
  

  

Abstract— In this study we explored the possibility of 
detecting blood loss in patients with hemorrhage symptoms 
(N=14) from photoplethysmographic (PPG) signals collected 
with pulse oximeters (PO) at forehead, ear and finger sites.  We 
used variable frequency complex demodulation (VFCDM) 
technique to estimate amplitude modulations in heart rate 
frequency range (AMHR) of PPG signals.  We determined the 
trend of these AMHR values over time, and used it to classify 
each patient's recording.  The obtained results were compared 
to the clinical classifications made by physicians at the UMass 
Medical Center, which were considered as references.  The 
accuracy of our algorithm was about 79%.  These are the 
preliminary results of an ongoing study, and we foresee that 
this device and technique can be applied in battlefield and 
combat casualty care. 

I. INTRODUCTION 

Blood loss is the leading cause of death at the battlefield 
[1, 2].  It was shown that the cause in 83% of potentially 
survivable deaths in combat was hemorrhaging [2].  Also, in 
the emergency and operative rooms, it represents very 
frequent medical condition that may lead to death [3].  At the 
early stage of bleeding, initial decrease in blood volume is 
leading to the vasoconstriction of arteries and increase of 
heart rate (HR) in order to maintain normal blood pressure 
(BP).  As blood volume further drops and falls to a critical 
level, which is usually 30% of the normal level (Class III 
hemorrhage), sympathetic vasoconstrictor drive withdraws, 
bradycardia is present and blood pressure decreases, which 
further leads to decrease in blood flow to brain and heart, loss 
of consciousness, and death [3, 4].  Routinely measured vital 
signs, such as heart rate and blood pressure, do not reflect 
blood loss symptoms until at least 30% of blood volume is 
lost by which time the patient’s health is progressively 
worsened and at risk [5].  Therefore, early detection of blood 
loss is very challenging and important task, and an algorithm 
being able to discover early symptoms is needed.  In addition, 
the development of portable system that can be used in 
battlefield settings can greatly improve the combat casualty 
care and decrease the rate of deaths. 
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Regarding this goal, pulse oximeter (PO) has become 
more popular because it is a noninvasive and easy-to-use 
device commonly used to monitor heart rate and arterial 
oxygen saturation (SpO2).  Photoplethysmographic (PPG) 
signals are recorded by pulse oximeters, and they reflect light 
absorption of blood vessels.  Thus, these signals have found 
many applications in detection of blood loss [6-9].  Gesquiere 
et al. found significant increase in the spectral power of PPG 
at respiratory frequency during blood withdrawal of 450 mL 
from healthy subjects [6], while McGrath et al. used time-
domain PPG features to show their decrease during increase 
in the lower body negative pressure (LBNP) in healthy 
subjects [7].  In recent studies performed by our group, high-
resolution time-frequency analysis was proposed to estimate 
amplitude modulations in heart rate and breathing rate 
frequency ranges of PPG signals in spontaneously breathing 
healthy subjects under LBNP [8], and during blood 
withdrawal of 900 mL [9].  The results showed significant 
decrease of spectral amplitudes during the blood loss. 

Since our group’s prior studies showed promising results 
in controlled conditions [8, 9], in this paper, we extend the 
idea to intraoperative and trauma care settings, where the 
algorithm is applied to PPG signals obtained from patients 
with suspected hemorrhage.  We apply the high-resolution 
time-frequency analysis to estimate amplitude modulations in 
HR frequency range of the PPG signals obtained from 
sensors placed at three sites (forehead, ear and finger) [8, 9].  
We hypothesize that the amplitudes in the heart rate 
frequency range in the PPG signal will significantly change 
(decrease) in patients who are experiencing blood loss, and 
conversely increase in patients who are recovered, i.e., 
normovolemic. 

II. METHODS AND MATERIALS 

A. Subjects and Signal Acquisition 
The set of subjects used in this paper consisted of 

fourteen trauma patients (N=14) admitted to the UMass 
Medical Center.  Before any signals were acquired, all 
participants signed consent form approved by the 
Institutional Review Board of UMass Medical School. 

After the patients have provided the informed consent, 
three miniature multi-channel pulse oximeters developed in 
our lab were placed at the finger, forehead and ear as early as 
possible upon their arrival to the hospital.  PPG data are 
stored internally in the PO device, and analyzed later.  
Simultaneously, intravenous (IV) fluid and blood intakes and 
outputs were compiled during the entire data collection by 
the UMass physicians.  At the end of data collection, every 
patient was assigned to one of the classes 
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(hypovolemia/normovolemia) by adjudication of all available 
clinical information by 2 or 3 physicians. 

B. Data Processing 
The sampling frequency of photoplethysmographic 

signals was 80 Hz.  We extracted 2 minute PPG sequences at 
various time instances throughout the whole signal.  Within 
every sequence, 1 minute window was shifted in 10 seconds 
increments.  This way, 7 segments were formed for one 2 
minute PPG sequence.  Each segment was downsampled to 
20 Hz.  Furthermore, mean value and linear trend were 
removed.  After preprocessing, time-frequency spectrum of 
every segment was obtained using variable frequency 
complex demodulation (VFCDM) [8]-[12]. 

The amplitude and frequency of HR obtained from PPG 
signals from patients with hemorrhage symptoms are 
expected to change over time, which makes the time-
frequency analysis suitable tool for the task at hand.  At each 
time point, the maximum amplitude in the heart rate 
frequency range was extracted from the segment’s spectrum.  
This way, the sequence of amplitude values was formed.  In 
this paper, we defined heart rate frequency range as the heart 
rate found in the frequency spectrum of segment ± 0.2 Hz.  
For every PPG segment (7 segments in total), the median 
value of sequence of maximum amplitudes was calculated.  
This results in 7 median values per one 2 minute PPG 
sequence.  Finally, the mean of these 7 median values was 
computed, and denoted as AMHR.  Fig. 1 illustrates 
processing steps of this algorithm for the estimation of the 
amplitude of heart rate (HR) from PPG signal.  Since this 
procedure was repeated for 2 minute PPG sequences at 
various time instances, percent changes in AMHR were also 
calculated.  Statistical analysis between all pairs of AMHR 
values was performed using repeated measures ANOVA with 
Bonferroni post-hoc tests, where p < 0.05 was considered 
significant (SPSS Statistics 20, IBM Corporation, Armonk, 
NY, USA). 

C. VFCDM 
Variable frequency complex demodulation is a technique 

for estimating time-frequency spectrum of time-varying 
signals such as photoplethysmographic signals.  This 
technique is briefly summarized here, while for further 
details reader should see [8, 10, 11, 12].  VFCDM consists of 
two steps.  In the first step, the fixed frequency complex 
demodulation (FFCDM) is applied to obtain the time-
frequency spectrum (TFS), while in the second step only 
dominant frequencies of interest are selected [8, 11, 12].  This 
way, the high-resolution TFS is generated.  During the first 
step of VFCDM, the signal is decomposed into a sequence of 
band-limited signals using a bank of low pass filters (LPFs).  
Then, Hilbert transform is applied to each band-limited signal 
in order to obtain instantaneous amplitude, phase and 
frequency information [8, 11, 12].  Flow chart illustration of 
the VFCDM procedure is summarized in Fig. 2. 

III. RESULTS 

Fourteen (N=14) patients with suspected hemorrhage 
were enrolled in an urban, academic emergency department.  
We extracted 2 minute sequences from PPG signals at 
various time instances throughout the whole recording, in 

order to determine and to track changes in estimated 
amplitudes. 

For every patient we plotted the estimated amplitudes of 
HR against the corresponding time points, and determined 
the trend of the data.  If the trend has significantly increased 
from the initial to the last time point, we concluded that 
patient is recovered, i.e., normovolemic.  In contrast, if the 
trend has significantly decreased, the patient was denoted as 
still hypovolemic.  The clinical classifications, based on the 
all relevant clinical data, were made by UMass physicians, 
who were blinded to PPG data.  Estimated results obtained 
from hypovolemia detection algorithm were then compared 
to the clinical classifications. 

An illustrative example of a plot of the estimated 
amplitudes of HR (AMHR) as function of time points for one 
patient is presented in Fig. 3.  On the x-axis are the time 
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points, while the corresponding AMHR values estimated by 

our algorithm are shown on y-axis and are presented in blue.  
For the estimated values, the trend analysis was performed, 
and the least squares line was determined and is depicted in 
red.  As can be noted, estimated amplitudes from the HR 
from the PPG signal show increasing trend.  Furthermore, 
this patient was admitted to the emergency room with signs 
of hemorrhage.  After the treatment, the patient was classified 
to be normovolemic by the UMass physicians.  Therefore, 
our algorithm was able to correctly classify PPG data from 
this particular patient, and to show the increase in estimated 
AMHR values, which supports the fact that after the medic’s 
care, patient’s condition improved, i.e., patient is no longer 
having blood loss. 

Similar analysis and classification were performed for 
every patient.  The performance of our algorithm was 
measured with confusion matrix, which is presented in Table 
I.  The classification accuracy and specificity are provided in 
Table II.  Classification accuracy of normovolemic patients is 
represented as specificity. 

 

TABLE I.  CONFUSION MATRIX FOR TRAUMA PATIENTS (N=14) 

 True hypovolemia True normovolemia 

Predicted 
hypovolemia 0 3 

Predicted 
normovolemia 0 11 

 

 

TABLE II.  ACCURACY AND SPECIFICITY FOR TRAUMA PATIENTS 
(N=14) 

Accuracy (%) Specificity (%) 

78.57 78.57 

 

It is worth mentioning that, so far, all of the enrolled 
patients were fully recovered, i.e., in the normovolemic state 
and none of them were showing signs of blood loss by the 
end of the data collection.  This is understandable, since 
patients were receiving intravenous fluids and blood units, 
their wounds were mended and bleeding was under control 
by the end of recording.  As can be noted, our results indicate 
that there were no patients with ongoing blood loss, which is 
in agreement with the clinical classifications.  Moreover, in 
previous study performed by our group, 900 mL of blood was 
withdrawn during spontaneous breathing in healthy 
volunteers, which simulates blood loss [9].  The authors of 
[9] showed significant decrease in estimated amplitudes from 
heart rate, with the sensitivity (classification accuracy of 900 
mL withdrawal) above 75%.  The algorithm was able to 
detect blood loss in spontaneously breathing healthy 
volunteers, and therefore we can expect that it would perform 
correctly in patients as well. 

In this study, the accuracy of normovolemic patients is 
78.57%.  These are preliminary results, and after enrolling 
more patients we expect this value to be higher. 

 
Figure 2.  Flow chart illustration of the procedure for calculating 
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IV. CONCLUSION 
Blood loss is one of the frequent conditions in operative 

rooms and in battlefield that very often leads to death.  Since 
routinely measured vital signs do not reflect symptoms of 
blood loss promptly, an early detection is of great 
importance both for trauma and combat casualty care.  
Constant monitoring of patients and prompt reaction can 
lower the death rates.  In order to achieve this, a reliable 
algorithm for accurate detection of blood loss before patient 
develops hemorrhagic shock is needed. 

We proposed an algorithm based on variable frequency 
complex demodulation to track changes in the amplitudes of 
the PPG signal in the heart rate frequency range over time in 
patients with hemorrhage.  The estimated results were 
compared to the independently performed adjudications 
obtained by physicians.  The preliminary results from this 
ongoing study of a novel, wearable medical device to detect 
blood loss demonstrate modest specificity and accuracy.  We 
expect that with enrollment of more patients we will be able 
to obtain higher values of accuracy and specificity, which in 
turn may help refine the clinical utility of this device. 
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