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Abstract— Accurate estimation of heart rates from 
electrocardiogram (ECG) signals during intense physical activity 
is a very challenging problem. In this study we investigated a 
novel technique to accurately reconstruct motion-corrupted ECG 
signals and HR based on time-varying spectral analysis. The 
algorithm is called Spectral filter algorithm for 
electrocardiogram Motion Artifacts and heart rate 
reconstruction (SegMA). The idea is to calculate time-frequency 
spectrum of ECG for each time shift of a windowed data segment 
and use the information from the spectrum to reconstruct HR 
during movement.  The SegMA approach was applied to a 
datasets recorded in Chon Lab that includes 17 min recordings 
from 4 subjects during a challenging experimental protocol 
including walking, jogging, running, arm movement, wrist 
movement, body shaking, and weight lifting activities.  The ECG 
and tri-axial accelerometer data were recorded from a wrist 
bands on both right and left wrists that are connected with wire 
through a tight suit. The reference ECG signals were recorded 
from chest using Holter monitor. The algorithm’s accuracy was 
calculated by computing the mean absolute error between 
SegMA reconstructed HR from the wrist ECG and the reference 
HR from the Holter ECG. The average estimation errors using 
our method on this datasets are around 1 beats/min. These 
results show that the SegMA method has a potential for ECG-
based HR monitoring in wearable devices for �tness tracking and 
health monitoring during intense physical activities. 

Keywords— Electrocardiography; Motion Artifact; Heart Rate 
Monitoring; Physical Activities; Signal Processing  

I.  INTRODUCTION  
Cardiovascular disease is the leading cause of death in the 

world. Considering the fact that a majority of such deaths due 
to cardiac arrest occur before the patient can get the needed 
medical care, the patient should be continuously monitored for 
real time detection of the events that can portend cardiac arrest 
[1-3]. The electrocardiogram (ECG) is the main measurement 
device for effectively diagnosing cardiovascular health, other 
cardio-respiratory related diseases and can be used as a guide 
for cardio-fitness therapy.  

Wearable health monitoring systems (WHMS) enable 
continuous, reliable and long-term monitoring of vital signs 

and physiological signals during daily normal activities [27]. 
Recently a variety of WHMS have also been introduced in an 
attempt to reduce size, improve comfort and accuracy, and 
extend the duration of monitoring.  Product concepts and 
prototypes of ECG patches have been introduced by several 
companies and research groups such as: Curvus, Corventis, 
iRhythm, Toumaz and Delta [4-6].  The effectiveness of 
WHMS can be significantly impaired by motion artifacts which 
contaminate the signal and that can lead to errors in estimation 
of cardiac parameters and trigger false alarms. For Holter 
systems, motion artifacts often lead to difficult interpretation of 
whether or not certain arrhythmia has truly occurred even when 
three or five different channels of ECG data are considered. 

Reducing the motion artifact would extend the applicability 
of ambulatory monitors to situation of greater activity as 
encountered in most daily-life situations.  Noise and motion 
artifacts are caused by several factors, such as baseline wander 
(BW), power-line interference (PLI), electromyography (EMG) 
noise and skin-electrode motion artifacts (MA) [7, 8]. In 
practice MAs are difficult to remove because they do not have 
a predefined narrow frequency band and their spectrum often 
overlaps that of the ECG signal [9]. The corruption introduced 
by motion artifacts is random variables which depend on the 
electrode properties, electrolyte properties, skin impedance, 
and the movement of the patient. Consequently, development 
of algorithms capable of reconstructing the corrupted signal 
and removing artifacts is challenging.   

Numerous methods for motion artifact detection and 
reduction have been proposed in literature [11-25]. Traditional 
de-noising techniques are based on time averaging [10] and 
frequency analysis such as filter banks [10] or wavelet 
transforms [11]. In adaptive filtering, a filter is applied after 
adjusting its parameters to a time varying noise. This is 
particularly useful when the noise is non-stationary, like in the 
case of ambulatory motion artifacts. However, a reference 
signal has to be additionally recorded together with the ECG. 
As sources of ECG and motion artifacts are uncorrelated, blind 
source separation (BSS) techniques could be used for 
separating both signals [20-22]. A combination of PCA and 
ICA was also proposed by Chawla [24] for ECG de-noising. 
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Lee et al. used empirical mode decomposition (EMD) approach 
to detection of Motion and noise artifact for the purpose of 
detection of atrial fibrillation from ECG recordings [25]. The 
main issue with BSS algorithms is its heavy computational cost 
and that they are not suitable for real-time processing purposes.  

In this paper, an approach for HR signal reconstruction is 
presented using time-varying spectral analysis. The algorithm 
is called SegMA and is comprised of four distinct stages: (1) 
Taking derivative of downsampled ECG (2) time-varying 
power spectral density (PSD) calculation, (3) spectral filtering, 
(4) HR reconstruction. We will show that SegMA can improve 
HR estimations by almost 12 time better accuracy than without 
SegMA reconstruction.  

The remaining of this paper is organized as follows: 
Section II presents the experiments and the ECG wearable used 
in this study. SegMA algorithm procedure and the details of 
four steps are explained in section III. The results of SegMA 
algorithm on the dataset from 4 subjects is included in section 
IV. Finally we conclude the paper in section V.   

II. EXPERIMENTAL SETTING 
An experiment with a physically challenging protocol that 

includes 17-min ECG recordings from 4 healthy subjects was 
designed, in which each subject was asked to wear a wrist-
worn ECG device as shown in Fig.1. The wearable system is 
called NohChon and was custom designed in our laboratory. It 
consists of two wrist modules which are designed to fabricate a 
1-channel ECG signal (Lead I configuration) on the top of right 
and left wrists. This device was designed and developed for 
ECG measurement based on two leads with virtual right-leg 
driven circuit and provides a frequency band at -3 dB from 
0.05 to 150 Hz with second-order high-pass and low-pass 
filters to cover the full ECG range. In both modules, 3-axis 
accelerometric data were collected to reject MNAs using 
accelerometer (MMA8652FC, Freescale, TX, USA) which has 
a sensitivity of ±2 g. A wire was connected between both left 
and right wrist-based electrodes to produce an ECG signal and 
is threaded to a compression shirt for minimizing motion 
artifact than can be caused by wire movements.  ECG signal 
was sampled at 360 Hz with 12-bit resolution over a range 
between 0 and 3.3 volts. Electrodes for ECG measurement are 
carbon black (CB) based film electrode [30].   

 

Fig. 1.  “NohChon” Wrist ECG Wearable Device 

Each subject was asked to perform different types of 
physical activities (Walking/Running, Arm Movement, Wrist 

Rotation/Shaking, Weight Lifting/Box Movement) during the 
experiment to investigate the performance of the algorithm in 
variety types of daily activities and movements. The reference 
ECG signals for evaluation of SegMA were recorded from a 
chest using Holter monitor.  

III. METHODOLOGY 
The procedure for our HR monitoring algorithm during 

intensive movements is presented in the following subsections 

A. ECG Preprocessing 
The first step in SegMA algorithm is to resample ECG to ¼ 

of its original sampling rate. This improves the frequency 
resolution in the time-frequency spectrum. Next a derivative of 
the resampled ECG signal is computed so that the R-peaks are 
accentuated. The idea is by derivative of signal, motion and 
noise artifacts can be reduced to some extent as long as motion 
is not abrupt and the samples are uniformly corrupted by 
motion. Fig. 1 represents representative ECG recordings from 
both NohChon wrist device and a Holter. This figure shows the 
HR estimations from R-R interval of the reference and a wrist 
ECG. The reference HR provides a clean and accurate HR and 
the estimated HR from wrist ECG signifies inaccurate HR 
estimation especially during running, wrist movements and 
weight lifting periods of experiment. This figure indicates the 
necessity of using a HR reconstruction approach.  

 

Fig. 2. A segment of ECG recordings and estimated HR from subject #3 
during wrist rotation movement activity. [top]: reference ECG, [middle]: 

Wrist ECG and [bottom] reference HR vs actual HR 

B. Time-Varying Spectral Analysis of ECG data 
We produce a time-varying spectrum by taking a T-sec 

window of the signal and computing the power spectral density 
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(PSD) [26] of the segment and then sliding the window through 
the whole dataset which yields a time-frequency matrix in 
which each array represents the power of the signal 
corresponding to a specific frequency and sliding time-step 
(shift) of S-sec. The window segment length T was set to 8 
seconds and was shifted (S) by 2 seconds.  The assumption of 8 
second data length largely stems from the fact that heart rates 
do not change instantaneously; hence, 8 second duration is a 
reasonable choice.   

As a representative example, the resultant frequency 
components in the time-frequency matrix of recordings from 
subject #3 of the dataset, for a window length of 8 seconds that 
is shifted by every 2 seconds, is shown in Fig.3a.   From the 
Fig.3b, time-frequency plot of the ECG signal, it is observed 
that there are two major frequency components (A) and (B) in 
the time-frequency spectrum plot: one of them appears to 
represent HR and the other may represent the first harmonic of 
HR.  In order to verify this conjecture we need to extract these 
components from time-frequency spectrum.  

 
(a)                                                                                         

 
(b) 

Fig. 3. Time-Frequency spectra of recording #3: (a) ECG signal time-
frequency spectra, (b) Blue areas and letters represent HR trace and its 

harmonic in the ECG spectra. 

To this end, in the next phase of SegMA algorithm, we 
apply a filtering strategy to keep the major components of 
spectrum and remove the unnecessary information. 

C. Spectral Filtering 
Assuming that the HR frequency component is the 

dominant peak in the power spectral density (PSD) of each 8 
sec window of a clean ECG signal, the filtered time-frequency 
spectrum using the first two largest peaks of PSD at each 
window can be extracted as shown in Fig. 4.  After obtaining 
the power spectral density at each window, HR frequency is 
assumed to be confined in the range [0.5 Hz – 3 Hz].  In 
general, HR frequency in the power spectral density of ECG at 
each window can have three different scenarios: (1) ECG is 
devoid of MA and there is no spatial gap between the electrode 
and the subject’s skin during recording, (2) ECG is corrupted 
by MA and there is no spatial gap between the electrode and 
the subject’s skin during recording and (3) There is a spatial 
gap between the electrode and the subject’s skin during 
recording.  For the ideal case (1), HR can be extracted and it is 
most likely represented as the highest peak in the ECG 
spectrum.  For case (2), MA dynamics can result in the 
dominant peak and HR frequency peak’s magnitude become 
smaller than the MA frequency peak in the power spectrum.  
The only scenario that makes it difficult to extract HR from the 
spectrum is scenario (3) when there is a spatial gap between the 
ECG electrodes and the subject’s skin during recording. In this 
scenario, assuming that the motion artifacts are short lasting, 
the missing HR values can be interpolated using the cubic 
spline technique.  

 

Fig. 4. Spectral Filtering. ECG time-frequency spectrum: Blue, Green circles 
correspond to the first two highest peaks in the defined HR frequency range of 
(30-180 bpm), respectively, at each sliding window. (b) Tracking of HR trace 

in the filtered ECG spectrum.  

D. Heart Rate Tracking & Extraction 
The next step is to extract HR frequencies with time from 

Fig. 4.  Note that in Fig. 4, there are two peaks at each time 
instance, thus, the question is how to identify which of the two 
peaks represents the HR at each time point.   For the initial 

(B) 

(A) 
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time window of 8 seconds, we require a clean data segment so 
that true HR can be determined.  This scenario is case 1 
described above in the spectral filtering section, and the 
detection of HR is simply the highest peak in the spectrum.  
The next step is to estimate HR for each sliding window of 
data. At this step of the algorithm, the goal is to choose a HR 
peak in the ECG spectrum with the knowledge of estimated HR 
values in previous time windows.  In this step there are two 
main scenarios: (1) no peak exists in the spectrum that can 
represent HR, and (2) there is a spectral peak among the first 
two highest peaks of spectrum that belongs to the HR 
component.  In case (1), where HR is not detectable in the 
window (e.g. due to spatial gap between the ECG electrode and 
skin), in real-time implementation the algorithm takes the 
previous window’s HR value as the current HR (or simply uses 
the moving average of several past HR beats or some other 
variant), however in offline processing, a cubic spline 
interpolation can be used to fill in the missing HR information. 
In the more general case (2), where the HR peak is among the 
first two highest peaks in the spectrum, two possible scenarios 
can occur: (2-A) the windowed ECG signal is clean and the 
first highest peak in the spectrum represents the HR 
fundamental frequency, (2-B) the windowed ECG signal is 
corrupted by movement and the second peak corresponds to 
HR, (2-C) while the HR spectral peak is detectable, the 
difference between its value and that of the previous HR is 
more than 15 bpm, so it will be replaced by the most recent HR 
value from a previous window segment (or a moving average 
of several past HR beats or some other variant).  We set a 
criterion that the HR value cannot change more than 15 BPM 
from a previous time window. It can be observed from Fig.5 
that in most cases, the blue circle which represents the largest 
spectral peak is chosen but in other cases, green circles are 
chosen for certain time points.  For the HR peaks associated 
with the green, they are chosen because either the first highest 
peak is related to MA or the highest magnitude peak deviates 
more than 15 BPM from the previous HR value.   

        

Fig. 5. HR Tracking and Extraction. Tracking of HR trace in the filtered 
ECG spectrum.  

Fig.6 shows the SegMA reconstructed HR (red color) from 
ECG spectra of recording#3 using our proposed approach 
along with the 8-sec moving average of reference ECG-derived 
HR (black color).  In order to calculate the performance of the 
SegMA algorithm, the error value in each time window was 
calculated from the estimated HR to the reference ECG-derived 
HR.   

Two measurement indices of absolute error similar to the 
indices in [18] were used. 
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Fig. 6. Comparison of reconstructed HR obtained from SegMA to reference 
HR estimated from simultaneous ECG recordings#3. 

IV. RESULTS 
Table (I) represents the average absolute error (E1) and the 

average absolute error percentage (E2) of HR estimations of 
the proposed SegMA algorithm on the dataset.  Our SegMA 
algorithm is compared to the HR estimations before applying 
the reconstruction algorithm, where both before and after 
reconstruction estimations are compared to the reference HR 
from ECG, and reference SpO2 from Masimo commercial 
device.  Table (II) shows that SegMA on average improves the 
HR estimations with around 1200% comparing to those 
estimations before reconstruction. Improvement rate was 
calculated as follow 
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TABLE I. SEGMA ALGORITHM PERFORMANCE COMPARISON 

Subject Actual HR estimation error SegMA HR estimation error 
 E1 E2% E1 E2% 

1 13.66 13.98 1.31 1.46 
2 22.69 24.37 2.05 2.16 
3 8.66 8.71 0.60 0.62 
4 15.32 15.06 0.76 0.81 

mean ± std 18.08 ± 5.8 15.53 ± 6.5 1.18 ± 0.7 1.26 ± 0.7 

TABLE II. IMPROVEMENT RATE PERCENTAGE AFTER RECONSTRUCTION USING 
SEGMA ALGORITHM  

Subject SegMA Improvement Rate 
 ImRate1% ImRate2% 
1 943.1 857.5 
2 1006.9 1028.2 
3 1343.3 1304.8 
4 1915.8 1759.3 

mean ± std 1302 ± 445.1 1237 ± 393.7 
 

The results for recording #4 are shown in Fig. 7. It can be 
seen that the E1 for this subject is around 0.76 bpm. 
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Fig. 7. Subject 4. Reconstructed HR vs. reference HR (estimated from 

reference ECG)   

A video of the real-time implementation of SegMA 
algorithm is available from [28].   

V. CONCLUSION 
Wearable sensors have recently enjoyed much public 

attention and interests.  More importantly, these devices 
provide an attractive feature where for the first time individuals 
can track and manage their own health-related data.  In spirit of 
this recent development in wrist-worn sensors, the objective of 
our work was to develop a robust and accurate algorithm that 
can mitigate motion artifact so that more accurate heart rates 
can be estimated from electrocardiogram (ECG) signal.  
Certainly, this is challenging since wrist-worn devices are 

especially prone to more varied motion artifacts when 
compared to sensors placed on other parts of the body.   

While wearable ECG devices are normally worn as a Holter 
monitor or a patch on the chest, recent advances in non-contact 
capacitive and dry electrodes has resulted in textile worn ECG 
measurements.  The form factor and locations of these textile-
based ECG sensors can be found from the traditional ECG 
electrode placements around the chest area to electrodes 
incorporated directly into a belt [29, 30].  So we developed a 
wrist-worn ECG device using our own dry flexible electrodes 
[29, 30], and this is the device that was used to collect 
experimental data as detailed in the section II.   

Our algorithm, SegMA, based on time-varying spectral 
analysis of the ECG signal is introduced to combat motion 
artifacts.  To fully test the robustness of the SegMA algorithm, 
the design of the type of motion artifacts introduced for our 
experiment was cognizant of the wide variety movements 
subjects might encounter during their daily activities.  In all of 
the recordings, the reference HR was calculated from an ECG 
signal that was collected simultaneously with the ECG signal. 
The estimated HR was calculated from the spectrum of ECG in 
8 second time windows. It was shown that the proposed 
SegMA algorithm can be used for tracking fast HR changes as 
they varied more than 70 beats/min in less than 2 minutes and 
despite severe motion artifacts since the subjects were running 
at a full speed on a treadmill, the average error of around 1.20 
bpm was found when compared to that of the reference ECG.  
This average error also includes when subjects were 
introducing challenging motion artifacts by performing wrist 
shaking and bending exercises.   

The results from Table I show that the SegMA algorithm 
can be effectively applied to monitor HR from ECG wrist 
wearable devices. We made several observations while 
analyzing the data. The tracking ability of the SegMA 
algorithm decreased as the dynamics of the motion artifact 
increased.  This phenomenon mostly was observed while 
dealing with abrupt movements which consequently made it 
more difficult to track the HR-related frequencies in the 
spectrum.  

The main sources of noise and corruption during recording 
ECG signal using NohChon wrist band was (1) movement of 
wire inside of tight suit, (2) electromyogram (EMG) 
interference when subjects were either shaking or bending the 
wrist, and (3) contact issues with the skin-electrode interface 
during movements. We showed that SegMA is able to address 
the first two type of noise and motion artifacts. However the 
third noise type which can be due to gaps or poor contact 
between skin-electrode interfaces is the most challenging 
scenario for any motion artifact reconstruction algorithm.  This 
is because a gap between electrode and skin, ECG signal 
strength would decrease due to impedance mismatch [34], and 
if severe, it can lead to loss of signal.  

The proposed SegMA algorithm can be implemented in 
real time. We have found that the algorithm written in Matlab 
takes around 75 msec on data segmented into 8 seconds. 
Therefore, given the high accuracy of the proposed approach in 
estimating HR despite severe motion artifacts, this method has 
the potential to be applicable for real-time implementation on 
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wearable devices such as smart watches and ECG-based fitness 
sensors.  
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