
  

  

Abstract— We present both nonparametric and parametric 

approaches to generating time-varying surrogate data.  

Nonparametric and parametric approaches are based on the 

use of the short-time Fourier transform and a time-varying 

autoregressive model, respectively.  Time-varying surrogate 

data (TVSD) can be used to determine the statistical 

significance of the linear and nonlinear coherence function 

estimates.  Two advantages of the TVSD are that it keeps one 

from having to make an arbitrary decision about the 

significance of the coherence value, and it properly takes into 

account statistical significance levels, which may change with 

time.  Our simulation examples and experimental results on 

blood pressure and heart rate data demonstrate the efficacy 

and applicability of the proposed TVSD methods. 

I. INTRODUCTION 

heiler developed a time-invariant surrogate data 

technique for statistical evaluation of  the presence of 

nonlinear dynamics in time series [1].  Improved surrogate 

data techniques have followed thereafter [2] and have found 

applications in many different disciplines [2, 3].  While these 

time-invariant surrogate data techniques were originally 

developed to determine the presence of nonlinearity, they 

have also been applied to evaluating the statistical 

significance of linear time-invariant coherence functions [4, 

5]. 

With recent advances in the development of time-varying 

coherence techniques [6, 7], the need for a time-varying 

surrogate data technique is apparent.  Surrogate data 

techniques are designed to destroy any coupling present in 

the signal, and because they are designed to generate 

multiple realizations of the non-coupled data, the statistical 

significance of the coherence can be evaluated.  Without 

surrogate data, quantification of the strength of coherence is 

arbitrary as any values higher than 0.5 are considered to be 

an indication of highly coherent signals.  Thus, this arbitrary 

demarcation is most appropriate for highly coherent signals 

and incorrectly ignores any coherent values that are less than 

0.5.  Time-invariant surrogate data techniques remove this 

bias toward only the highly coherent signals, and were found 
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to be sensitive even for weakly coupled signals [1, 8].  

However, they are inappropriate for time-varying data as 

they provide time averaged statistical significance values.  

Thus, in a case where coherence values wax and wane with 

time, and waning of the coherence values is more prevalent, 

the time-invariant surrogate data technique is most likely to 

result in the incorrect interpretation that there is no 

coherence for all time points.  However, with the TVSD 

technique, the statistical significance of the time-dependent 

changes in the observed coherence values at a particular 

frequency can be evaluated.  It should be noted that the 

TVSD method is also applicable to TV bispectrum analysis 

as it can be used to determine the statistical significance of 

the nonlinearly coherence values.  

In this paper, we introduce a short-time Fourier transform 

(STFT) and a time-varying autoregressive model based 

approach to generate time varying surrogate data for 

nonstationary signals.  The method has been tested using 

simulation examples and applied to experimental data.  

These results are provided in Results section.  

II. METHOD 

A. Short-Time Fourier Transform 

Our approach to generating time-varying surrogate data is 

more similar in concept to the STFT for nonstationary 

signals than it is to the power spectral density for time-

invariant systems.  Our technique, similar to the STFT, is to 

segment the data and compute surrogate time series for each 

of the segmented time series.  Within each segment, the 

signal is assumed to be stationary.  The length of the 

segment depends on the trade-off between time and 

frequency resolution as well as the validity of the stationarity 

assumption within the chosen segment length.  For example, 

for highly time-varying systems, small segment lengths are 

necessary, but the consequence is decreased frequency 

resolution, and vice versa. 

Based on the stationarity assumption within the chosen 

segment length, we can then use any of the many known 

time-invariant surrogate data techniques.  We chose the 

iteratively refined surrogate data technique (IRSDT) [8].  

The IRSDT will destroy any nonlinearity in the signal, and 

has been shown to be more accurate than the amplitude 

adjusted Fourier transform technique [1] because it 

iteratively corrects for deviations in the spectrum as well as 

maintains the correct distribution of the signal.  
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B. Time-Varying Autoregressive (TVAR) Model 

The first step involves fitting a TVAR model to the time 

series.  While many different TVAR methods are 

appropriate, the recursive least squares (RLS) was used to 

estimated TVAR coefficients.  It should be noted that AR 

modeling in general is appropriate for slowly time-varying 

systems.  A properly chosen AR model should result in a 

low mean-square error (MSE) or a residual that is essentially 

white noise, which implies that the linear dynamics of the 

signal are well accounted for.  The second step involves 

generation of surrogate data realizations by regressing the 

TVAR coefficients with white noise signals.  This last 

procedure is equivalent to a TV moving average process, 

which yields a nearly identical spectrum to that of the 

original time series but which is uncorrelated with the 

original time series.  

III. RESULTS 

A. Simulation Results  

Surrogate data technique can serve a dual purpose as it 

can be used to detect both nonlinearity and nonstationarity in 

the signal.  For the simulation examples to follow, time-

varying open-loop [6] and causal coherence functions [6], 

and their time-varying surrogate data, were generated.  The 

time-invariant causal coherence function was introduced by 

Porta et al. [4], and we have extended it to be applicable for 

time-varying systems [6].  The threshold values for 

statistical significance of the time-varying surrogate data to 

be provided in the proceeding simulations for both STFT 

and TVAR were based on the mean plus two standard 

deviations, which were derived from 20 realizations.  Any 

time-varying coherence value (both causal and open-loop) 

greater than the statistically significant threshold value for 

each frequency represents 95% statistical confidence that it 

did not occur by some random occurrence.  The choice of 

AR model order for the RLS was based on the use of 

minimum description length.  Further, we assumed the 

chosen model order to be stationary.   

The first simulation was adopted from Porta et al. [4], but 

with varying coupling magnitudes.  A simulation model of a 

time-varying closed-loop system consisting of two 512 data 

point segments each for signals y1 and y2 was generated 

using the following expression: 
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where e1 and e2 are Gaussian white noise with unit variance, 

and c21 and e12 represent time-varying coupling coefficients 

with subscripts indicating the directionality of the coupling 

strengths.  The model structure indicative of Eq. (1) is 

shown in the top panel of Fig. 1, and the time-varying 

coupling magnitudes we have chosen for this simulation 

example are shown in the bottom panel of Fig. 1.  For the 

first half of the data, only the coupling coefficient c21 is 

present, while in the last half of the data, only the coupling 

coefficient c12 is present. 

Time-varying causal coherence function estimates 

(TVCCF) are illustrated in Fig. 2a.  The TVCCF estimates 

were based on the method we have developed, which 

determines only the significant terms among the initially 

chosen model candidate terms [6, 9].  For all simulations as 

well as application to the experimental data, the initial model 

order selected was 10 autoregressive and 10 moving average 

terms.  The left and right panels show the TVCCF estimates 

from y2 to y1 and vice versa, respectively.  With high 

coupling magnitudes for c21, we correctly observe high 

coherence values (~0.8) for the first half of the data followed 

by low coherence function values thereafter since the 

coupling strengths were switched from high to low values, 

as shown in the bottom panel of Fig. 1.  The right panel of 

Fig. 2a correctly shows a transition of low to high coherence 

values with increasing time since the coupling magnitudes 

were designed to have high values only in the last half of the 

data segment.  Results based on the time-varying surrogate 

data generated by the STFT and the RLS are shown in Fig. 

2b and Fig. 2c, respectively.  To estimate the signals y1 and 

y2 using the RLS, AR model orders of 40 and 30 were 

chosen, respectively.  Our choice of these model orders 

resulted in the normalized MSE values of 3.03% for the 

signal y1 and 3.49% for the signal y2.  From the TVAR 

coefficients associated with the signals y1 and y2, 20 different 

realizations of surrogate data were generated for each of the 

two signals.  As the left panel of Figs. 2b – 2c shows, the 

statistical threshold coherence values derived from the 

TVSD are approximately 0.5 in the time interval from 0 to 

approximately 256 seconds, which is lower than those values 

in Fig. 2a, thereby correctly indicating the statistical 

significance of the TVCCF values.  In the second half of the 

data (from 257 to approximately 512 seconds), the values in 

the left panel of Fig. 2a are very close to 0 while the values 

in the left panel of Fig. 2b are approximately 0.03 for the 

 
Fig. 1.  Time-varying coupling strength of the first simulation example. 
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STFT.  For the RLS in Fig. 2c, the value is approximately 

0.15.  This indicates that the coherence from y2 to y1 is non-

significant from 257 to about 512 seconds.  Similar correct 

observations are found for the right panels of Figs. 2a – c.  

(a)

 

(b)

 

(c)

 
Fig. 2 Estimated causal coherence functions: (a) estimated TVCCFs of the 

simulation data, (b) estimated statistical threshold coherence values based 

on the STFT surrogate data, and (c) estimated statistical threshold 

coherence values based on the RLS surrogate data. 

As a second simulation example, we consider the open-

loop system created by setting the coefficient c12 equal to 

zero in Eq. (1).  Further, we set the coupling strength to 

monotonically decrease from 3 to 0, as depicted in Fig. 3a.  

The estimated open-loop coherence function values, using 

the TV method we have previously developed [6], are shown 

in Fig. 3b.  We correctly observe high values (~ 0.9), 

followed by a gradual decrease to near zero values as time 

increases.  We also note the surrogate data generated 

threshold values (STFT: Figs. 3c and RLS: Fig. 3d) 

exhibiting a similar gradually decreasing pattern.  To 

estimate the signals y1, an AR model order of 35 was chosen, 

which resulted in the normalized MSE value of 3.4%.  20 

surrogate data realizations were generated from the TVAR 

coefficients pertaining to the signal y1.  In Figs. 3b-d, we 

note that the coherence function values are greater than the 

surrogate threshold values in the time interval 0 to 440 

seconds.  Thereafter, the coherence function values are 

lower than the surrogate threshold values, suggesting that 

when the coupling strength (c21) decreases to a value around 

0.4, the coherence between signals y1 and y2 becomes 

insignificant.  

B. Application to blood pressure and heart rate data  

We present an application of the TVSD to previously 

collected blood pressure (BP) and heart rate (HR) data [10].  

Details regarding data collection and data preprocessing 

procedures are described in our previous study [10].  The 

purpose of this section is to illustrate the importance of using 

the TVSD over a time-invariant surrogate data technique.  

Data presented in Fig. 4 represent BP and HR data during 

the control state followed by the application of atropine, 

which blocks the parasympathetic nervous activities.  The 

application of atropine occurs at 256 seconds in all panels of  

Fig. 4.  The top left and right panels of Fig. 4 show time-

varying closed-loop coherence functions representing BP to 

HR and HR to BP, respectively. [In this paper the notation 

“BP to HR” and similar shall mean the first variable (BP) is 

the input signal of the system and the second variable (HR) 

is the output signal.]  These estimates were based on the 

method we have previously developed [6].  In the left panel, 

representing the coherence relationship from BP to HR, 

during the control state (time less than 256 seconds), we note 

statistically high coherence values especially at the low 

frequency (LF: 0.04 to 0.15 Hz) and high frequency (HF: 0.2 

to 0.4 Hz) bands.   The LF is known to contain dynamics 

pertaining to both sympathetic and parasympathetic nervous 

activities whereas the HF band is attributed to the dynamics 

of the parasympathetic nervous system [11].  With the 

application of atropine (> 256 seconds), we note 

insignificant coherence at all frequencies as confirmed by 

the STFT and TVAR generated TVSD coherence values 

shown in the left panels of the 2
nd
 and 3

rd
 rows of Fig. 4, 

respectively.  This is the expected result, since the 

parasympathetic activities which reside in both LF and HF 

bands have been blocked with atropine.  To generate TV 

surrogate data using the TVAR, AR model orders of 20 for 

HR and 15 for BP were chosen.  Our choice of these model 

orders resulted in the normalized MSE values of 5.15% for 

the HR and 4.85% for the BP data.  From the TVAR 

coefficients associated with the HR and BP, 20 different 

realizations of surrogate data were generated for each of the 

two signals. The top right panel shows the relationship 

between HR to BP, which is the baroreceptor activity.  With 

application of atropine, the expected result is an increase in 

  
(a) (b) 

  
(c) (d) 

Fig. 3 An open-loop system with monotonically decreasing coupling 

strength. (a) Varying coupling magnitudes from y2 to y1, (b) Estimated 

open-loop TVCF of the simulated signal, (c) Estimated statistical threshold 

values based on 20 realizations of the STFT surrogate data, (d) Estimated 

statistical threshold values based on 20 realizations of RLS surrogate data 
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HR which in turn activates the baroreceptor to decrease the 

HR.  The baroreceptors excite parasympathetic activity to 

decrease HR, but since the parasympathetic nervous system 

is blocked, the only recourse is to decrease sympathetic 

nervous activity.  Thus, this increased baroreceptor activity 

required to lower sympathetic activity should only be 

reflected in the LF region.  This is exactly what we observe 

in the LF region of the top right panel; the coherence values 

in the LF band are greater as compared to the control state 

and are higher than the TVSD coherence values, as shown in 

the right panel of the second row of Fig. 4.  

(a)

 

(b)

 

(c)

 

(d)

 
Fig. 4 Application of the proposed method to BP and HR data. (a) causal 

coherence functions from BP to HR (left), and from HR to BP (right); (b) 

statistical threshold values based on 20 realizations of the STFT surrogate 

data; (c) statistical threshold values based on 20 realizations of the RLS 

surrogate data; and (d) statistical threshold values based on 20 realizations 

of time-invariant surrogate data.  

As expected, we do not see any changes in the coherence 

values in the HF region from the control state to the 

application of atropine in the top right panel.  Insignificant 

coherence values in the HF band in these two states are 

confirmed by the STFT and RLS generated TVSD 

coherence values shown in the right panels of the 2
nd
 and 3

rd
 

rows of Fig. 4, respectively.  Figures in the bottom panel 

represent time-invariant SD results.  Note that with this 

approach, the expected insignificant coherence in the HF 

region is also confirmed since time-invariant SD coherence 

and the TVSD coherence values are similar. It should be 

noted that the TVAR surrogate threshold coherence values 

provide the clearest demarcation of the insignificant 

coherence, since they are greater than the coherence values 

associated with the data.  Thus, this example illustrates the 

additional insight as well as the correct physiological 

interpretation that can be obtained with TVSD as well as TV 

coherence function estimates.  

IV. CONCLUSION 

With recent new developments in time-varying open-loop 

and closed-loop coherence functions [6, 7], time-varying 

surrogate data techniques to properly take into account the 

statistical significance of the time-varying coherence 

function values are certainly needed.  Towards this goal, we 

developed a segment-based time-varying surrogate data 

technique as well as the TVAR approach.  One notable 

disadvantage of nonparametric method is the non-optimal 

time and frequency resolutions, as they are inversely 

proportional due to the use of the Fourier transform.  To 

obviate this disadvantage, we used a time-varying 

autoregressive model-based spectrum to generate surrogate 

data, which resulted in concomitant higher time and 

frequency resolution than the Fourier transform surrogates 

provide.  Both simulation and experimental results 

demonstrated the efficacy and applicability of the proposed 

methods.  Our method eliminates an arbitrary decision about 

the significance of the coherence function, and the 

determination of the coherence between two signals is based 

on levels of statistical significance that change with time.   
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