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Abstract: Photoplethysmographic (PPG) waveforms are used to acquire pulse rate (PR) measurements
from pulsatile arterial blood volume. PPG waveforms are highly susceptible to motion artifacts
(MA), limiting the implementation of PR measurements in mobile physiological monitoring devices.
Previous studies have shown that multichannel photoplethysmograms can successfully acquire
diverse signal information during simple, repetitive motion, leading to differences in motion tolerance
across channels. In this paper, we investigate the performance of a custom-built multichannel
forehead-mounted photoplethysmographic sensor under a variety of intense motion artifacts. We
introduce an advanced multichannel template-matching algorithm that chooses the channel with the
least motion artifact to calculate PR for each time instant. We show that for a wide variety of random
motion, channels respond differently to motion artifacts, and the multichannel estimate outperforms
single-channel estimates in terms of motion tolerance, signal quality, and PR errors. We have acquired
31 data sets consisting of PPG waveforms corrupted by random motion and show that the accuracy
of PR measurements achieved was increased by up to 2.7 bpm when the multichannel-switching
algorithm was compared to individual channels. The percentage of PR measurements with error
ď 5 bpm during motion increased by 18.9% when the multichannel switching algorithm was
compared to the mean PR from all channels. Moreover, our algorithm enables automatic selection of
the best signal fidelity channel at each time point among the multichannel PPG data.

Keywords: motion artifacts; multichannel photoplethysmograph; multichannel template matching;
pulse rate; wearable sensor; pulse oximeter

1. Introduction

Pulse oximetry uses light absorption to measure arterial blood oxygen saturation (SpO2) and pulse
rate (PR) from photoplethysmographic (PPG) signals. Pulse oximeters detect a pulsatile signal that is
normally only a small percentage of the total PPG signal. Therefore, any transient motion of the sensor
relative to the skin, such as during exercise, can cause a significant artifact in the optical measurement.
Furthermore, if these artifacts mimic a heartbeat, the instrument may not be able to differentiate
between the pulsations that are due to motion artifacts (MA) and normal arterial pulsations, thereby
distorting the PPG waveforms and causing false or erroneous PR readings. The primary cause of MA
in pulse oximetry is predominantly due to changes in the light path during sensor movements [1].

Pulse oximetry is widely used in hospitals where motion artifacts are generally less pronounced
compared to mobile health applications. For instance, during patient transport, bouncing of the vehicle
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can cause the probe to be displaced and temporarily lose the PPG signal. Thus, the stability of the PPG
signal is essential to facilitate reliable vital sign monitoring.

Motion artifacts are difficult to filter out since they do not have a predetermined frequency range
and their spectral content often overlaps with the frequency band of the PPG waveform. If motion
artifact persists long enough and has a frequency in the range of normal PR, the calculated PR can be
highly inaccurate. Clinicians have cited motion artifacts in pulse oximetry as the most common cause
of false alarms, loss of signal, and inaccurate readings [2].

The primary approach to reduce the effects of motion artifact is the implementation of
software-based algorithms that attempt to extract a clean PPG waveform from the motion-corrupted
PPG signal [3–18]. Conventional signal filtering is helpful, but not very effective when MA has no
predetermined frequency band. Particularly, when the noise is near or shares the same frequency
band as the signal components of interest, this technique can suppress the desired signals. Baseline
subtraction, use of frequency banks, moving average filtering, and removal of corrupted signal
segments have shown improvement against MA in some cases, but are not robust against motion
which may have varied dynamics [19–22]. Numerous studies have investigated the use of adaptive
noise cancellation (ANC) as an alternative approach to selectively filter out MA based on a specified
reference signal. Reference signals used include: on-board accelerometers [3–6], a reference signal
synthesized from the motion corrupted PPG signal [7–10], and a reference signal measured by an
adjacent photoelectric device [11,12]. However, a separate reference signal is not always an accurate
representation of the signal corruption, which can lead to unintentional filtering of a portion of the
relevant PPG waveform. Alternate algorithms have been developed to extract the clean PPG waveform
from the motion-corrupted signal based on fundamental components of the PPG signal. These methods
include: principle component analysis (PCA) [13], independent component analysis (ICA) [14–16],
and singular spectral analysis (SSA) [17]. Most recently, algorithms based on filtering out the motion
frequency as taken from the accelerometer spectra have been useful in separating motion signal from
PPG signal [23,24]. These algorithms have been proven somewhat effective during motion, but they are
not currently optimized for multiple channel recordings and photoplethysmogram sensors only consist
of a single pair of red (RD) and infrared (IR) light emitting diodes (LEDs) and a single photodetector
(PD). When the single channel is too corrupted to reconstruct, or when the motion frequency overlaps
with the PR frequency preventing motion from being filtered out, PR and SpO2 information may be
lost, leading to dropouts during monitoring.

Multichannel devices have been used to combat motion artifacts by capturing multiple PPG
waveforms simultaneously. An 8-channel PPG sensor placed on the sternum was developed that uses
PCA in the frequency domain to find the most likely SpO2 estimation [25]. These investigators found
that multichannel SpO2 estimates were more robust than single channel SpO2 estimates. A 3-channel
reflectance in-ear sensor was developed and tested during standing, sitting, and walking [26]. An
adaptive notch filter was implemented at the motion frequency to reduce noise contribution. These
investigators found that motion-induced current was channel-specific, and that the channel with the
highest power around the PR frequency varied between experimental runs. These studies showed that
multichannel pulse oximetry is advantageous over single channel pulse oximetry in obtaining diverse
signal information during low-motion artifact conditions.

Studies have attempted to better characterize the effects of motion artifact in pulse oximetry,
and have shown that although all types of motion lead to measurement errors, a majority of errors
are generated by intense, aperiodic, random movements [27]. Previously, we have shown that in a
six-channel prototype reflectance-based forehead pulse oximeter, during short up-down, left-right, and
circular head motion, channels responded differently to motion [28]. However, in the aforementioned
work, we did not investigate whether the added complexity of a multichannel PPG approach actually
produces measurable benefits compared to a single channel sensor and we also did not address the
question of how to fuse the data captured by multiple channels to obtain better results than when
analyzing data captured by a single channel PPG sensor. While it might seem intuitive that multiple
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channels are superior to a single channel, the main challenge lies in finding suitable methods to
actually leverage this potential. Thus, examining how multichannel photoplethysmography responds
to a wide variety of motion in comparison to the more conventional single-channel approach would
help to further assess the benefit of this unique sensor design and assist in developing advanced
signal extraction algorithms that make use of multichannel waveforms to improve motion tolerance in
photoplethysmography including pulse oximetry.

In this paper, we explore the benefit of using a customized forehead-mounted multichannel
photoplethysmographic sensor comprising six photodetectors and two pairs of red and infrared LEDs,
and investigate the performance of this new wearable sensor under a variety of random motion. Since
current algorithms are not necessarily able to select which measurement of PR is most correct based
on signal corruption, we introduce an advanced multichannel-switching algorithm that selects the
channel with the least amount of motion artifact to calculate PR every 2 s. We show that for a wide
variety of random motion, channels respond differently to motion, and the multichannel estimate from
the recorded sensor array outperforms single-channel estimates in terms of motion tolerance, signal
quality, and PR errors.

2. Experimental Section

2.1. Device Description and Experimental Setup

2.1.1. Sensor Description

We have developed a customized forehead-mounted, wearable multichannel photoplethysmographic
(MCP) sensor operating in reflectance mode, as shown in Figure 1. Six surface-mounted Si photodetectors
(PD), each having an active area of 2.65 mm2, are positioned concentrically as a symmetrical array around
two pairs of red (660 nm) and IR (940 nm) light emitting diodes (LEDs) at an equidistant separation
distance of 10 mm [29]. Both pairs of Red and IR LEDs were turned on in pairs, at the same time,
alternating between Red LEDs and IR LEDs. Two LEDs of each wavelength were used to increase total
brightness. An opaque ring was incorporated to minimize direct light shunting between the LEDs and the
adjacent PD array.
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Figure 1. Six-photodetector (6PD) Forehead Mounted Reflectance-Mode Multichannel Photoplethysmographic
(MCP) Sensor.

The sensor and battery are enclosed in a plastic casing and attached to an elastic band worn as
a headband, allowing the sensor to rest comfortably on the forehead. The sensor is also equipped
with an analog tri-axial MEMS accelerometer (Acc) to detect movement with respect to gravitational
acceleration and to provide a reliable movement reference. When the sensor is placed on the forehead,
the x-direction of the Acc corresponds to motion perpendicular to the transverse plane, the y-direction
perpendicular to sagittal plane, and the z-direction perpendicular to the coronal plane. Previous data
have shown that variations in sensor position and vasculature heterogeneity of the underlying tissue
can cause measurement errors, as well as light diffusion by the subcutaneous tissues predominantly
in the direction perpendicular to the emitting surface of the LEDs [28]. Different motions and sensor
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contact pressure change the optical coupling between the sensor and the underlying skin, yielding
6 independent PPG channels with different motion-corrupted waveform characteristics.

2.1.2. Data Collection

Data were collected from 15 healthy volunteers between the ages of 23 and 30. Worcester
Polytechnic Institute IRB approved the study protocol and informed consent was required by all
subjects prior to data recording.

Subjects were asked to bounce on an exercise ball while wearing the 6PD MCP forehead sensor
and a reference Masimo-57 Radical (Masimo SET®, Masimo Corporation, CA, USA) finger type
transmittance pulse oximeter that was kept motionless by resting the left hand on a table, as shown
in Figure 2. Each subject was asked to alternate between 3 min of rest and 5 min of bouncing on
the exercise ball for a total of 19 min. Subjects were not instructed to move in any particular way, or
to move at any given frequency, yielding data sets with different types of movement artifacts. This
protocol was implemented to introduce motion artifacts with a variety of frequencies and amplitudes
and an increasing and decreasing PR. Six pairs of PPG waveforms corrupted by random motion
artifacts were obtained from the forehead-mounted MCP sensor. PPG waveforms from the MCP
were sampled at 80 Hz, which was sufficient to recover the shape of the PPG signal. Reference PR
measurements were obtained from the Masimo pulse oximeter every 2 s. All data were captured
simultaneously by a PC and processed offline with MATLAB. Data from the MCP and the Masimo
reference sensor were aligned by matching PR trends during rest for all data sets.
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Figure 2. Experimental setup for generating random motion.

2.2. Methodology

The study was designed to test the response of the MCP to motion artifacts with a variety of
frequencies and amplitudes. To quantify subjects’ motion, the RMS values from the on-board tri-axial
accelerometer were calculated for each data set. Furthermore, because PR calculations are highly
dependent on the frequency content of the IR PPG waveform, the power spectral density (PSD) was
calculated for each data set, and for each IR channel, to determine how motion frequencies affect
the multichannel PPG waveforms. Oxygenated hemoglobin absorbs comparably less red light than
IR, so the AC component of the red PPG signal is smaller than the IR signal and the responsivity of
the PD is higher in the IR region of the spectrum. Therefore, the IR PPG waveforms are used for PR
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measurements due to the generally better signal quality. In order to quantify instantaneous noise
levels, a multichannel template-matching algorithm was developed that matches beats in a specified
window to an average template representative of clean PPG morphology.

2.2.1. Motion Quantification

Motion across channels was compared for all data sets using the following parameters:
multichannel template-matching noise level (MCNL), RMS accelerometer amplitude, and PSD
amplitude at the motion frequency.

Multichannel Template Matching

To quantify the noise level in each channel at a particular time point, we developed a multichannel
template-matching algorithm. Algorithms have been developed based on creating a template from
single channel IR PPG waveforms using an average of beats over a specified window [30]. In our
algorithm, six IR PPG waveforms are used to create a template over a single time period, allowing more
robust template formation. First, the raw PPG waveforms were digitally filtered with a zero-phase 6th
order, 0.5 to 12 Hz Butterworth band-pass filter. The six filtered IR components served as inputs to
the multichannel template-matching algorithm. Initialization of this algorithm assumes that the data
starts out during rest, with clean PPG waveforms. The algorithm is divided into two separate parts,
template formation and multichannel noise calculation. Both parts of the algorithm are depicted in the
flowchart in Figure 3.
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(a) Template Formation

Peak–rough detection was performed on each of the six IR components over a 12 s window.
The peak–trough detection was implemented by alternating between finding local minima and local
maxima in a ˘0.25 s window. The maximum or minimum found must be the absolute maximum
or minimum in this 0.5 s window preventing features, such as the dicrotic notch, to be incorrectly
calculated as a peak or trough. From this, an average peak-peak period was calculated across all
channels and was defined by a variable L. Peak-peak period values that are outside of L ˘ 0.2 s were
removed to include only clean beats in the beat period calculation. The average peak-peak period
is updated by taking the average of the remaining peak-peak period values. Beats in each window
across all channels were segmented at the indices of each trough. Beats across all channels for the
entire 12 s of data were re-sampled to be the same length (L) using a cubic spline, and normalized to
have a maximum amplitude of 1 and a minimum amplitude of 0. A temporary template is created
from the average of all beats in the 12 s window. The correlation between this template and all beats in
the current window was computed, and if the correlation of a beat in the current window with this
template was less than 0.95, the beat was removed from further calculations. If the number of beats
removed were more than 1/3 of the total number of beats in the current window, the template from
the previous window was used. If less than 1/3 of the beats are removed, taking the average of the
remaining “good” beats in the window forms a new template. The average correlation of all individual
beats in the window is again calculated with the latest template. If the average correlation across all
beats in the window with this template is less than 0.98, the template from the previous window is
used. If the average correlation across all beats in the window is greater than 0.98, the template from
the previous step is maintained.

(b) Multichannel Noise Calculation

With the final formation of the template for a given window, the template-matching algorithm
systematically overlays beats from each individual channel, cuts off each beat at L/2 in order to
capture only the systolic morphology of the PPG beats, which are more indicative of clean signals,
and normalizes each beat such that the minimum amplitude is 0 and the maximum amplitude is 1.
If the noise is such that there are no beats detected in a given channel, the multichannel noise level
(MCNL) is set to 1. Otherwise, the correlation between the template and each beat in a given channel
is calculated, and the overall MCNL is calculated as (1-C), where C is the average correlation between
beats in a single channel and the template.

This multichannel template-matching algorithm is implemented using a 2 s sliding window on
the AC IR PPG data. Every 2 s, the channel with the lowest MCNL is selected to calculate PR. PR, in
beats per minute (bpm), is calculated by dividing 60 by the average peak-to-peak period in seconds of
the selected channel across the 12 s window.

Accelerometer Amplitude

The accelerometer signals measured during motion provide a way to quantify the amount of
motion that was introduced into any particular data set. All accelerometer signals were filtered with
the same filter we used to filter the PPG data, i.e., a 6th order zero-phase, 0.5 to 12 Hz Butterworth
band-pass filter. The RMS value of all 3 axes of the on-board accelerometer was used to quantify
motion, according to Equation (1).

AccelRMS “

c

1
3
ppAccelXq

2
` pAccelYq

2
` pAccelZq

2
q (1)

Although these calculations do not translate directly into the level of noise introduced into the
corrupted PPG waveforms during motion, they help to distinguish between high motion and low
motion data sets based on the overall RMS values.
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Motion Frequency Differences

The power spectral density (PSD) of each PPG waveform represents the power of the PPG
waveform at each frequency. The PSD of the AC IR PPG waveform in each channel is calculated using
Welch’s periodogram. The PSD of each axis of the accelerometer was also calculated using the same
method. The mean pulse rate (MPR) during motion was calculated according to the reference readings
from the Masimo finger sensor during motion. The motion frequency was determined by using
the accelerometer PSD, and then the amplitude of the PPG waveform PSD at the motion frequency
was compared.

2.2.2. Pulse Rate Performance Metrics

Pulse rate error was defined as the absolute error between the PR calculated by the multichannel
device and the PR from the Masimo-57 reference sensor, according to Equation (3).

ErrPR rbpms “ |PRMCP ´ PRMasimo| (2)

This PR error was analyzed during motion using three parameters: accuracy, precision, and
performance index. The Masimo-57 pulse oximeter claims a PR error tolerance of ˘5 bpm during
motion [31]; thus, we used a ˘5 bpm tolerance for performance index to match the Masimo
specifications during motion. Performance index was defined as the percentage of the measurements
that have absolute relative PR errors lower than 5 bpm during motion. The percentage in performance
index corresponds to the number of low-error measurements taken during motion. Accordingly,

Performance Index r%s “
# measurements pErrPR ď 5 bpmq

total # of measurements
ˆ 100 (3)

Accuracy was defined as the offset that a PR measurement has in relation to the reference device.
In this paper, we consider accuracy as the mean absolute PR error during motion in relation to the
measurements by the Masimo-57 reference sensor. Accordingly,

Accuracy rbpms “ AVERAGE pErrPRq (4)

Precision was defined as the ability to make consistent measurements, representative of the spread
of measurements taken around the measured value. Hence, precision was calculated as the standard
deviation of the absolute error taken in relation to the Masimo-57 reference sensor. Accordingly,

Precision rbpms “ STD pErrPRq (5)

To compare the multichannel estimates against the single channel estimates for each parameter,
eight one-sided Student’s t-tests were performed: estimates from each individual channel were
compared against the multichannel-switching estimate for each parameter. The mean and median PR
for each data set were compared against the multichannel-switching estimate. A confidence value of
95% (α = 0.05) was used to find t-critical values for each t-test.

3. Results

3.1. Time-Domain PPG Waveform Differences During Motion

The infrared PPG waveforms are similar during rest across all channels, and differ in levels of
signal corruption between channels during motion. Figure 4 shows infrared PPG waveforms recorded
during rest and motion from Data Set 10.
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Figure 4. Infrared photoplethysmogram (PPG) waveform differences in all six channels recorded
during rest (a) and motion (b) in a 12-s window for Data Set 10.

3.2. Accelerometer Range of Motion

The RMS amplitude of the on-board tri-axial accelerometers provide an indirect measure of how
much noise was introduced into the corrupted PPG waveforms in each data set, as summarized in
Figure 5.
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Figure 5. Box and Whisker plot of root mean square (RMS) accelerometer amplitudes across all data
sets during rest (left side of column) and motion (right side of column). RMS values were calculated
using Equation (1). The edges of the box indicate the 25th and 75th percentiles, the red line indicates
the median value, and the whiskers extend to ˘2.7 standard deviations. The red asterisks indicate
outliers, which reside outside of the whiskers.
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The larger the accelerometer RMS amplitude, the more intense the motion performed by the
subject during testing. The accelerometer amplitude is a good indication of the level of motion
introduced, but is indirectly related to the motion artifact introduced into the corrupted PPG waveform.
As seen in Figure 5, about half of the data sets have a relatively small range of RMS accelerometer
amplitude during motion, and median RMS accelerometer amplitudes below 2 m/s2. Generally, these
data sets showed greater differences in motion corruption between channels. However, the pressure
exerted by the headband to secure the sensor and the signal amplitude of the PPG waveform, amongst
other variables, can affect the quality of the recorded PPG waveforms.

3.3. PPG Motion Frequency Differences

The motion frequency differences across channels were visualized by comparing the power
spectral density (PSD) of the six PPG waveforms during motion with the corresponding accelerometer
signals. Figures 6 and 7 show the PSD of the PPG waveforms in all six channels, and the accelerometer
waveforms from two data sets, where channels have different PSD amplitudes of motion frequency.
Figures 6 and 7 also show the MPR frequency present in the corrupted PPG waveform, taken from the
reference Masimo pulse oximeter, depicted by a black asterisk, and the motion frequency band present
in the corrupted PPG waveforms across all channels as indicated by the same motion frequency power
present in the Acc PSD. As shown in these figures, the majority of the motion present in our data sets
occurred in the x-direction as expected, which coincides with the vertical up/down direction of the
subject’s bouncing on the exercise ball.
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Figure 6 shows the PR frequency and the motion frequency in the PSD during motion for Data
Set 9. Channels 1 and 3 have less amplitude in the PSD at the motion frequency than the rest of
the channels.

Figure 7 shows the PR frequency and the motion frequency in the PSD during motion for Data Set
10. Channels 3 and 4 have high PSD amplitude in the motion frequency, while the rest of the channels
are generally lower in PSD amplitude at the motion frequency.

Figure 8 shows the entire spectrogram from Data Set 14, Channel 5. The prominent motion
frequency, as seen from the Acc PSD, is 1.72 Hz.
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Figure 9 shows the PSD centered around the dominant motion frequency for each channel. From
these plots, it is evident that the motion frequency power is higher in Channels 3 and 4 and lower in
Channels 1, 2, and 6.
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3.4. Multichannel Noise Level (MCNL)

Figure 10 shows sample PPG waveforms overlaid from all six channels during rest (left) and
motion (right). During rest, the majority of beats in a window are retained to form a template from
the average of the “good” beats in the 12 s window, shown in black. During motion, in this particular
window, only 7 to 10 beats were kept as “good” beats, and the template from the previous window
was used, as shown by the dark bold tracing.
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Figure 10. Beat detection and overlay for our Multichannel Photoplethysmogram (MCP) device during
(a) rest and (b) motion.

During motion, some channels have higher correlations with the template than other channels,
yielding different MCNL values for each channel. Figure 11 shows beats overlaid in the window
separated by channel during rest (top row) and motion (bottom row). During rest, it is evident as
expected that beats across all channels are highly correlated with one another and highly correlated
with the template shown in Figure 11. In contrast, during motion, although some channels have
beats that remain highly correlated with the template, other channels are highly corrupted by motion
artifact. Therefore, the average correlation coefficient and MCNL differ between channels, allowing
the algorithm to select the best possible channel for PR calculations.
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(bottom). The template used is shown by the black trace, and the Multichannel Noise Level (MCNL)
for each channel is shown by the dashed black line.
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The overall MCNL across all six channels was averaged, and the corresponding Box-and-Whisker
plots of the noise level during rest (left) and motion (right) are plotted in Figure 12.
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Figure 12. Box and Whisker plots of the average Multichannel Noise Level (MCNL) across all data
sets. The average MCNL across all channels during rest and motion are shown on the left and right
hand side of each column, respectively. The edges of the box indicate the 25th and 75th percentiles,
the red line indicates the median value, and the whiskers extend to ˘2.7 standard deviations. The red
asterisks indicate outliers, which reside outside of the whiskers.
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Figure 13. Multichannel noise level (MCNL) during rest and motion in Data Set 20. Accelerometer
data are plotted below the MCNL to indicate where motion occurs.

Multichannel noise level (MCNL) plots were used to illustrate how clean or corrupted different
channels were during motion based on their respective signal morphology. During clean segments of
the PPG waveforms recorded during rest, beats across all channels showed a relatively high degree
of correlation (C) and low MCNL values. The differences in the medians and ranges of the MCNL,
calculated by the multichannel template-matching algorithm during motion, showed high variation
across data sets, hence displaying the variety of motions manifested by our experimental protocol. The
data sets with low MCNL values during motion tended to have low accelerometer RMS amplitudes.
Figures 13 and 14 show the time-series of MCNL across two different data sets, indicating low values
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during rest, high values during motion, and varying values across channels during motion. In Data
Set 20, the channels were more consistently separated in terms of noise level, whereas in Data Set 24,
the noise levels across channels were closer during motion. The filtered accelerometer signal is shown
beneath the MCNL plot for motion reference.
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Figure 14. Multichannel noise level (MCNL) during rest and motion for Data Set 24. Accelerometer
data are plotted below the MCNL to indicate where motion occurs.

3.5. PR Error During Motion

Pulse rate errors during motion were calculated in comparison to the Masimo reference sensor
according to three separate parameters: performance index, accuracy, and precision. The multichannel
estimate (MC) corresponds to the PR measurements taken by switching between channels every 2 s
using the multichannel template-matching algorithm. Data sets 21 and 31 showed extremely low SNR,
high accelerometer amplitudes during motion, high MCNL during motion, and high PR errors across
all channels. Furthermore, the PPG waveforms across all channels were completely corrupted by
motion artifacts; therefore, these data sets were eliminated from the statistics calculations.

3.5.1. PR Performance Index (PI)

Table 1 summarizes the performance index calculated for each data set across all six channels,
for the estimate of the mean PR and the median PR across all six channels, and for the
multichannel-switching PR estimates. The mean and standard error of the difference between the
multichannel, each individual channel, and the median and mean PR estimates are also shown.
Statistical significance compared to the multichannel-switching estimate is indicated by an asterisk
next to each mean PI.

Table 1. Performance index calculated for each individual channel, for the mean and median of PR
measurements, and for the multichannel-switching estimation (MC) during motion.

Ch 1 Ch 2 Ch 3 Ch 4 Ch 5 Ch 6 Mean Median MC

Mean (all) 57.8% 56.2% 53.3% 54.9% 56.4% 57.9% 48.8% 55.6% 66.4%
Mean (excluding 21 and 31) * 61.7% * 59.9% * 56.7% * 58.5% * 60.1% * 61.7% * 52.0% * 59.2% 70.9%

Mean diff. 9.24% 11.02% 14.15% 12.35% 10.78% 9.15% 18.85% 11.66%
Std Err diff. 3.05% 3.39% 4.94% 4.99% 3.98% 2.53% 4.56% 3.55%

* indicates statistical significant compared to the multichannel-switching estimate.

We found that the performance index for the multichannel-switching estimate was on average
9.2% better than the channel with the highest average performance index and 13.6% better than the
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channel with the lowest average performance index. The performance index was increased by 18.9%
when compared to taking the mean of PR estimates across all channels. The multichannel-switching PI
was statistically significantly better than all six individual channels, the mean PR, and the median PR.

3.5.2. PR Accuracy

PR accuracy was calculated for all six channels, for the mean PR, for the median PR, and for
the corresponding multichannel switching estimate. Table 2 summarizes the accuracy calculated
for each data set across all six channels, the estimate of the mean PR and the median PR across all
six channels, and the multichannel-switching PR estimates. Statistical significance compared to the
multichannel-switching estimate is indicated by an asterisk next to each mean accuracy measurement.

Table 2. Accuracy of PR for each individual channel, for the mean and median of PR measurements
across channels, and for the multichannel-switching estimate (MC).

Ch 1 Ch 2 Ch 3 Ch 4 Ch 5 Ch 6 Mean Median MC

Mean (all) 9.7 9.5 10.2 9.6 9.4 9.6 9.3 9.0 7.7
Mean (excluding 21 and 31) * 8.1 * 8.0 * 8.8 * 8.1 * 7.9 * 8.1 * 7.8 * 7.5 6.1

Mean diff. 2.0 1.9 2.7 2.0 1.8 2.0 1.7 1.3
Std Err diff. 1.0 0.7 1.1 1.1 0.6 0.9 0.5 0.5

* indicates statistical significant compared to the multichannel-switching estimate.

We found that the multichannel-switching PR estimate had the highest accuracy of PR during
motion, corresponding to 1.8 bpm lower than the channel with the lowest mean error and 2.7 bpm lower
than the channel with the highest mean error. In addition, we found that the multichannel-switching
estimate was statistically more accurate than any individual single channel estimate, and the mean
and median PR across channels for all data sets recorded during motion.

3.5.3. PR Precision

PR precision was calculated for all six channels, for the mean PR, for the median PR, and for
the corresponding multichannel-switching estimate. Table 3 summarizes the precision calculated
for each data set across all six channels, the estimate of the mean PR and the median PR across all
six channels, and the multichannel-switching PR estimates. Statistical significance compared to the
multichannel-switching estimate is indicated by an asterisk next to the mean precision.

Table 3. Precision of PR for each individual channel, for the mean and median of PR measurements
across channels, and for the multichannel-switching estimate (MC).

Ch 1 Ch 2 Ch 3 Ch 4 Ch 5 Ch 6 Mean Median MC

Mean (all) 5.7 6.4 7.3 6.6 6.5 5.7 5.4 5.8 5.7
Mean (excluding 21 and 31) 5.6 6.3 * 7.3 6.6 6.5 5.7 5.3 5.8 5.6

Mean diff. 0.0 0.7 1.7 0.9 0.9 0.1 ´0.3 0.2
Std Err diff. 0.4 0.5 0.8 0.8 0.5 0.4 0.5 0.5

* indicates statistical significant compared to the multichannel-switching estimate.

The data showed that the precision of the multichannel-switching estimate was equal to the
precision of the channel with the highest precision, and better than the channel with the lowest
precision by 1.7 bpm. Likewise, the multichannel estimate was statistically lower than Channel 3 in
precision, but not other channels.

4. Discussion

Motion artifacts are the primary limiting factor in the utilization of photoplethysmography for
mobile health applications. Motion artifacts are hard to quantify and filter out given the unpredictable
nature of motion-induced PPG signal corruption. In this paper we obtained random, aperiodic, motion
corrupted data from the forehead using a reflectance-mode, multichannel photoplethysmograph, and
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introduced a multichannel-switching algorithm based on previously developed template-matching
algorithms. We hypothesized that the PPG waveforms in each channel during random motion would
be affected differently by motion artifacts, and that the multichannel-switching algorithm would
outperform single channel estimates during motion in terms of PR error and motion tolerance.

Data analysis showed that channels were different in PSD amplitude at the motion frequency.
Across all data sets, depending on the severity of motion, PPG waveforms in the time domain were
visually different during motion, as shown in Figure 6. Differences in amplitude at the motion
frequency across channels corroborate the benefits of multichannel pulse oximetry. In particular, in the
case when the motion amplitude overwhelmed a single channel, but did not affect all six channels as
severely, PR measurements can still be obtained from the cleanest channel during motion. Of particular
interest, when the motion frequency overlaps with the PR frequency and would be difficult to filter out
if a single IR channel pulse oximeter was used, when motion amplitude did not affect all six channels
to the same extent, we found that PR can still be extracted from the cleanest channel during motion
with sufficient clinical accuracy.

Data sets 10, 11, 16, 17, 18, 19, 20, 22, and 23 showed significant improvement from individual
channels compared to the multichannel estimates in absolute PR error—one or more individual PPG
channels were above the accepted tolerance in absolute PR error, while the multichannel-switching
estimate was at or below tolerance in absolute PR error. The accelerometer data shows that a
wide variety of motion amplitudes were introduced across all 31 data sets. Of the nine data sets
where multichannel switching decreased PR error significantly, Data Sets 18, 19, 22, and 23 had a
high RMS accelerometer amplitude. Hence, accelerometer amplitude is not an accurate measure of
the level of motion artifact corruption present in the PPG waveform, or an indication of how the
multichannel-switching approach will affect estimated PR errors during motion.

The Box and Whisker plots of the MCNL showed a wide range of MCNL values for Data Sets
10, 11, 17–20, 22, and 23. These data sets showed significant improvement when the multichannel
switching estimate was implemented. We found that the multichannel approach shows the most
improvement when channels differ significantly in signal quality and morphology, resulting in a high
variance of MCNL values during motion. Particularly, shown in Figure 11, when the MCNL is low for
some channels during motion and high for other channels, the multichannel switching algorithm can
choose automatically the channel with the least amount of motion corruption from which to calculate
the most accurate PR values.

Although the benefit in performance index during motion in term of PR error differed between
data sets, when all data sets are considered, the multichannel switching estimate performed better in
performance index over every individual channel by at least 9%. The benefit of multichannel-switching
in PR accuracy during motion also varies across data sets, but was an improvement when all data
sets were considered over every individual channel by at least 1.9 bpm during motion. For both
performance index and accuracy parameters, we found that the multichannel-switching estimate was
statistically significantly better than all 6 individual channels, and from both the mean PR estimates
and the median PR estimates. The multichannel-switching algorithm did not outperform individual
channels, or the mean or median PR across channels in precision, but was not worse in comparison
to any individual channel. Therefore, the precision is the same as a standard pulse oximeter, but
we believe that the benefit in performance index and accuracy achieved is enough to merit the
multichannel-switching approach.

The motion frequency during the majority of data sets remained relatively constant, and the
majority of the motion remained in the x-direction. This led to the PPG channels with low-error PR
remaining the same for the duration of motion in a number of data sets. Data sets with frequently
changing motion frequency, as seen in data taken during real field motion or transportation, would
implement the use of real-time channel-switching more often. And, future sensors that make use of
multiple sensing sites or a number of LED-PD pairs spread out across the wrist or forehead would lead
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to greater differences in channels and more diverse motion tolerance, theoretically leading to further
improved PR measurements during motion by implementing our multichannel-switching algorithm.

It is evident that the multichannel-switching approach presented in this paper has limitations
when every channel is severely corrupted by motion artifacts. Generally, data sets with less severe
motion and more significant differences in signal quality between channels will benefit more from the
application of the proposed multichannel-switching algorithm during motion. Nonetheless, we think
that that signal reconstruction techniques developed by our group may take advantage of the varying
motion frequency content present in the six independent PPG channels to improve PR measurements
during severe motion artifacts.

5. Conclusions

In this paper, we explored the benefit of using a forehead-mounted multichannel
photoplethysmographic sensor and investigated the performance of this wearable sensor under
a variety of random, aperiodic motion. In order to investigate the feasibility of the proposed MCP
sensor, we introduced an advanced multichannel-switching algorithm that selects the channel with
the least amount of motion artifact to calculate PR every 2 s. We showed that for a wide variety of
random motion, channels had varying amounts of signal power at the motion frequency, and that
the multichannel estimate outperforms single channel estimates in terms of motion tolerance and PR
errors during motion. Although the overall benefit of multichannel-switching during motion differed
between data sets, the multichannel-switching estimate from the recorded PPG array outperformed
each individual channel, and the mean and median of PR across channels, during motion in accuracy
and performance index of PR measurements. From a practical perspective, our multichannel algorithm
allows potential real-time automatic selection of the best signal fidelity channel among the six channels
at each time point. Without this algorithm, a post processing stage requires a user to select which
channel exhibits the minimal MA at each time point, which is a time-consuming process. These data
show promise in channel switching for increased motion tolerance in PR calculations, and provide a
basis for future investigation of multichannel PPG-based algorithm development.
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Abbreviations

The following abbreviations are used in this manuscript:

SpO2 Arterial Blood Oxygen Saturation
PR Pulse rate
PPG Photoplethysmogram
PD Photodetector
LED Light emitting diode
Acc Accelerometer
MA Motion Artifact
ANC Adaptive Noise Cancellation
PCA Principle Component Analysis
ICA Independent Component Analysis
SSA Singular Spectral Analysis
RMS Root Mean Square
SNR Signal-to-Noise Ratio
MPR Mean Pulse rate
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PSD Power Spectral Density
MCNL Multichannel Noise Level
IR Infrared
RD Red
PI Performance Index
MC Multichannel Estimate
MCP Multichannel Photoplethysmogram
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