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Abstract: In this paper, we propose the use of blanket fractal dimension (BFD) to estimate 

the tidal volume from smartphone-acquired tracheal sounds. We collected tracheal sounds 

with a Samsung Galaxy S4 smartphone, from five (N = 5) healthy volunteers. Each volunteer 

performed the experiment six times; first to obtain linear and exponential fitting models, and 

then to fit new data onto the existing models. Thus, the total number of recordings was 30. 

The estimated volumes were compared to the true values, obtained with a Respitrace system, 

which was considered as a reference. Since Shannon entropy (SE) is frequently used as a 

feature in tracheal sound analyses, we estimated the tidal volume from the same sounds by 

using SE as well. The evaluation of the performed estimation, using BFD and SE methods, 

was quantified by the normalized root-mean-squared error (NRMSE). The results show that 

the BFD outperformed the SE (at least twice smaller NRMSE was obtained). The smallest 

NRMSE error of 15.877% ± 9.246% (mean ± standard deviation) was obtained with the BFD 

and exponential model. In addition, it was shown that the fitting curves calculated during the 

first day of experiments could be successfully used for at least the five following days. 
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1. Introduction 

Tracheal sounds are defined as those that are detected or heard over the extrathoracic part of the 

trachea [1]. Tracheal sounds are strong, and cover a wide frequency range [2]. As part of respiratory 

sounds, they play an important role in monitoring respiratory activity, as well as in detection of 

pulmonary diseases [1–3]. 

Respiratory activity is one of the vital signs, and as such requires an adequate attention. Tidal volume 

is one of the parameters for monitoring respiratory activity [4]. It plays an important role for both healthy 

people and people with respiratory diseases, hence measuring and checking volume’s values can be 

helpful, especially in assessing risky situations involving respiratory failure [4–6]. Tidal volume is 

defined as the volume of air exchanged in one breath, and is commonly measured at the mouth [1,2,7]. 

The average value is about 500 mL per breath at rest [2,7]. Various methods exist for measuring the tidal 

volume, such as spirometry, whole-body plethysmography, inductance plethysmography, and 

electrocardiography [2,8–10]. However, these methods require the use of specialized equipment, and 

cannot be easily applied in nonclinical settings. Therefore, there is a need for a miniature monitoring 

device that can be used in everyday situations and not only in clinical and/or research settings [11].  

In addition, with an extensive growth of electronic devices and their computational capabilities, the 

development of portable tidal volume estimation systems is now possible [12]. 

Several efforts have been made in the research oriented towards the estimation of tidal volume.  

In [13], the authors estimated volume by optically tracking reflective markers in three dimensions. 

Petrovic et al. proposed a technique for measuring tidal volumes by using a single fiber-grating  

sensor [14], while in [15] the authors estimated the tidal volume using Doppler radar signals.  

Chen et al. estimated tidal volume from the energy of the tracheal sounds [6]. To the best of our 

knowledge, there are no studies exploring the possibility to estimate tidal volume directly from 

smartphone-acquired tracheal sounds. 

Smartphones are widely used nowadays. They have fast microprocessors, large storage capacities and 

a lot of media capabilities. In addition, the mobility of the smartphones is making them more popular for 

usage outside the clinics or research facilities, when they can be used for measuring vital signs and health 

monitoring, as shown in some of the previous works of our research group [16–18]. 

In this paper, we propose the use of blanket fractal dimension (BFD) for estimating the tidal volume 

from tracheal sounds acquired by a commercially available Android smartphone. Tracheal sounds, as 

part of respiratory sounds, are non-stationary and stochastic signals [2,19]. Due to this fact, some past 

studies investigated and showed successful applications of fractal analysis on tracheal and lung  

sounds [20–24]. None of these efforts was concerned with the tidal volume estimation using fractal 

analysis. In this study, we explore the possibility to estimate tidal volume using BFD, which, to the best 

of our knowledge, was not used for respiratory sound analysis. The estimated volumes were compared 

to peak-to-peak volumes obtained from a Respitrace signal, which was considered as a reference.  

In addition, we estimated volumes by obtaining Shannon entropy (SE) from the same tracheal sounds, 

and compared them to reference volumes. For testing the proposed method and comparing it with  

SE method, we collected signals from healthy and non-smoker volunteers for six days, for a total of  

30 recordings. As a figure of merit, the normalized root-mean-squared errors (NRMSEs) were calculated 
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in both cases. Repeated experiments were performed to investigate if the models for fitting data obtained 

during the first day of collecting signals could be successfully used on the data from the remaining days. 

2. Materials and Methods 

2.1. Subjects 

Five healthy non-smoker volunteers (four males and one female), with the mean age and standard 

deviation of 27 ± 7.5 years, weight of 63.5 ± 5 kg, and height 173.2 ± 8.4 cm, were asked to participate 

in this study. Individuals with previous pneumothorax, chronic respiratory illnesses, and common cold 

were excluded from the study. This group of participants consisted of students and staff members from 

the University of Connecticut (UConn, Storrs, CT, USA). All participants signed a consent form 

approved by the Institutional Review Board of UConn. 

2.2. Equipment and Acquisition of the Signals 

In this study, two signals were acquired simultaneously: tracheal sounds and Respitrace signal. The 

tracheal sounds were collected using an acoustical sensor, which contained a subminiature electret 

microphone BT-21759-000 (Knowles Electronics, Itasca, IL, USA) placed in a plastic bell, which 

consisted of a conical coupler chamber [25], in accordance to previous findings [26]. The importance of 

this shape is that it provides an efficient transducer of air pressure fluctuations from the skin over the 

trachea to the microphone [27]. The acoustic sensor used in this study was developed by our colleagues 

at the Metropolitan Autonomous University at Mexico City, Mexico, and have been successfully applied 

for respiratory sound acquisitions [18,25,28]. The acoustic sensor was connected to the audio jack of the 

Samsung Galaxy S4 smartphone (Samsung Electronics Co., Seoul, Korea). The tracheal sounds were 

recorded using the built-in audio recorder application (Voice Recorder), with 16-bit per sample and 44.1 kHz 

sampling rate, and saved in the .wav format. Afterwards, the recorded files were transferred to a personal 

computer and processed offline using Matlab (R2012a, The Mathworks, Inc., Natick, MA, USA). 

The Respitrace (nowadays known as Inductotrace) signal was obtained simultaneously with the 

tracheal sounds, from two Respibands (Ambulatory Monitoring, Inc., Ardsley, NY, USA), placed over 

the rib cage and abdomen. Respibands’ signals were digitized using 16-bit A/D converter 

(PowerLab/4SP, ADInstruments, Inc., Dunedin, New Zealand) at 10 kHz sampling rate, using the 

manufacturer’s software (LabChart 7, ADInstruments, Inc.). Prior to every participant’s recording, the 

Respibands were calibrated using a spirometer system (FE141 Spirometer, ADInstruments, Inc.) 

following the manufacturer’s manual, and the corresponding signal was considered as the reference for 

volume estimation. Calibration errors between Respibands and spirometer were obtained for every 

recording, and were less than 10%, which is in accordance to the manufacturer’s manual. 

Experiments were performed in a regular dry lab which was held quiet. Respibands were placed over 

the participant’s rib cage and abdomen, while the acoustical sensor was fixed at the suprasternal notch 

using a double-sided adhesive ring (BIOPAC Systems, Goleta, CA, USA). The experiment consisted of 

three stages, and all were performed in standing posture: 

1. Participants were asked to breathe through an 800 mL Spirobag (Ambulatory Monitoring, Inc., 

Ardsley, NY, USA) for about six respiratory cycles; 
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2. Participants were asked to follow a maneuver that consisted of increasing tidal volumes and then 

decreasing with each breath, ranging from participant’s comfortable lowest to highest volume, 

while breathing through a paper tube (tube’s length: 20 cm, internal diameter: 1.5 cm, external 

diameter: 2 cm), for approximately 2 min; 

3. Participants were asked to repeat the same maneuver as in the second stage while breathing 

without the tube. 

In everyday situations people do not have access to spirometers or Respibands, and the lack of 

portable and easily accessible device with possibility to control and limit the tidal volume is needed. 

Thus, in this research, we use a Spirobag, since it is easy to find and carry, and has an almost fixed 

volume (800 mL). The exact volume of the bag changes at each volunteers’ breathe. Hence, we used the 

Respitrace system as reference in order to know this volume, since the use of spirometer with a bag was 

practically prohibited in the experimental setup. 

Since breathing through a tube adds some resistance to the respiratory tract and changes the natural 

way of breathing, one of the objectives was to investigate if this apparatus influences the estimation 

results. This was the reason for recording the third stage of the experiment.  

(a) (b) 

Figure 1. Simultaneous recordings of the tracheal sound (using a smartphone) and the 

volume signal (using Respibands). (a) The participant is breathing through 800 mL bag;  

(b) The participant is breathing through a tube while performing the respiratory maneuver. 

In all three stages, initial and final apnea phases of approximately 5 s were acquired for automatic 

alignment purposes between the two recordings, as well as for recording the ambient noise levels. In the 

last two stages, after the initial apnea, participants were instructed to take a forced respiration cycle 

before performing the maneuver. In order to provide the visual feedback during the second and the third 
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stage, the volume signal was displayed on a 40” monitor, placed in front of the participant. During the 

experiment, nose clips (MLA1008, ADInstruments, Inc.) were used to clamp the nostrils. An example 

of the set-up of the experiment is shown in Figure 1. Figure 1a depicts the first stage of the experiment, 

when the 800 mL bag was used, while Figure 1b shows the breathing maneuver through a tube (the 

second stage of the experiment). 

2.3. Data Processing 

Figure 2 shows the flowchart of the data processing steps. The acquired tracheal sounds were first 

downsampled from 44.1 kHz to 6.3 kHz, and then digitally filtered with a 4th order bandpass Butterworth 

filter with cutoff frequencies 100 and 3000 Hz to minimize the effects of heart sounds and muscle 

interferences [27,29]. The volume signal was first downsampled from 10 kHz to 5 kHz, and then 

interpolated to 6.3 kHz in order to achieve the same sampling frequency as the tracheal sounds. Lastly, 

the volume signal was lowpass filtered at 2 Hz with a 4th order Butterworth filter. 

 

Figure 2. The flowchart showing the steps for tracheal sounds’ and Respitrace signal’s processing. 
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The automatic extraction of the breathing phases (inspiration/expiration) was performed from the 

volume signal, by finding its corresponding local maxima and minima during the respiratory maneuver 

and computing the slope of the volume at each phase [18]. The tracheal sounds and the volume signal 

were recorded simultaneously, however, due to the different times of pressing the start buttons, the two 

signals were aligned manually. Figure 3 depicts an example of the filtered, detrended and aligned 

tracheal sounds and volume signal during the respiratory maneuver. 

 

Figure 3. Filtered, detrended and aligned tracheal sounds and volume signal during the 

respiratory maneuver. Tracheal sound (in volts) is represented in blue, while volume signal 

(in liters) is in orange. 

The volume signal, acquired with the Respibands, was assumed as the reference. For every breathing 

phase, the absolute volume difference between two consecutive extrema from the volume signal was 

calculated, and was considered as the true tidal volume value, VT. Two features were used for estimating 

the tidal volume from the tracheal sounds acquired by smartphone: blanket fractal dimension (BFD) and 

the integral of the Shannon entropy (SE). Every breathing phase (inspiration/expiration) from the 

tracheal sound was represented with one BFD and one SE value. In order to estimate the volume from 

these features, linear and exponential fitting curves were used. The estimated volumes are defined with 

the following: 
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where Vest_l and Vest_e are the estimated volumes with linear and exponential models, respectively, a, b, 

c and d are coefficients, and F is the value of the BFD or SE feature computed from the tracheal sounds. 

The last step in the data processing is the comparison of the estimated volumes to the corresponding 
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where VT is the volume obtained from Respitrace, Vest denotes the estimated volume, i.e., Vest_l or Vest_e, 

and P is the number of breathing phases during the maneuver. 

Shannon entropy is a measure of uncertainty or irregularity of a process [30]. It is one of the features 

frequently used for analysis of respiratory sounds, and has been successfully applied to airflow 

estimation in the field of tracheal sound analysis [31]. For a random signal with a probability density 

function (pdf), p, SE is defined as: 

( ) 
=

⋅−=
M

i
ii pppSE

1

log  (3)

where M is the number of outcomes of the random variable with pdf p. In this study, pdf is estimated 

using the method of Parzen’s windows with a Gaussian kernel [32,33]. More details on this method can 

be found in [18,31]. In this study we were concerned with the tidal volume estimation rather than 

respiratory airflow, and based on the relationship between these two variables over time, the integral of 

the SE over each corresponding breathing phase was used as feature for tidal volume estimation. 

2.4. Blanket Fractal Dimension 

Fractals are defined as 'a set having the fractal dimension strictly greater than its integer dimension’, 

and are used to describe non-regular and non-stationary structures [34–36]. There are two types of 

fractals: natural and deterministic. Natural fractals are structures that could be found in the nature, such 

as lungs, while deterministic fractals are constructed artificially, by applying predetermined replicating 

rules (e.g., the Von Koch curve, the Cantor set) [36,37]. Fractal structures may be quantified by fractal 

dimension, which is a number (usually non-integer) expressing the manner in which the irregular 

structure replicates itself through different scales [36,37]. Among various fractal dimensions, in this 

study we used blanket fractal dimension (BFD). The BFD was initially proposed for estimating fractal 

dimension of digital images (2D signals) [38], and is further extended to 1D signals [39]. 

In the case of 1D signals, the set of points within maximal distance ε from a curve is considered. 

Therefore, a strip of width 2ε that surrounds the curve is observed [40]. Blanket method creates the strip 

around the signal, defined by the upper and lower limiting lines, defined as follows [39]: 
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where x(i) represents the observed 1D signal, ( )u iε  and ( )b iε  are the upper and lower lines, 

respectively, i is the current sample of the signal, m denotes samples within the window around the 

current sample of the signal, and ε is the predefined maximal distance of upper/lower line from the signal. 

As can be noted from Equation (4), the upper/lower line is always calculated for the three consecutive 

samples: i − 1, i, and i + 1. 

The area of the strip between upper and lower lines is defined as: 
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i
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from which the length of the curve x can be estimated as [39]: 

( ) 1

2

A A
L ε εε −−=  (6)

On the other hand, the length of the curve follows the power law [36]: 

( ) 1 DL Cε ε −= ⋅  (7)

where C is the constant and D is the blanket fractal dimension (BFD). By combining Equations (6) and (7), 

and using the least square approximation, blanket fractal dimension is calculated. 

3. Results 

All five participants performed the experiments described in Section 2.2 six times in six distinct days, 

thus creating a database of 30 recordings. The data collected on the first day were used for obtaining the 

linear and exponential models, while the data from the remaining five days were used for testing the 

previously obtained models. Each breathing phase, inspiration and expiration, was analyzed separately. 

The linear and exponential fitting curves were calculated only from the first stage of the experiment 

performed during the first day, using two and three points, respectively, when the participant was 

breathing through an 800 mL bag for about six respiratory cycles. BFD and SE features were calculated 

from the smartphone acquired tracheal sounds, while the reference volume values were obtained from 

the Respitrace signal. This was performed for every inspiratory and expiratory phase, as well as for the 

portion of the signal during the initial apnea (denoted as background). For the linear fitting curve,  

for both BFD and SE features, it was found, experimentally, that two points, A and B, with the  

following coordinates: 
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are sufficient for determining the fitting line. 

Similarly, for exponential fitting curves, we found empirically that three points are sufficient, as 

follows. When using BFD features, the three points (C, D, E) are: 
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and with SE features (points F, G, H): 
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After investigating values of the BFD and SE features from all participants, we noticed that the upper 

limits were 2 and 6, for BFD and SE respectively. Therefore, we used these asymptotic values as 

abscissae of points E and H. Figure 4 illustrates the computation of the linear and exponential models. 
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Figure 4. The flowchart showing the computation of the fitting models. 

After the linear and exponential curves are calculated, data from the second and the third stages of 

the experiment (breathing with and without a tube) were used to fit the curves, separately. BFD and SE 

features were calculated from the smartphone acquired tracheal sounds, and the corresponding volumes 

were estimated using Equation (1) for the linear and exponential models. Simultaneously, the true 

volume values were obtained from the reference Respitrace signal. Since the volume range for normal 

breathing is between 0.2 and 1 L [7], we limited the true volume values to this range, and used only the 

corresponding portions of tracheal sounds for analysis. 

An example of the volume estimation from smartphone acquired tracheal sounds using BFD features 

and exponential model, for both inspiration and expiration, of one subject is shown in Figure 5. The true 

tidal volume values (from Respitrace system) and their corresponding BFD values when breathing 

through 800 mL bag and tube are represented in blue squares and green circles, respectively, while the 

estimated volumes and their corresponding BFD features are depicted as brown triangles. The three 

points, shown as black marks in Figure 5 and given with Equation (9), are used for obtaining the 

exponential fitting curve, which is shown as a solid red curve. 

For every inspiration and expiration phase, when a true volume value was between 0.2 and 1 L, the 

estimated volumes were compared to their corresponding true volumes, and NRMSEs were calculated 

using Equation (2). In Figure 6 are shown the estimated and reference volumes, as well as the 

corresponding NRMSE errors for every inspiratory and expiratory phase for the same example as  

in Figure 5. 
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(a) (b) 

Figure 5. An example of the volume estimation from smartphone acquired tracheal sounds 

using BFD features and exponential model of one subject. The true volumes while breathing 

through a tube (green circles) are limited to a range from 0.2 to 1 L. (a) The inspiration 

phase; (b) The expiration phase. 

 

Figure 6. Top: Reference and estimated volumes for the same example as in Figure 5. 

Bottom: The corresponding NRMSE errors. 

As can be noted from Figure 6, values of the volumes estimated from a smartphone acquired tracheal 

sounds using the BFD features are very similar to the volume values obtained from a Respitrace 

(reference) signal; and the NRMSE errors in both inspiration and expiration phases are low (less  

than 10%). 
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After the first day of experiments (later denoted as training), the participants repeated breathing 

maneuvers with and without a tube for five days (denoted as tests 1–5). The BFD and SE features were 

calculated from the tracheal sounds, and the volumes were estimated using the first day’s fitting curves. 

Simultaneously, the true volume values were obtained from the Respitrace signal. Again, the estimated 

volumes were compared to the true volumes, and NRMSEs were calculated. 

In this study, we compared the volume estimation results when the proposed blanket fractal dimension 

is used as feature, with results obtained with Shannon entropy. Conditions of comparisons included: the 

type of the model (exponential, linear), the type of the apparatus (tube, no tube), and the breathing phase 

(inspiration, expiration). All combinations of conditions were made, and the corresponding ones were 

tested statistically, using the two-tailed paired t-tests (SPSS Statistics 20, IBM Corporation, Armonk, 

NY, USA). Table 1 contains the list of combinations and their corresponding p-values when statistically 

significant differences occurred (p < 0.05). 

Table 1. Combinations of conditions when statistically significant differences were 

obtained, and their corresponding p-values. Results are grouped into 4 groups, based on the 

type of comparisons performed, i.e., BFD vs. SE; inspiration vs. expiration; no tube vs. tube; 

exponential vs. linear model. 

Type Day Conditions p-value 

BFD vs. SE 

Test 4 

Exponential, tube, inspiration 0.049 

Exponential, tube, expiration 0.015 

Exponential, no tube, expiration 0.011 

Linear, tube, inspiration 0.037 

Linear, tube, expiration 0.013 

Linear, no tube, expiration 0.002 

Test 5 

Exponential, tube, expiration 0.017 

Linear, tube, expiration 0.006 

Linear, no tube, expiration 0.007 

Inspiration vs. Expiration 

Test 1 BFD, linear, tube 0.033 

Test 4 SE, linear, tube 0.025 

Test 5 

BFD, linear, tube 0.022 

SE, exponential, tube 0.029 

SE, linear, tube 0.031 

No tube vs. Tube 
Training SE, exponential, inspiration 0.016 
Test 4 BFD, linear, inspiration 0.042 
Test 5 BFD, linear, inspiration 0.033 

Exponential vs. Linear 

Training 
BFD, tube, expiration 0.008 
BFD, no tube, expiration 0.038 

Test 4 
BFD, tube, expiration 0.028 
SE, tube, expiration 0.018 

Test 5 SE, tube, expiration 0.028 

In addition, for each combination, the comparisons between results (NRMSE errors) of the training 

day and the five test days were performed, and tested statistically using the repeated measures ANOVA 

with Bonferroni post-hoc tests (SPSS Statistics 20). The NRMSE errors are grouped into four parts, 

based on the apparatus and breathing phase, so that comparisons between features and models can be 
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performed, and are depicted in Figure 7. These graphs show the changes in NRMSE errors throughout 

six days of experiments for all combinations of features and models simultaneously. 

(a) (b) 

(c) (d) 

Figure 7. NRMSE errors (represented with its mean and standard error of the mean) when: 

BFD and exponential model (red circles), BFD and linear model (green downward triangles), 

SE and exponential model (blue squares), and SE and linear model (black triangles) are used. 

(a) No tube and inspiration; (b) No tube and expiration; (c) Tube and inspiration; (d) Tube 

and expiration. 

As can be concluded from the graphs in Figure 7, when blanket fractal dimension was used for volume 

estimation (red and green lines), the errors were lower at least two times than when Shannon entropy 

was used (blue and black lines), especially with the exponential model (red circles). Moreover, note that 

standard errors are also smaller when BFD is used. Statistically significant differences between the two 

features appeared during the fourth test day (for: exponential and linear models, with tube and both 

inspiration and expiration phases; and for both models, without tube and expiration) and the fifth test 

day (for: both models, with tube and expiration phase; and linear model, without a tube and expiration), 

as shown in Table 1. 

The smallest NRMSE error, with mean and standard deviation of 15.877% ± 9.246%, was obtained 

during the first day of experiments (training), when BFD feature with the exponential model was used, 

for expiratory phase, while the participants were breathing without a tube, Figure 7b. The Bland-Altman 
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analysis showed a bias and standard deviation of 0.0226 ± 0.0918 L, and the corresponding results are 

presented in Figure 8. 

(a) (b) 

Figure 8. Bland-Altman plot for BFD feature with the exponential model, for expiratory phase, 

while the participants (N = 5) were breathing without a tube during the first day of 

experiments. (a) The regression plot: The unitary line is shown as gray dashed line, while 

the regression line is represented as black solid line; (b) Bland-Altman plot: The bias is 

represented as a solid black line and the 95% limits of agreement as gray dashed lines. 

By looking at the NRMSEs calculated for the remaining 5 days (test days), one can conclude that the 

smallest was always obtained with the BFD feature, exponential model and inspiration while breathing 

through a tube (errors ranging from 20% to 27%), Figure 7c, except for the fifth day, when linear model 

provided better estimation (error around 21%). No statistically significant differences were found 

between BFD exponential model from inspiratory and expiratory phases, as deduced from Table 1. 

As was mentioned above, when BFD feature was used the errors were always smaller than with SE. 

In addition, one can conclude that the fitting curves obtained during the first day of experiments 

(training) can be successfully used for the following test days. This way, the participants do not need to 

perform all three stages of the experiments, and the fitting curves do not need to be calculated every day, 

as the previously determined could be used. In order to statistically compare errors throughout all six 

days of experiments, repeated measures ANOVA with Bonferroni post-hoc tests were performed, and 

was determined that there were no statistically significant differences between the days of experiments 

when BFD or SE was used as feature. According to Table 1, for the BFD using exponential model, no 

statistically significant differences were found between breathing through the tube or not. 

4. Discussions and Conclusions 

The goal of this study was to estimate tidal volume from the smartphone acquired tracheal sounds. 

The main challenge was to find a suitable feature to describe these sounds, such that the volume  
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could be estimated directly from the sounds as accurate as possible. Respiratory sounds, and hence  

tracheal sounds, are non-stationary and stochastic signals [2], and as such they are suitable for fractal  

analysis [36]. We tested several ways for estimating fractal dimension, and decided to use the blanket 

fractal dimension because it was more suitable for describing and following the dynamics of the tracheal 

sounds, which was evident after exploring the results. Possible explanation could be the definition of the 

blanket fractal dimension itself. Blanket method creates a strip around the tracheal signal, closely 

following the changes in the signal. As the signal changes faster, the value of blanket fractal dimension 

becomes higher. In some past studies fractal analysis and fractal dimensions were used for analyzing 

tracheal and lung sounds [20–24]. Moreover, blanket fractal dimension was not used in respiratory sound 

analysis yet, and especially not for estimating the tidal volume, which are some of the novelties of this 

manuscript. In addition, to the best of our knowledge, none of the studies on tidal volume estimation has 

reported results based on tracheal sounds acquired by a smartphone.  

In addition to BFD features, we used Shannon entropy (SE), as it is one of the features frequently 

used for analysis of respiratory sounds. In [41], the authors proposed a method to estimate airflow from 

tracheal sounds using SE. In [42], the authors proposed tidal volume estimation method by integrating 

airflow derived from tracheal sounds, which takes advantage of airflow/sound intensity relationship. As 

can be noted, the straightforward comparison between our method and method used in [42] is difficult 

to perform, since the conditions are not exactly the same. We estimated the tidal volume directly from 

tracheal sounds, using BFD as a feature, while Que et al. [42] obtained first the relationship between 

sounds’ amplitude and airflow, and then the volume by integrating the flow. Consequently, according to 

the provided results, the range of volume values in [42] was roughly between 0.3 and 0.8 L, while we 

limited volumes to a broader range [0.2, 1] L. That being said, the Bland-Altman analysis results of [42] 

were 0.009 ± 0.046 L (bias ± SD), while we found a bias and standard deviation of 0.0226 ± 0.0918 L. 

Chen et al. estimated tidal volume from the energy of the tracheal sounds [6]. The comparison of our 

results with those reported in [6] is not easy to perform since they are reported separately for each 

individual participant. If we compute the average results from the provided individually-based  

values reported in Table 1 [6]), we can conclude that the results are comparable. The volumes ranged  

from 0.15 to 0.5 L in [6], which is notably smaller range than the one used in this study. Note that in  

contrast to these two studies, the only external information needed to compute the calibration model  

with our proposed method was obtained with a simple bag at a known fixed value and not from a 

spirometer-like device. 

After volumes were estimated from the smartphone acquired tracheal sounds, they were compared to 

the true volume values, obtained from Respitrace signal, which was considered as a reference in this 

study. The Respitrace signal was calibrated against the spirometer signal prior every recording and the 

obtained calibration errors were less than 10%, which is in accordance to the manufacturer’s manual. 

These reference volumes were limited to a range from 0.2 to 1 L, as it is the normal breathing range [7]. 

Inspiratory and expiratory phases were analyzed separately. Two fitting models, exponential and linear, 

were used for estimation. Our results indicate that the best estimation was obtained using blanket fractal 

dimension with exponential model, during expiratory phase, while participants were breathing without 

a tube, when the NRMSE error was 15.877% ± 9.246% (expressed as mean ± standard deviation). In 

addition, when the BFD is used as a feature, the NRMSEs were always smaller, at least twice, compared 

to the SE. 
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The experiments involved acquisition during six days. Data from the first day of experiments were 

used to construct estimation models, while the data from the remaining five days were plotted against 

the obtained models. The results show the possibility to successfully apply previously obtained fitting 

curves and to monitor tidal volume for at least five days. This way we introduce an easy calibration 

procedure, where there is no need to calculate fitting curves prior every consecutive experiment. In our 

future work, we plan to determine for how many days the existing models can be used. 

This is a preliminary study, with the objective to estimate tidal volume in healthy participants, and 

not in patients with pulmonary diseases. Therefore, it was performed on five healthy participants, and 

for the future work we plan to expand the group. This study was limited to acquisition of tracheal sounds 

in standing posture without head movements. We expect that the results obtained with the proposed 

methodology would be in agreement with the study reported in [42], where the effects of body 

movements and posture changes on tidal volume estimates were investigated. Accordingly, we foresee 

that head movements without neck extension will not modify the obtained results and we do not 

anticipate an increase in estimation errors when moving to seated posture, but we do when moving from 

standing to supine posture, where a new calibration in latter posture would be required. It is worth to 

mention that all recordings were made in a regular dry lab, that was held quiet, and not in a special 

soundproof environment, hence making it applicable to real-life situations. Since spirometer is not a 

portable device, not easily accessed and fixed values of tidal volumes are hard to control, which results 

in additional turbulences and changes in breathing patterns, we used a Spirobag in order to obtain 

information at a known volume which in turn was employed in the estimation model. In addition, due to 

high performance capabilities of smartphones, by connecting an adequate acoustical sensor to a 

smartphone and using a Spirobag, a portable system for tidal volume estimation can be obtained. 

In summary, in this manuscript we proposed a novel technique for estimation of tidal volume directly 

from the blanket fractal dimension of the tracheal sounds. The proposed method provided promising 

results and outperformed a method based on the Shannon entropy, which is frequently used in tracheal 

sounds analysis. Furthermore, we introduced an easy calibration procedure that does not require 

specialized devices and when combined with the proposed signal processing technique allows reasonable 

estimation for at least five days, which makes this method easier to use in everyday situations. The 

employment of smartphone-acquired tracheal sounds was also introduced for all of the above mentioned 

purposes. We foresee that similar efforts to the one presented here represent a step forward to the 

development of a mobile breathing monitoring system easily available for the general population. 
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