectrum for the TFS 

shown in Fig. 2c; Blue dots and green circles represent the first 

and second highest peaks in the spectrum, respectively (b) PR 
extraction from the processed TFS. 
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Relative error and error percentage were used to show the 

performance of OxiMA. The two performance metrics are 

defined as: 

where 𝐸1
∗ is relative error, 𝐸2

∗ is percent error, 𝐹𝑒𝑎𝑡𝑢𝑟𝑒∗ is 

the estimated feature (PR or SpO2), and 𝑊 is the number of 

motion- and noise-corrupted windows. The relative error and 

percent error were calculated pre- and post-application of the 

OxiMA algorithm, where for the pre-application data we 

have taken the raw PPG signal and applied equations 2 and 

3. Improvement from pre- to post-application of the OxiMA 

algorithm can be calculated as: 

 

IV. RESULTS 

 

Table IV and Table V represent the error 

[𝐸1
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 , 𝐸1

𝑂𝑥𝑖𝑀𝐴] and the error percentage 

[𝐸2
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 , 𝐸2

𝑂𝑥𝑖𝑀𝐴]  of PR and SpO2 for the varying 

hypoxia dataset during the finger movement period.  The 

performance of the OxiMA algorithm is evaluated, where 

both with- and without-reconstruction estimations are 

compared to the reference PR and SpO2 values obtained from 

the Masimo pulse oximeter. 

𝐸1
∗ =  𝜇𝑒𝑟𝑟𝑜𝑟 ± σ𝑒𝑟𝑟𝑜𝑟 (4) 

𝐸2
∗ =  

1

𝑊
∑

𝑒𝑟𝑟𝑜𝑟(𝑘) 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒∗
𝑟𝑒𝑓(𝑘)

𝑊

𝑘=1

× 100% (5) 

where, 

𝑒𝑟𝑟𝑜𝑟(𝑘) = |𝐹𝑒𝑎𝑡𝑢𝑟𝑒∗(𝑘) − 𝐹𝑒𝑎𝑡𝑢𝑟𝑒∗
𝑟𝑒𝑓(𝑘)|  

 

 

𝜇𝑒𝑟𝑟𝑜𝑟 =
1

𝑊
∑  𝑒𝑟𝑟𝑜𝑟(𝑘)               

𝑊

𝑘=1

 
 

σ𝑒𝑟𝑟𝑜𝑟 = √
1

𝑊
∑(𝑒𝑟𝑟𝑜𝑟(𝑘) − 𝜇𝑒𝑟𝑟𝑜𝑟)2

𝑊

𝑘=1

 

 

 

𝐼𝑚𝑅𝑎𝑡𝑒(%) = 𝐸2
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 − 𝐸2

𝑂𝑥𝑖𝑀𝐴   (6) 

 

 
 

Figure 6:  PPG reconstruction and SpO2 estimation (recording #6): 
(a) Original (blue) and reconstructed (magenta) infrared PPG, 

(b) Zoomed-in version of (a), (c) Original (red) and reconstructed 

(black) red PPG, (d) Zoomed-in version of (c), (e) Comparison of 
reference SpO2 vs. original and reconstructed SpO2. 

 

(a)

(b)

(c)

(e)

(d)

TABLE IV 

OXIMA ALGORITHM PERFORMANCE 

(PR ESTIMATES DURING MOTION) 

Subject 
Original PR estimation 

error 
OxiMA PR estimation error 

 𝐸1 𝐸2 (%) 𝐸1 𝐸2 (%) 

1 7.10±3.0 9.58 2.16±1.1 2.80 

2 9.62±2.4 10.92 2.97±2.5 4.10 

3 13.38±2.9 14.44 2.01±0.7 2.37 

4 7.14±3.3 8.31 2.72±1.4 3.44 

5 20.53±7.2 26.96 7.89±5.7 10.18 

6 6.44±2.8 8.22 1.66±1.3 2.41 

7 19.41±6.8 24.65 3.38±1.8 4.41 

8 6.45±2.7 7.93 2.52±0.6 2.77 

9 6.10±2.4 7.13 2.84±0.5 2.95 

10 5.94±2.5 7.11 2.11±0.6 2.33 

mean±std 10.21±3.6 12.52±7.3 3.02±1.6 3.8±2.4 

 

TABLE V 

OXIMA ALGORITHM PERFORMANCE 

(SPO2 ESTIMATES DURING MOTION) 

Subject 
Original SpO2 estimation 

error 

OxiMA SpO2 estimation 

error 

 𝐸1 𝐸2 (%) 𝐸1 𝐸2 (%) 

1 4.44±2.0 4.46 1.44±1.3 1.73 

2 12.56±5.4 13.47 4.01±0.9 4.33 

3 10.33±4.1 12.91 3.70±0.4 3.93 

4 4.58±4.6 7.28 1.83±1.5 2.31 

5 15.92±6.8 18.13 5.39±3.8 6.79 

6 3.90±4.4 4.77 2.24±1.1 2.61 

7 9.41±3.9 10.35 4.61±2.7 5.88 

8 6.43±3.1 8.58 3.12±0.9 3.49 

9 3.74±3.4 5.37 3.41±0.8 3.93 

10 8.14±6.4 11.97 3.65±1.2 4.10 

mean±std 7.94±4.41 9.73±4.5 3.24±1.5 3.91±1.5 
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The results presented in Table VI show that OxiMA on 

average improves PR and SpO2 estimations by 8.75% and 

5.82%, respectively, when compared to those estimations 

without the reconstruction algorithm. 

 

V. CONCLUSIONS 

In this study, we introduced a technique (OxiMA) to 

minimize the effects of motion artifacts in PPGs in order to 

improve the accuracy of SpO2 and PR estimations. The 

strategy was to decompose each PPG into frequency bands 

within the pulse rate range using our previously-developed 

VFCDM algorithm. In our approach, we take only the 

decomposed components that are within the pulse rate range, 

including both extremes of low and high pulse rates, and 

reconstruct the signal based on these components.  This 

procedure allows the removal of frequencies that are not 

within the prescribed PR range. From this reconstructed 

time-series we have demonstrated an improvement in 

PR/SpO2 estimations on a dataset containing MAs and 

concomitant hypoxia. OxiMA may prove useful in 

improving the repeatability of pulse oximetry estimates in 

wired and wireless monitoring scenarios that include MAs. 
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