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Estimating Time-Varying Nonlinear Autoregressive
Model Parameters by Minimizing
Hypersurface Distance

Bufan Yang and Ki H. Chon*, Senior Member, IEEE

Abstract—A nonleast-squares (non-LS) based method is pre-
sented for modeling time-varying (TV) nonlinear systems. The pro-
posed method combines basis function technique and minimization
of hypersurface distance (MHD) to combat TV and nonlinear dy-
namics, respectively. The performance of TVMHD is compared to
the LS and total LS methods using simulation examples as well
as human heart rate data recorded during different body posi-
tions. With all data, TVMHD significantly outperforms the two
other methods by a factor of one order of magnitude; the LS-based
methods require double the number of parameters than TVMHD
requires to obtain similar residual error values. The significance
of TVMHD is that due to its accurate parameter estimates con-
comitant with a fewer number of parameters, we now have the
possibility of pinpointing parameters that may be of physiologi-
cal importance, where such application will be especially useful in
discriminating diseased conditions. Furthermore, our algorithm
allows discrimination of model terms, which are TV or time in-
variant, by examining those basis function coefficients that are de-
signed to capture TV dynamics. However, it should be noted that
the main disadvantage of TVMHD is that it requires significantly
greater computational time than the LS-based methods.

Index Terms—Basis function, heart rate variability (HRV), non-
linear autoregressive moving average (ARMA) models, nonstation-
ary signal, time varying (TV).

1. INTRODUCTION

OST physiological signals exhibit nonlinear and time-
M varying (TV) dynamics [1]. However, algorithms avail-
able to handle identification of nonlinear and TV signals have
been limited in the literature for a myriad of reasons [2]. For
example, the combined effect of nonlinearity and TV dynamics
leads to significant increase in the number of model parameters
to be estimated. Further, sudden changes in the dynamics of the
signal also pose significant challenges, as most TV techniques
are mainly effective for slow TV signals.

Recent parametric approaches have begun to tackle signals
that exhibit both nonlinear and nonstationary dynamics. A work
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by Faes et al. is noteworthy because it combines the k-nearest
neighbor local linear approximation and an expansion of model
parameters onto a set of predefined basis functions to handle
both nonlinearity and nonstationarity in the data [3]. Most al-
gorithms for parameter estimation of linear and nonlinear au-
toregressive moving average (ARMA) models involve the least-
squares (LS) approach, including the aforementioned method
by Faes et al. [3]. However, the limitations of the LS-based
techniques for parameter estimation are well documented and
their performance suffers because of what is known as the error-
in-variables problem [4]. Specifically, the LS assume that only
the observation vector, and not the candidate matrix, is per-
turbed by the noise source. The LS solution is unbiased only
when the candidate matrix is clean, and if not, it results in
the error-in-variables problem. A time-invariant (TTV) nonlin-
ear ARMA method that overcomes the error-in-variables prob-
lem especially for nonlinear parameter estimation by minimiz-
ing the total summed distance over a hypersurface has been
proposed [5]. The technique, known as the minimization of
hypersurface distance (MHD), significantly outperformed both
the LS and total LS (TLS) in a variety of simulation exam-
ples consisting of different noise sources (e.g., white or colored
noise that is either additive or dynamic). MHD incorporates
both the optimal parameter search (OPS) criterion [6] for ac-
curate model-order selection and an initial parameter estima-
tion using the TLS method. The TLS method was used for
parameter estimation because it partly overcomes the error-
in-variables problem of the LS. Once the initial parameter
estimates are obtained, they are further optimized using the
MHD approach. Due to these various procedures, the main
limitation of the MHD is the significant increase in the com-
putation time as compared to the LS; therefore, it is mainly
suitable for systems that can be characterized by only a few
parameters.

Our motivation for developing an accurate parameter-
estimation technique stems from the fact that a physiologically
interpretable model requires a compact system representation.
For such a compact system, few parameters are a must. The LS-
based parameter-estimation techniques have not been able to
achieve a compact system representation because many param-
eters are needed to reduce the MSE to a meaningfully low value.
This limitation of the LS-based approaches can be surmounted
by TVMHD, as it will be shown in the Section III that equally ac-
curate system representation can be obtained even with only half
the number of parameters. With a small number of parameters,
we will have an opportunity to ask important questions, such as
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which parameters may be linked to the dynamics pertaining to
diseased conditions.

Given the significant improvement in the accuracy of param-
eter estimation of the MHD compared to either the LS or TLS,
the aim of this paper was to extend the algorithm to be applica-
ble for TV nonlinear signals. An approach we have taken is to
expand the TV parameters onto a set of basis functions, which
has been shown to provide good results in tracking both slow
and relatively fast transient dynamics [7]. Both computer sim-
ulation examples and application of the new proposed method
to heart rate variability (HRV) data are provided to illustrate the
feasibility of the proposed method. Further, comparison of the
TVMHD to TVLS and TVTLS are provided.

II. METHODS
Consider a nonlinear TVARMA model
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where a(i,n) and b(j,n) are the TV AR and MA coefficients,
respectively, and c(i, j,n) and d(i,j,n) are the TV nonlinear
AR and MA coefficients, respectively. The superscripts PP and )
are the maximum AR and MA model orders, respectively, and
e(n) is the prediction error. Any of the parameter-estimation
techniques, such as the TVOPS [6], [8], TVTLS, or the pro-
posed TVMHD can be used to solve for the unknown linear
and nonlinear TV ARMA parameters in (1). Fig. 1 provides
succinct graphical representations of the differences between
the LS, TLS, and MHD approaches. TV representations of LS
and TLS are provided elsewhere [1]; therefore, we only pro-
vide detailed description of the TVMHD. It should be noted
that for linear systems, the MHD is essentially identical to TLS.
To illustrate the concept of the TVMHD approach, consider a
three-term TV nonlinear AR model

y(n)=a(l,n)y(n—1)+c(2,2,n)y* (n—2) +e(n).
2

The system of (2) is solved by expanding the TV coefficients
onto a set of basis functions 7, such that
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Fig. 1. Graphical representation of the distance minimization solutions of
(top) TVOPS, (middle) TVTLS, and (bottom) TVMHD.

where «(i, k) and a(i, j, k) represent the linear and nonlinear
expansion parameters, respectively, with V' + 1 as the maximum
number of basis sequences [1]. If V' is selected to be 1 and
a(i, k) = a;y, for simplicity, we have

y(n) = arom (n)y(n—1) 4+ anm (n)y (n—1)
2

+ a7y (n) y (n — 2)° + asarmi (n)y (n —2)° .

(€]

For simplicity, with y(n) =z, y(n —1) =2, and y(n —

2) =y, the aforementioned equation could be rewritten as
follows:

2 2
Z = aqomx + a1 M T + 20TY” + aoomy.  (5)
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The cost function is to minimize the following:
N
. 2 2 2
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i=1

k=0,1. (6)
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By substituting z from (5) into (6), we find the following:
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Equations (8) and (9) are solved for x and y, followed by z via
(5). The solution is the point on the hypersurface (in this case the
3-D surface, as defined by x, y, and z) that is closest to the data
point (x;,y;, 2;). By substituting the computed x, y, and z, the
corresponding distance is obtained from the cost function in (7).
Subsequently, we set g(a1g, aoor) = min(f(a1g, @20k, T, Y)),
and obtain coefficients that minimize the total distance by com-
puting partial derivatives as follows:
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If the dimension of the system is less than or equal to three,
the analytical solution that minimizes the cost function can be
obtained in most cases. In practice, the analytical solution of
(10) is difficult to obtain when the hypersurface has a complex
function. Thus, a numerical solution is obtained using a search
method. Initially, we set a range of values for the parameters «
and am9j, with initial values of these parameters obtained from
the TVOPS method [6], [8], such that (8) and (9) are minimized
using the Frobenius norm. Note that for every value of ayy
and amsy, a new hypersurface is created, a minimum Euclidean
distance is found, and these values are then summed to produce
the total distance. The values of parameters a1 and awgj that
produce the minimum total summed distance are selected to
be the best-estimated choice of parameters. The performance
metric that we have used to compare the three methods is the
normalized MSE (NMSE) values.
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A. Simulation Examples

For all simulation examples, we considered the following TV

nonlinear AR model, where “a” is the TV parameter

y(n):—0.5y(n—1)+ay(n—1)2—0.65y(n—2)+~~-
+0.5y(n—3)+e(n). (11)

For all simulation examples, 1024 data points were generated.
Due to the fact that the MHD method is a numerical search
method, it is not sensitive to the length of data samples, and we
have verified that data samples as small as 300 and as large as
2000 did not affect the results. For all simulation examples, 20
independent realizations of Gaussian white noise (GWN) were
generated. The variance of GWN was adjusted so that when it
was added to the 1024 datapoint series, the SNR was 10 dB.

B. Experimental Data Collection

Six healthy people (20-40 years old) participated in the ex-
periment. Measurements of ECG data sampled at 500 Hz were
collected during the following conditions: 1) supine position,
2) transition data from the supine to upright position, and
3) upright position. The QRS complexes in the ECG were used
to identify beat locations. Once the timing of beats was de-
termined, an instantaneous heart rate (HR) signal was created
at a sampling rate of 4 Hz using the cubic interpolation. Each
HR dataset contained 300 data points, which is equivalent to
1.25 min. All data were demeaned and normalized to unit vari-
ance for each subject. To evaluate these algorithms’ performance
on data with different postures (supine versus upright) and non-
stationary conditions (transition state from the supine to upright
positions), tilt table experiments were performed. Experiments
were first performed in the supine position for 10 min, followed
by raising the tilt table to the upright (80° tilt) position. There
was 1-2 min of transition from the supine to upright position
and the data were collected for an additional 10 min in the up-
right position. Data recordings were not interrupted during the
transition between the two body positions.

For TV analyses involving both TVMHD and TVOPS meth-
ods, an initial model order of six linear and six second-order
nonlinear terms were selected. We also investigated two dif-
ferent selections of basis functions: 1) four Legendre and two
Walsh and 2) four Legendre and four Walsh. We did not com-
pare TVTLS to TVMHD and TVOPS with the experimental
data, since the simulation examples shown in the Section III
clearly indicate its poor performance.

III. RESULTS

To demonstrate the efficacy of the TVMHD method, we per-
form both simulation examples and application to human HRV
data. For both cases, we compare the performance of TVMHD
to TVOPS and TVTLS methods. Note that the TVOPS is based
on the LS approach; therefore, we have used TVOPS as a rep-
resentative method for TVLS. We chose TVOPS because it has
been shown to provide accurate model terms despite incorrect
a priori model-order selection [6].
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Fig. 2. Estimated value of the TV parameter “a” using the TVTLS, TVOPS,
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and TVMHD methods when “a” in (11) linearly increases over time.

TABLE I
TIV COEFFICIENT ESTIMATES VIA TVOPS, TVTLS, AND TVMHD FOR
SIMULATION EXAMPLE 1

AR AR Terms
Model
Coefficients Y@ 1) y(n-2) y(-3)
for model

terms:
True value -0.5 -0.65 0.5
TVOPS -0.473+0.067 -0.619+0.035 0.536+0.036
TVTLS -0.649+0.190 -0.722+0.089 0.425+0.099
TVMHD -0.511+0.035 -0.660+0.081 0.480+0.005

TABLE 11
NMSE VALUES FOR TVOPS, TVTLS, AND TVMHD FOR THREE
SIMULATION EXAMPLES

NMSE Simulation 1 Simulation 2 Simulation 3
TVOPS 0.208+0.028 * 0.459 £ 0.033 * 0.223+£ 0.051 *
TVTLS 0.621£0.057 0.909 £ 0.109 0.895+0.071

TVMHD 0.078+0.008 0.047 £0.011 0.061+0.017

*Denotes that the three methods are significantly different from each other (p < 0.01).
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Fig. 3. Estimated value of the TV parameter “a” using the TVTLS, TVOPS,

PR

and TVMHD methods when “a” in (11) changes abruptly over time.

TABLE III
TIV COEFFICIENT ESTIMATES VIA TVOPS, TVTLS, AND TVMHD FOR
SIMULATION EXAMPLE 2

A. Simulation Results

[Pl

For the first simulation example, the TV coefficient “a” in-
creases linearly, as shown by the solid line in Fig. 2. The initial
model orders were setto L = 8 linear AR lags, N = 4 nonlinear
AR lags, and V' = 1 Legendre basis function. This resulted in
[L+ N(N +1)/2](V + 1) = 36 candidate terms in total. We
selected V' = 1 Legendre basis function based on the MSE cri-
terion [1]. Despite this overdetermined model-order selection,
the OPS correctly selected three linear and one nonlinear term
out of the 36 candidates. Comparison of time TIV coefficients
of (11), represented as the mean and standard deviation via
TVOPS, TVTLS, and TVMHD, are shown in Table I. The esti-
mates of the TV parameter “a” are shown in Fig. 2. The dotted,
dashed, and dash—dotted lines represent TVMHD, TVOPS, and
TVTLS, respectively. Comparison of the three methods’ per-
formance, as determined by the NMSE, is shown in the second
column of Table II. Coefficient estimates for both TV and TIV
parameters are the most accurate for the TVMHD, followed by
TVOPS and TVTLS. The NMSE value for the MHD is signif-
icantly lower than both TVOPS and TVTLS by a factor of 2.6
and 7.9, respectively.

AR AR Terms
Colc:/lff(';gie;nts y@n-1) y@-2) y@-3)
True value -0.5 -0.65 0.5
TVOPS -0.358+0.160 -0.606+0.029 0.557+0.045
TVTLS -0.651+0.173 -0.754+0.112 0.370+£0.072
TVMHD -0.520+0.101 -0.633+0.049 0.465+0.057

The second simulation example examines the responses of the
methods when the TV parameter “a” undergoes a fast change,
as shown in Fig. 3. Similar to the previous simulation example,
TVMHD yields the most accurate estimate for both TIV and TV
coefficients; comparison of NMSE values for all three methods
are shown in the third column of Table II. The NMSE value for
TVMHD is less than that of the TVOPS and TVTLS approaches
by a factor of 10 and 20, respectively. Despite 10 dB additive
noise in all three simulation examples, both TIV and TV coeffi-
cient estimates obtained by TVMHD do not deviate much from
the true values, whereas they do for both TVOPS and TVTLS
methods (see Table III).

The third simulation example is based on (11) with the TV
coefficient “a” changing with the parabolic shape, shown in
Fig. 4, is represented by the solid line. For this example, the
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Fig. 4. Estimated value of the TV parameter “a” using the TVTLS, TVOPS,

and TVMHD methods when “a” in (11) changes in a parabolic manner over
time.

TABLE IV
TIV COEFFICIENT ESTIMATES VIA TVOPS, TVTLS, AND TVMHD FOR
SIMULATION EXAMPLE 3

AR AR Terms
Coﬁggints y(n-1) y(n-2) y(n-3)
True value -0.5 -0.65 0.5
TVOPS -0.371+0.020 -0.554+0.011 0.589+0.013
TVTLS -0.632+0.082 -0.706+0.044 0.415+0.053
TVMHD -0.532+0.025 -0.642+0.009 0.495+0.021

initial model was the same, but we used three Legendre basis
functions, as this selection was the most appropriate, which was
based on the NMSE criterion and given the fact that the dy-
namics change slowly. Similar to the previous two examples,
the TVMHD provides the best accuracy in terms of the lowest
NMSE value (fourth column of Table IV) by a factor of 3.6
and 14.6 to those of TVOPS and TVTLS, respectively. Conse-
quently, the estimated TIV coefficient shown in Table IV and TV
coefficient obtained by TVMHD are closest to the true values
and the true TV parameter “a” shown in Fig. 4.

B. Application of TVMHD to Heart Rate Data

In this section, we investigate the performance of TVMHD
and TVOPS using human HRV time series. Using the model-
order selection criterion, the TVOPS correctly selected only four
significant model terms from our overdetermined model-order
selection, as provided earlier. For the four significant terms, we
found one nonlinear term in the condition encompassing both
the supine and upright positions, and likewise, for the purely
supine position. For the upright position, we found no nonlinear
term. Fig. 5 shows a representative original (solid line) and the
corresponding predicted HRV time series in the supine position
via TVMHD (dotted line) and TVOPS (dashed line) methods.
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HRV Prediction Via TVMHD and TVOPS
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Fig. 5. Representative original (solid line) and the corresponding predicted

HRV time series in the supine position via (dotted line) TVMHD and (dashed
line) TVOPS methods.

Note the better tracking of the HRV time series with TVMHD
than TVOPS for all time points.

Table V shows the averaged NMSE values for all three con-
ditions for each of the two selections of basis functions. As
shown in Table V, we observe significantly lower NMSE values
with the upright position when compared to either the supine or
supine—upright positional change; the decrease is 64.8% when
the upright position is compared to the supine positions using
the TVOPS. The decrease in the NMSE value from the upright
to supine—upright position is less, since some of the upright
position data are included in the latter HRV time series. Our
result is consistent with recent works, which suggest that non-
linearity seen in the supine position becomes less of a factor
in the upright position [8]. For the supine position, we obtain a
17.9% decrease in the NMSE value with TVMHD when com-
pared to TVOPS, whereas in the supine—upright position, this
decrease is 15%. Note that because we only have linear terms
in the upright position, the NMSE pertaining to TVMHD is es-
sentially the same as the TVOPS. Further, it should be noted
that for TVOPS, eight model terms were required to obtain sim-
ilar NMSE values to those obtained via TVMHD, which only
needed four terms. Therefore, TVMHD allows better represen-
tation of the true dynamics of the system even with a smaller
number of model terms than TVOPS.

Increasing the number of Walsh basis functions from two
to four, as shown in the third column of Table V, results in a
significant decrease in the NMSE values only for TVOPS for
the supine—upright condition. Note that the NMSE values ob-
tained by TVMHD with only two Walsh and four Legendre basis
functions are lower than those obtained with TVOPS with four
Walsh and four Legendre basis functions especially during the
supine position. Thus, our choice of the number of basis func-
tions for these datasets was appropriate, as a further increase
in the number of basis functions did not cause statistically sig-
nificant reduction in the NMSE values. In addition, this result
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TABLE V
AVERAGED NMSE VALUES FOR THE SUPINE-UPRIGHT, SUPINE, AND UPRIGHT POSITION VIA TVMHD AND TVOPS

Selected model terms multiplied by the number of basis

NMSE

functions used

4 terms X (4L+2W)

4 terms X (4L +4W)

Supine-upright TVOPS 0.283 £ 0.023 *

TVMHD 0.240 + 0.027
Spine TVOPS 0.483 £0.041 *
TVMHD 0.397 £ 0.034
Upright TVOPS 0.170 £ 0.019 *
TVMHD N/A

0.248 £0.026 1
0.222 +0.020
0.469 +0.038
0.378 £0.035
0.159 £ 0.022
N/A

*Denotes that TVMHD provided significantly lower NMSE values than TVOPS in all body positions ( p < 0.05) using

Student 7-test.

FDenotes that two additional Walsh basis functions did not significantly improve estimation accuracy except for TVOPS
under the supine—upright data ( < 0.05). 4L+2W represents four Legendre and two Walsh basis functions.

TABLE VI
BASIS FUNCTION COEFFICIENT ESTIMATES FOR THREE SIMULATION EXAMPLES
Simulation 1 Simulation 2 Simulation 3
| 31.4766 ! -0.998 1 -0.82073
A ) A : a :
yn=1)" 1 : 1o :
11 ! -0.8398 y, py(n—1)* | 1.98 o | -2.42402
- | - i i 108 (n—1)° 5
3 ), | -25.3835 a,, Y | -2.40677
@, 71712
1 -15.7231 ! -15.998 ! -15.928
%o i a, ' Uy '
yin=) 0.0351 ! | 0.04272 ! 011058
a ! -0. | 0. a | -0,
e 8§ P ay, y(n-1) P —u -1 A
| — H y(l’l ) !
| a, i -0.1241 a, | -0.04572
| 1z ' — i
| i %5 ! 0.126956
1 -20.5221 ! -20.801 1-20.8132
%20 : ty | Pz |
y(n=2) | 0.0258 ’ | 0.0308 a ! .0.06006
a i 0. _ 1 0.0308 | -0.06006
=2 P Ay 1 y(n=2) : 21 9 |
: - : y(n=2)
; a,, ! 0.0896 ay, | 0.02681
Ay | 0.070813
! 16.1558 ! 16.003 ' 16.048
Ay 1 a : P50 :
y(n=-3) 0.098 ” | 0.02455 ! 0.055578
a 1+ -0. v 0. 4 1 0.
ca e E I e | ommne
| | y(n-3) |
; a, | -0.0634 s, | -0.02563
| ; %5 | 0.03643

TV alpha cocfficient values (underlined) associated with a TV nonlinear term have large values as compared to lincar
TIV coefficients in three simulation examples. The first alpha coefficient (nonunderlined) represents TIV dynamics.

suggests that further reduction in the NMSE values with TVOPS
is simply due to fitting eight additional parameters (increasing
from two to four Walsh basis functions) and not due to capturing
essential dynamics of the signal.

C. Strategies for Reducing Computational Time

It should be noted that the greater accuracy of the TVMHD
comes at the expense of significantly increased computational
load. The computational time to compute a 300 data point HRV
signal took four days for the TVMHD versus 1.17 s for the
TVOPS using a 3GHz Intel Xeon microprocessor with a code
written in MATLAB. The significant computing time required
by the TVMHD is largely due to finding the minimum hypersur-

face distance among all possible combinations of the coefficient
terms. Specifically, we assume that each coefficient is within
+0.5 of the initial estimated value. Thus, for each coefficient at
an increment of +0.01, we search for the minimal hypersurface
distance among combination of all coefficients. With a greater
number of terms, there will be a greater computational load,
and thus, the TVMHD is applicable for systems that can be
characterized by only a few parameters at present.

In most cases, we can increase the computational speed of the
algorithm by assuming a certain SNR of the data or by making a
tradeoff between improved accuracy and computation time. For
example, we can limit the search space of the parameters to re-
duce the computational time. To illustrate this in more detail, our
first simulation example employed (11), where the parameter «
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to be searched in (3) was varied within two different ranges:
40.25 and £0.5. The computational time for the +0.25 range
was 2 h, whereas it was three days for the +£0.5 range, and the
NMSE values were 39.2% and 7.8%, respectively. Thus, limit-
ing the search range can significantly reduce the computational
time, but at the expense of reduced accuracy.

Another approach that we advocate to reduce the computa-
tional time is to recognize that any small « coefficients [e.g., all
a1k, where k > 0in (4)] that are representative of TV dynamics
can be removed before the MHD minimization process of the
algorithm. Note that « coefficients are estimated via TVOPS al-
gorithm prior to the MHD minimization process. This approach
serves two important functions. First, since the computational
time is directly proportional to the number of « coefficients,
eliminating those TV coefficients that have small value will sig-
nificantly reduce the computational time. Indeed, in our first
simulation example, such a procedure resulted in a significant
reduction in computational time from three days to 5 h with-
out significantly compromising the accuracy, as the NMSE in-
creased t0 9.9% from 7.8%. Second, values of 1., where k& > 0,
allow us to discern which model terms are TV or TIV. For ex-
ample, if the values of «; where k > 0 are nearly zero, then
it can be assumed that these « coefficients are TIV. As shown
in Table VI, the values of «yj, where k£ > 0, associated with
the TV coefficients (underlined values) are significantly larger
than those counterparts of TIV coefficients. In our application
to HRV data, we note not only the inclusion of nonlinear terms
in the supine position, but also many of the a, where & > 0,
terms have large values (see Table VII). In the upright position,
there was no nonlinear term and many of the o, where & > 0
terms have small values.

IV. DISCUSSION

We developed an algorithm that can model both nonlinear-
ity and nonstationarity in data. The accuracy of the method
was compared to an LS-based approach, namely, the TVOPS
and TVTLS, and it was found that the proposed approach,
the TVMHD, provides significantly more accurate results, as
demonstrated with simulations and application to human HRV
data. In simulation examples, we found the parameter estimates
of TVMHD to be the closest to the true values and the NMSE
values to be several orders of magnitude lower than those of
the TVOPS and TVTLS. For HRV data in the supine position,
we obtained similar NMSE values only when the number of
parameters obtained by the TVOPS was two times greater than
the number of TVMHD parameters.

The ability to obtain accurate and parsimonious parameter
representation of the system dynamics facilitates numerous in-
teresting options in the field of nonlinear system identification.
For example, a given system can be characterized via a nonlinear
AR model, and then, the coefficients can be used to determine
if a given system exhibits behavior that is characteristic of de-
terministic chaos. The use of a TIV nonlinear AR model to
characterize the behavior of nonlinear deterministic signals has
been previously performed [9]. However, as it has been well
documented in the literature [10], noise and TV dynamics can
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TABLE VII
BASIS FUNCTION COEFFICIENT ESTIMATES FOR HRV DATA FOR TWO
POSTURAL POSITIONS

Upright Supine
! 3.43055 ! -2.3991
Uy ! Oy !
o, | -1.52048 o, | 27.1766
—ty(n-1) |-143072 T ty(n—=1)* | 145027
| -0.19829 | -6.1773
! 0.649407 ! 11,5118
%is ! 3.412294 Puis ! 15.1682
| 1.049922 | 14.7489
Oy : 0 :
o, ! 0.07364 o, ! -0.7154
T ty(n-2) |-155832 — ry(m-1) !-01128
i -1.30322 1 0.8301
| -0.41686 | 22168
Kas | 0279681 s | 16582
: :
| -0.09536 | -1.9619
%3 | 42N !
o, | -0.53514 a,, ! 1.5683
— ty(n-3) |-150042 T ty(n—-2) 04473
: ! 0.161719 | -2.3537
| 1.146857 | -1.7893
Lss | 0.8619 %as | 0.2519
! 0.647311 ! 1.0563
Xy s
a, | 0.199188 a, | 202543
— ry(n—4) 0419758 — ty(n-3) o049
| -1.21497 : ! 0.4002
! -0.56062 | 2.3064
s | 07241 s ! 0.5326

TV alpha coefficients (underlined) associated with a nonlinear term in the supine position have large
values as compared to linear coefficients in both supine and upright positions.

severely bias the detection of deterministically chaotic behavior
of a system. More importantly, TV-based approaches for charac-
terizing nonlinear deterministic behavior are currently lacking
and the TVMHD approach fills that need.

Another potential application of the TVMHD is to de-
velop a physiologically realistic model based on the coefficient
estimates. While there have been many attempts to do so, suc-
cessful outcomes have been limited because many of the ap-
proaches have relied on the use of the LS-based methods. As
illustrated in this paper, the main problem is the attainment of
many parameters and compounding the issue is the inaccurate
parameter estimates with the LS-based methods. With fewer
parameters required to accurately characterize the system dy-
namics as afforded by the TVMHD method, developing phys-
iologically relevant block-structured models is now a distinct
possibility. Furthermore, as our method is able to distinguish
between TIV and TV dynamics, we can use our approach to test
a hypothesis that a diseased system may have less nonlinear and
TV dynamics than a healthy system.

The TVMHD method is a general method that can be applied
to a wide variety of biological and physiological signals. While
we illustrate in this paper the utility of the TVMHD in the form
of a nonlinear AR model for HRV signals, the algorithm can
be extended to multi-input and multi-output nonlinear ARMA
models. Such an extension of the TVMHD would allow better
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AR MobeL Toruis ViA TVMHD
Supine Upright
Subject 1 y(n-1); y(n-2); y(n-3); y(n-3)* y(n-1); y(n-2); y(n-3); y(n-4);
Subject 2 y(n-1); y(n-2); y(n-3); y(n-1)’ y(n-1); y(n-2); y(n-3); y(n-4);
Subject 3 y(n-1); y(n-2); y(n-3); y(n-1)’ y(n-1); y(n-2); y(n-3); y(n-4);
Subject 4 y(n-1); y(n-2); y(n-3); y(n-2)* y(n-1); y(n-2); y(n-3); y(n-4);
Subject 5 y(n-1); y(n-2); y(n-2)*; y(n-3) y(n-1); y(n-2); y(n-3); y(n-4);
Subject 6 y(n-1); y(n-2); y(n-3); y(n-1)* y(n-1); y(n-2); y(n-3); y(n-4);

Note only linear model terms in the upright position, but inclusion of a nonlinear term in the supine position.

characterization of the cardiovascular control system by includ-
ing other relevant signals, such as the blood pressure, respiration,
stroke volume, cardiac output, and total peripheral resistance.
However, a multiple signal representation with TVMHD is be-
yond the scope of the current paper, as the aim is to illustrate the
novelty of the method in providing accurate and parsimonious
representation of the system dynamics.

The absence of nonlinear model terms during the head-up tilt
position, as seen in Table VIII, is in agreement with a study
that used a TIV nonlinear method [11]. As shown in Table VIII,
all six subjects” HRV dynamics are characterized consistently
by the first four linear lag terms in the upright position. How-
ever, for the supine position, the fourth lag term that appears
in all subjects during the upright position is replaced with a
quadratic term, which has varying lag values among subjects.
It should be noted that the compact model representation pro-
vided by TVMHD allows such discrimination of the difference
in the model terms and captures a transition from nonlinear to
linear dynamics as the body position changes from the supine
to upright. The decreased complexity of the RR interval series
in the head-up tilt position can be explained by the sympathetic
activation induced by head-up tilt, which causes a rise in low-
frequency oscillations and a drop in high-frequency oscillations,
ultimately simplifying the dynamics of HRV [11].

While we can use the schemes outlined in Section ITI-C to re-
duce the computational time, the many hours of computational
time required by the method, especially to achieve maximum
accuracy, is a significant obstacle to overcome. However, with
the ever-increasing computational speed of computers, the cur-
rent problem of a large computational load with TVMHD may
not be too much of a concern in the not-so-distant future.
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