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Abstract—Pulse oximetry is a widely accepted clinical method for 
noninvasive monitoring of arterial oxygen saturation and pulse rate. 
Significant improvements aimed at curbing motion artifacts and 
improving reliability in detecting sufficiently strong 
photoplethysmographic signals are required to reduce errant 
measurements before the pulse oximeter can be considered for wider 
mobile applications. The present work describes the development of a 
wearable multi-channel reflectance pulse oximeter to investigate if a 
motion artifact-free signal can be obtained in at least one of the multi-
channels at any given time. Pilot findings provided a proof of concept to 
support the hypothesis that photoplethysmograms acquired concurrently 
from independent channels in a multi-channel pulse oximeter sensor 
respond differently to motion artifacts, thus laying the foundation for 
future development of robust active noise cancellation and data fusion 
based algorithms to mitigate the effects of motion artifacts. 
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I. INTRODUCTION 
Steady advances in noninvasive physiological sensing, 

hardware miniaturization and wireless communication are 
leading to the development of new wearable technologies that 
have broad and important implications for civilian and military 
applications. For example, the emerging development of 
compact, low-power, small-size, light- weight, and unobtrusive 
wearable devices may facilitate remote noninvasive monitoring 
of vital signs from soldiers during training exercises and 
combat. Telemetry of physiological information via a short-
range wirelessly-linked personal area network can also be 
useful for particular categories of users, such as emergency 
first-responders, workers in harsh environments, including 
firemen and rescue patrols, or outdoors sportsmen, including 
high altitude mountaineers. The primary goals of such a 
wireless mobile platform would be to keep track of an injured 
person’s vital signs, thus readily allowing the telemetry of 
physiological information to medical providers, and support 
emergency responders in making critical and often lifesaving 
decisions in order to expedite rescue operations. Having 
wearable physiological monitoring could offer far-forward 
medics numerous advantages, including the ability to 
determine a casualty’s condition remotely without exposing the 
first responders to increased risks, quickly identifying the 
severity of injuries especially when the injured are greatly 
dispersed over large geographical terrains and often out-of-site, 
and continuously tracking the injured condition until they 
arrive safely at a medical care facility. 

Several technical challenges must be overcome to address 
the unmet demand for long-term continuous physiological 
monitoring in the field. In order to design more compact 

sensors and improved wearable instrumentation, perhaps the 
most critical challenges are to develop more power efficient 
and low-weight devices. To become effective, these 
technologies must also be robust, comfortable to wear, and 
cost-effective. Additionally, before wearable devices can be 
used effectively in the field, they must become unobtrusive and 
should not hinder a person’s mobility. Employing commercial 
off-the-shelf (COTS) solutions, for example finger pulse 
oximeters to monitor blood oxygenation and heart rate, or 
standard adhesive-type disposable electrodes for ECG 
monitoring, is not practical for many field applications because 
they limit mobility and can interfere with normal tasks. A 
potentially attractive approach to aid emergency medical teams 
in remote triage operations is the use of a wearable pulse 
oximeter to wirelessly transmit heart rate (HR) and arterial 
oxygen saturation (SpO2) to a remote location. 

Pulse oximetry is a widely accepted method that is 
clinically used for noninvasive monitoring of SpO2 and HR. 
The method is based on spectrophotometric measurements of 
changes in the optical absorption properties of 
deoxyhemoglobin (Hb) and oxyhemoglobin (HbO2). 
Noninvasive spectrophotometric measurements of SpO2 are 
typically performed in the visible (600-700nm) and near-
infrared (NIR) spectral regions between 800-950nm. Pulse 
oximetry relies on the detection of photoplethysmographic 
(PPG) signals produced by variations in the quantity of arterial 
blood that is associated with periodic contractions and 
relaxations of the heart. Hence, the technique relies on the 
presence of a stable peripheral arterial pulse. 

Pulse oximetry can be performed in either transmission or 
reflection modes. In transmission pulse oximetry, the sensor is 
typically attached across a fingertip, foot, or earlobe. In this 
configuration, the light emitting diodes (LEDs) and 
photodetector (PD) are mounted on opposite sides of a 
peripheral pulsating vascular bed. Alternatively, in reflection-
mode pulse oximetry, the LEDs and PD are both mounted side-
by-side on the same planar substrate to enable readings from 
multiple body locations where trans-illumination 
measurements are not feasible. Clinically, reflectance pulse 
oximetry has long been recognized as a potential alternative 
method to transmission pulse oximetry in certain medical 
applications where peripheral perfusion might be 
compromised. Additionally, reflection-mode is attractive for 
body sensor networks (BSN) due to the flexibility in choosing 
various sensor mounting locations over conventional 
transmission-mode pulse oximetry. 
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Several studies have reported that forehead oximeters are at 
least as accurate as finger mounted oximeters under normal 
testing conditions, and due to their central placement, are 
affected less by thermoregulatory vasoconstriction and are able 
to respond more quickly to desaturation events [1, 2]. Also, 
during conditions which lead to poor peripheral perfusion, 
forehead sensors have demonstrated greater accuracy than 
finger sensors [3, 4]. In addition, pulse oximetry measurements 
from the forehead offer a potential advantage in tactical 
settings that require extensive use of the hands that can 
introduce excessive motion artifacts. While reflectance mode 
pulse oximetry remains promising, significant improvements 
aimed at curbing motion artifact and improving reliability in 
detecting sufficiently strong PPG signals are required to 
identify and reduce errant measurements before they can be 
considered for wider and more reliable mobile applications. 

II. MOTION ARTIFACTS 
Although well accepted for use in resting subjects, using 

pulse oximetry outside of a more controlled hospital setting has 
been problematic for several reasons. Depending on the 
measurement site, sensors may be subjected to varying degrees 
of motion artifacts, resulting in signal corruption and thus 
inaccurate estimations of HR and SpO2 [5, 6]. Many clinicians 
have cited motion artifacts in pulse oximetry as the most 
common cause of false alarms, loss of signal, and inaccurate 
readings [7]. While the intelligent design of sensor attachment, 
form factor and packaging can help to reduce the impact of 
motion disturbances by making sure that the sensor is securely 
mounted, it is rarely sufficient for noise removal.  

In relation to pulse oximetry obtained from the forehead, it 
is speculated that the main source of motion artifact is due to 
changes in the relative position of the sensor with respect to the 
curved skull rather than the relative movements of the sensor 
with respect to the skin. Due to the rounded and optically 
inhomogeneous surface properties of the forehead, alterations 
in sensor position and orientation will cause changes in the 
distribution of backscattered light reaching the PD. Therefore, 
sudden changes in incident light intensity reaching the PD due 
to cyclical movement of the sensor will result in the corruption 
of the PPG signals. Some research has also suggested that there 
may be two other sources of motion artifacts. The first source 
of motion artifacts can be attributed to the formation of air gaps 
created between the skin and sensor during physical activity 
[8], which may cause measurement error. Another source of 
motion artifact can be attributed to low venous pressure blood 
“slosh” with back and forth movement which is seen when an 
individual is physically active. This local perturbation of 
venous blood adds to the AC component of the PPG signal and 
can result in low SpO2 measurements [9]. 

Combating motion artifacts can be performed via both 
hardware and computational implementations: 

i. Computational Approaches to Combat Motion Artifacts: 
Various computational algorithms attempt to isolate the effects 
of undesired motion-induced artifacts by rejecting suspect 
estimates of signal values [10]. Making matters worse in this 
case is that the noise can frequently fall within the same in-
band frequency as the physiological signal of interest, thus 
rendering conventional linear signal filtering with fixed cut-off 

frequencies ineffective. Recently developed pulse oximeters 
offer potential advantages because they utilize advanced 
signal-processing methodologies in an attempt to provide 
continuous and accurate measurements when signals are weak 
(e.g., low perfusion) or corrupted by motion artifacts. Among 
the numerous signal processing techniques explored to address 
the confounding issue of in-band noise is adaptive noise 
cancellation (ANC). One example of a motion-tolerant 
algorithm is the Signal Extraction Technology (SET®) 
developed by Masimo [11]. 
ii. Hardware Approaches to Combat Motion Artifacts: 
Since the introduction of pulse oximetry in the 1980s, 
improvements have been made to decrease the interference of 
motion artifacts on continuous, reliable estimation of oxygen 
saturation. New adhesive materials and mechanical design of 
the sensor housing placed against the skin have dramatically 
reduced problems with adherence and almost eliminated skin 
complications from sensor heat or reaction to adhesive 
materials. Improvements in sensor technology, particularly 
those related to minimizing motion artifacts, have 
progressively improved the accuracy and reliability of the 
devices during the past 20 years. 

As PPG signals are highly susceptible to motion, various 
strategies have been employed to improve estimates of 
physiological variables derived from noisy PPG signals. 
Generally, motion artifacts in the recorded PPG signals are 
more difficult to remove than instrumental artifact as they do 
not have a predetermined narrow frequency band and their 
spectrum often overlaps with the desired signal. Thus, classical 
linear filtering with fixed cut-off frequencies to minimize the 
effect of motion artifacts cannot be implemented very 
effectively. Accelerometers (ACC) combined with ANC have 
been suggested as a promising approach for active noise 
cancellation of motion-corrupted biosignals [12, 13]. The most 
common approach employs an accelerometer sensor based on 
MEMS technology which offers a low-cost solution [14-16]. 
For example, Relente et al. [17] used an accelerometer as a 
motion reference for removing artifacts from a Nellcor pulse 
oximeter. However, despite these promising results, the 
effectiveness of an accelerometer-based automatic noise 
cancellation depends on the type of motion artifacts. For 
example, the reduction in noise may be limited during less 
repetitive sporadic movements. Moreover, if the motion 
frequency shifts rapidly over a wide spectral band, the 
approach is generally less effective due to a slower adaptation 
rate. 

III. PROTOTYPE SENSOR CONFIGURATIONS TO STUDY THE 
EFFECTS OF MOTION ARTIFACTS 

Our laboratory has developed several prototype wearable 
reflectance-type pulse oximeters to investigate the effects of 
motion artifacts on different sensor configurations. 

A. Dual-Wavelength and Single PD Configuration 
Fig. 1 depicts a more conventional custom optical sensor 

configuration comprised of a pair of red (R) and NIR LEDs 
and a single PD. The wearable sensor contains an optical 
reflectance module, electronic circuitry and a tri-axial 
accelerometer. The PPG waveforms are acquired using a small  
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Fig. 3. Typical IR PPG signals recorded simultaneously from two different 
channels (top and bottom 4 traces) during rest, left-right (L/R), up-down 
(U/D) and circular head movements. 

 

 

Fig. 4. SpO2 and HR estimations derived from two different PPG channels 
recorded simultaneously during rest and motion induced activities. Horizontal 
traces denote average readings obtained by the reference pulse oximeter. 

positioned in the center of the MCPO sensor. Similarly, Fig. 4 
shows corresponding SpO2 and HR estimations derived from 
two different PPG channels recorded simultaneously during 
rest and motion induced artifacts. Notice the overall changes 
in signal amplitude and morphology in the recorded PPG 
waveforms caused by typical left-right, up-down and circular 
head movements while the subject remained in a sitting 
position. 

Fig. 5 summarizes the mean and SD corresponding to HR 
and SpO2 derived readings obtained from every PPG channel 
in the MCPO prototype sensor. These data were recorded 
during rest and voluntary left-right, up-down and circular head 
movements while the subject remained in a sitting position. 
Horizontal lines represent mean HR and SpO2 measurements 
obtained concurrently by a reference Masimo Radical SET™ 
pulse oximeter sensor mounted on the subject’s finger while 
the hand was immobilized to limit motion artifacts. 

The response of the MCPO to motion artifacts was also 
evaluated under more representative activities by recording 
PPG data from the forehead mounted sensor and Masimo 
finger pulse oximeter while the subject was walking casually, 
climbing a set of stairs and performing short turning 
manuvers. Fig. 6 summarizes the mean and SD corresponding 
to the HR and SpO2 derived readings obtained during these 
activities. 

Tables I and II compare average HR and SpO2 
measurements derived from different PPG channels in the 
MCPO sensor during voluntary head movements, while the 
subject was sitting and performing controlled head movements 
in the laboratory setting, with measurements obtained during 
free less restricted body movements outside the laboratory. 
These data clearly show that calculated HR values derived 
independently from certain PPG channels are within 
acceptable errors of ±1 bpm, while other channels produced 
clinically significant errors. 

 
Fig. 5. HR and SpO2 obtained from 6 independent PPG channels during rest, 
L/R, U/D and circular head movements. (Top) HR derived from each channel. 
(Bottom) corresponding SpO2 readings derived from 9 R/IR channel pairs. 
Horizontal lines denote mean measurements obtained concurrently from a 
finger by the reference pulse oximeter. 
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Fig. 6. HR and SpO2 obtained from 6 independent PPG channels during 
sitting, walking straight, climbing stairs, and turning to simulate movement 
artifacts. (Top) HR derived from each channel. (Bottom) corresponding SpO2 
readings derived from 9 R/IR channel pairs. Horizontal lines represent mean 
measurements obtained concurrently from a finger by a reference Masimo 
pulse oximeter. 

TABLE I. MEAN HR DIFFERENCES DERIVED FROM DIFFERENT PPG CHANNELS 
DURING VOLUNTARY HEAD MOVEMENTS (TOP) AND MEASUREMENTS 
OBTAINED DURING FREE MOVING EXERCISES (BOTTOM). 

 

TABLE II. MEAN SPO2 DIFFERENCES DERIVED FROM DIFFERENT 
COMBINATIONS OF R/IR CHANNEL PAIRS DURING VOLUNTARY HEAD 
MOVEMENTS (TOP) AND FREE MOVING EXERCISES (BOTTOM). 

 

VI. CONCLUSIONS 
The present work described the development of a MCPO 

that can be used to investigate how SpO2 and HR readings may 
be affected by motion artifacts. These pilot findings showed 

evidence to support the hypothesis that PPG signals acquired 
concurrently from independent channels in a wearable 
reflectance-type MCPO sensor are affected differently by 
motion artifacts, allowing for automatic adjudication of which 
signal is likely to be a more accurate reflection of physiological 
changes, thus helping to reduce measurement errors. Future 
work will be focused on the development of advanced active 
noise cancellation algorithms to take advantage of the spatial 
diversity of different channels and fuse the data measured by 
the most reliable channels in the MCPO. If proven successful, 
this strategy will be used to improve real-time measurements of 
SpO2 and HR by a wearable reflectance-mode pulse oximeter. 
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