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Abstract—We introduce a new method to reconstruct motion
and noise artifact (MNA) contaminated photoplethysmo-
gram (PPG) data. A method to detect MNA corrupted data
is provided in a companion paper. Our reconstruction
algorithm is based on an iterative motion artifact removal
(IMAR) approach, which utilizes the singular spectral
analysis algorithm to remove MNA artifacts so that the
most accurate estimates of uncorrupted heart rates (HRs)
and arterial oxygen saturation (SpO2) values recorded by a
pulse oximeter can be derived. Using both computer simu-
lations and three different experimental data sets, we show
that the proposed IMAR approach can reliably reconstruct
MNA corrupted data segments, as the estimated HR and
SpO2 values do not significantly deviate from the uncor-
rupted reference measurements. Comparison of the accuracy
of reconstruction of the MNA corrupted data segments
between our IMAR approach and the time-domain indepen-
dent component analysis (TD-ICA) is made for all data sets
as the latter method has been shown to provide good
performance. For simulated data, there were no significant
differences in the reconstructed HR and SpO2 values starting
from 10 dB down to 215 dB for both white and colored
noise contaminated PPG data using IMAR; for TD-ICA,
significant differences were observed starting at 10 dB. Two
experimental PPG data sets were created with contrived
MNA by having subjects perform random forehead and
rapid side-to-side finger movements show that; the perfor-
mance of the IMAR approach on these data sets was quite
accurate as non-significant differences in the reconstructed
HR and SpO2 were found compared to non-contaminated
reference values, in most subjects. In comparison, the
accuracy of the TD-ICA was poor as there were significant

differences in reconstructed HR and SpO2 values in most
subjects. For non-contrived MNA corrupted PPG data,
which were collected with subjects performing walking and
stair climbing tasks, the IMAR significantly outperformed
TD-ICA as the former method provided HR and SpO2

values that were non-significantly different than MNA free
reference values.

Keywords—Motion artifact removal, Blind source separa-

tion, Singular spectrum analysis.

INTRODUCTION

Arterial oxygen saturation reflects the relative
amount of oxyhemoglobin in the blood. The most
common method to measure it is based on pulse
oximetry, whereby oxidized hemoglobin and reduced
hemoglobin have significantly different optical spectra.
Specifically, at a wavelength of about 660 nm, and a
second wavelength between 805 and 960, there is a
large difference in light absorbance between reduced
and oxidized hemoglobin. A measurement of the per-
cent oxygen saturation of blood is defined as the ratio
of oxyhemoglobin to the total concentration of
hemoglobin present in the blood. Pulse oximetry
assumes that the attenuation of light is due to both the
blood and bloodless tissue. Fluctuations of the PPG
signal are caused by changes in arterial blood volume
associated with each heartbeat, where the magnitude of
the fluctuations depends on the amount of blood
rushing into the peripheral vascular bed, the optical
absorption of the blood, skin, and tissue, and the
wavelength used to illuminate the blood.
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The pulse oximeter signal contains not only the blood
oxygen saturation and heart rate (HR) data, but also
other vital physiological information. The fluctuations
of photoplethysmogram (PPG) signals contain the
influences of arterial, venous, autonomic and respira-
tory systems on the peripheral circulation. In the current
environment where health care costs are ever increasing,
a single sensor that has multiple functions is very
attractive from a financial perspective. Moreover, uti-
lizing a pulse oximeter as a multi-purpose vital sign
monitor has clinical appeal, since it is familiar to the
clinician and comfortable for the patient. Knowledge of
respiratory rate3 and HR patterns would be provide
more useful clinical information in many situations in
which pulse oximeter is the sole monitor available.

Although there are many promising and attractive
features of using pulse oximeters for vital sign moni-
toring, currently they are used on stationary patients.
This is mainly because motion and noise artifacts
(MNAs) result in unreliable HR and SpO2 estimation.
Clinicians have cited motion artifacts in pulse oximetry
as themost common cause of false alarms, loss of signal,
and inaccurate readings.14 A smart watch with a PPG
sensor is currently commercially available for monitor-
ingHRs (www.mioglobal.com).However,MNA is a big
source of problem for accurate vital extraction from
PPG signals and prevents wide adoption of this poten-
tially useful technology for mobile health.

In practice MNA are difficult to remove because
they do not have a predefined narrow frequency band
and their spectrum often overlaps that of the desired
signal.27 Consequently, development of algorithms
capable of reconstructing the corrupted signal and
removing artifacts is challenging.

There are a number of general techniques used for
artifact detection and removal. One of the methods used
to removemotion artifacts is adaptive filtering.1,5,15,19,24

An adaptive filter is easy to implement and it also can be
used in real-time applications, though the requirement
of additional sensors to provide reference inputs is the
major drawback of such methods.

There are many MNA reduction techniques based
on the concept of blind source separation (BSS). BSS is
attractive and has garnered significant interest since
this approach does not require a reference signal. The
aim of the BSS is to estimate a set of uncorrupted
signals from a set of mixed signals which is assumed to
contain both the clean and MNA sources.2 Some of the
popular BSS techniques are independent component
analysis (ICA),4 canonical correlation analysis
(CCA),28 principle component analysis (PCA),13 and
singular spectrum analysis (SSA).6

In ICA, the recorded signals are decomposed into
their independent components or sources.4 CCA uses
the second order statistics to generate components

derived from their uncorrelated nature.8 PCA is an-
other noise reduction technique which aims to separate
the clean signal dynamics from the MNA data. A
multi-scale PCA has been also proposed to account for
time-varying dynamics of the signal and motion arti-
facts from PPG recordings.20

A promising approach that can be applied to signal
reconstruction is the SSA. The SSA is a model-free
BSS technique, which decomposes the data into a
number of components which may include trends,
oscillatory components, and noise (see historical
reviews in Ref. 10). The main advantage of SSA over
ICA is that SSA does not require user input to choose
the appropriate components for reconstruction and
MNA removal. Comparing PCA to SSA, SSA can be
applied in cases where the number of signal compo-
nents is more than the rank of the PCA covariance
matrix. Applications of the SSA include extraction of
the amplitude and low frequency artifacts from single
channel EEG recordings,26 and removing heart sound
dynamics from respiratory signals.9

In this paper, we introduce a novel approach to
reconstruct a PPG signal from those portions of data
that have been identified to be corrupted using the
algorithm detailed in Part I of the companion paper.
The fidelity of the reconstructed signal was determined
by comparing the estimated SpO2 and HR to reference
values. In addition, we compare the reconstructed
SpO2 and HR values obtained via the time-domain
ICA (TD-ICA) to our method. We have chosen to
compare our method to TD-ICA since the latter has
recently been shown to provide good reconstruction of
corrupted PPG signals.18

MATERIALS AND METHOD

Experimental Protocol and Preprocessing

Three sets of data were collected from healthy
subjects recruited from the student community of
Worcester Polytechnic Institute (WPI). This study was
approved by WPI’s institutional review board and all
the subjects gave informed consent before data
recording.

In the first experiment, 11 healthy volunteers were
asked to wear a forehead reflectance pulse oximeter
developed in our lab along with a reference Masimo
Radical (Masimo SET�) finger transmittance pulse
oximeter. PPG signals from the forehead sensor and
reference (HR) derived from a finger pulse oximeter
were acquired simultaneously. The HR and SpO2 sig-
nals were acquired at 80 and 1 Hz, respectively. After
baseline recording for 5 min without any movement
(i.e., clean data), motion artifacts were induced in the
PPG data by the spontaneous movements in both
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horizontal and vertical directions of the subject’s head
while the right middle finger was kept stationary.
Subjects were directed to introduce the motions for
specific time intervals that determined the percentage
of noise within each 1 min segment, varying from 10 to
50%. For example, if a subject was instructed to make
left–right movements for 6 s, an 1 min segment of data
would contain 10% noise. Note that noise amplitudes
varied among subjects due to their head movements.

The second dataset consisted of finger-PPG signals
from the nine healthy volunteers in an upright sitting
posture using an infrared reflection type PPG trans-
ducer (TSD200). An MP1000 pulse oximeter (BIOPAC
Systems Inc., CA, USA) was also used to acquire fin-
ger PPG signals at 100 Hz. One pulse oximeter of each
model was placed on the same hand’s index finger (one
model) and middle finger (the other model) simulta-
neously. After baseline recording for 5 min without
any movement (i.e., clean data), motion artifacts were
induced in the PPG data by the left–right movements
of the index finger while the middle finger was kept
stationary to provide a reference. This was accom-
plished by placing the middle finger on top of the edge
of a table while the index finger moved in the free space
off the edge of the table. Similar to the first dataset,
motion was induced at specific time intervals corre-
sponding to 10–50% corruption duration in 1 min
segments, i.e., the controlled movement was carried
out five times per subject.

The third dataset consisted of data measurements
from nine subjects with the PPG signal recorded from
the subjects’ foreheads using our custom sensor
(80 Hz) simultaneously with the reference ECG from a
Holter Monitor at 180 Hz and reference HR and SpO2

derived from a Masimo (Rad-57) pulse oximeter at
0.5 Hz, respectively. The reference pulse oximeter
provided HR and SpO2 measured from the subject’s
right index finger, which was held steadily to their
chest. The signals were recorded while the subjects
were going through sets of walking and climbing up
and down flights of stairs for approximately 45 min.

Once data were acquired, PPG signals from all three
experiments outlined above were preprocessed offline
using Matlab (MathWorks, R2012a). The PPG signals
werefilteredusing a zero-phase forward-reverse 4thorder
IIR band-pass filter with cutoff frequency 0.5-12 Hz.

MOTION ARTIFACT REMOVAL

To reconstruct the artifact-corrupted portion of the
PPG signal that has been detected using the support
vector machine approach provided in the accompa-
nying paper, we propose a novel hybrid procedure
using Iterative Singular Spectrum Analysis (ISSA) and

a frequency matching algorithm. Henceforth, we will
call these combined procedures the iterative motion
artifact removal (IMAR) algorithm.

SINGULAR SPECTRUM ANALYSIS

The SSA is composed of two stages: singular
decomposition and spectral reconstruction. The former
is the spectral decomposition or eigen-decomposition
of the data matrix whereas the latter is the recon-
struction of the signal based on using only the signifi-
cant eigenvectors and associated eigenvalues. The
assumption is that given a relatively high signal-to-
noise ratio of data, significant eigenvectors and asso-
ciated eigenvalues represent the signal dynamics and
less significant values represent the MNA components.

The calculation of the singular stage of the SSA
consists of two steps: embedding followed by singular
value decomposition (SVD). In essence, these proce-
dures decompose the data into signal dynamics con-
sisting of trends, oscillatory components, and MNA.
The spectral stage of the SSA algorithm also consists of
two steps: grouping and diagonal averaging. These two
procedures are used to reconstruct the signal dynamics
but without the MNA components. In the following
section, we detail all four steps in the SSA algorithm.

Singular Decomposition

Embedding

Assume we have a nonzero real-value time series of
length N samples, i.e., X ¼ fx1; x2; . . . ; xNg. In the
embedding step, window length fs=fl<L<N=2 is
chosen to embed the initial time series, where fs is the
sampling frequency and fl is the lowest frequency in the
signal. We map the time series X into the L lagged
vectors, X ¼ fxi; xiþ1; . . . ; xiþL�1g for i ¼ 1; . . . ;K,
where K ¼ N� Lþ 1.10 The result is the trajectory
data matrix Tx or vector Xi that is each row of Tx for
i ¼ 1; . . . ;K.

Tx ¼

X1

X2

..

.

XK

2
666664

3
777775
¼

x1 x2 � � � xL
x2 x3 � � � xLþ1
..
. ..

. . .
. ..

.

xK xKþ1 � � � xN

2
6664

3
7775 ð1Þ

From Eq. (1), it is evident that the trajectory matrix,
Tx, is a Hankel matrix.

Singular Value Decomposition

The next step is to apply the SVD to the trajectory
matrix Tx which results in eigenvalues and eigenvectors
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of the matrix TxT
T
x where Ti for i ¼ 1; . . . ;L can be

defined as T ¼ USVT.10 Ui for 1<i<L is a K� L
orthonormal matrix. Si for 1<i<L is a diagonal
matrix and Vi for 1<i<L is an L� L square ortho-
normal matrix, which is considered the principle
component. In this step, Tx has L many singular values
which are

ffiffiffiffiffi
k1
p

>
ffiffiffiffiffi
k2
p

>; . . . ;
ffiffiffiffiffi
kL
p

. By removing com-
ponents with eigenvalues equal to zero, the ith
eigentriple of Ti can be written as Ui �

ffiffiffiffi
ki
p
� VT

i for
i ¼ 1; 2; . . . ; d, in which d ¼ maxði :

ffiffiffiffi
ki
p

>0Þ is the
number of nonzero singular values of Tx. Normally
every harmonic component with a different frequency
produces two eigentriples with similar singular values.
So the trajectory matrix Tx can be denoted as10

Tx ¼ T1 þ T2 þ � � � þ Td

¼ U1

ffiffiffiffiffi
k1

p
VT

1 þ � � � þUd

ffiffiffiffiffi
kd

p
VT

d

¼
Xd
i¼1

Ui

ffiffiffiffi
ki

p
VT

i

ð2Þ

Projecting the time series onto the direction of each
eigenvector yields the corresponding temporal princi-
pal component (PC).7

Spectral Reconstruction

The reconstruction stage has two steps: grouping
and diagonal averaging. First the subgroups of the
decomposed trajectory matrices are grouped and then
a diagonal averaging step is needed so that a new time
series can be formed.6

Grouping

The grouping step of the reconstruction stage
decomposes the L� K matrix Ti (i ¼ 1; 2; . . . ; d) into
subgroups according to the trend, oscillatory compo-
nents, and MNA dynamics. The grouping step divides
the set of indices 1; 2; . . . ; df g into a collection of m
disjoint subsets of I ¼ I1; . . . ; Imf g.12 Thus, TI corre-
sponds to the group I ¼ I1; . . . ; Imf g. TIi is a sum of Tj,
where j 2 Ii. So Tx can be expanded as

Tx ¼ T1 þ � � � þ TL

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{SVD

¼ TI1 þ � � � þ TIm

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{Grouping

ð3Þ

Diagonal Averaging

In the final step of analysis, each resultant matrix,
TIi , in Eq. (3) is transformed into a time series of
length N. We obtain the new Hankel matrices ~XðiÞ by
averaging the diagonal elements of the matrix TIi .

7 Let
H be denoted as the Hankel operator. So that we
obtain the Hankel matrix ~XðiÞ ¼ HTIi for
i ¼ 1; . . . ;m.12 Under the assumption of weak separa-

bility and applying the Hankel procedure to all matrix
components of Eq. (3), we obtain the following
expansion

X ¼ ~Xð1Þ þ ~Xð2Þ þ � � � þ ~XðMÞ ð4Þ

We can assert that ~Xð1Þ is related to the trend of the
signal; however, harmonic and noisy components do
not necessarily follow the order of

ffiffiffiffiffi
k1
p

>
ffiffiffiffiffi
k2
p

>
� � �>

ffiffiffiffiffiffi
kM
p

.

ITERATIVE MOTION ARTIFACT REMOVAL

BASED ON SSA

In order to reconstruct the MNA corrupted segment
of the signal, an IMAR approach based on SSA was
explained in the last section. The ultimate goodness of
the reconstructed signal is determined by the accuracy
of the estimated SpO2 and HR values. The top and
bottom panels of Fig. 1 show clean and MNA cor-
rupted signals, respectively. The most important part
of the SSA is to choose the proper eigenvector com-
ponents for reconstruction of the signal. Under the
assumption of high SNR, the normal practice is to
select only the largest eigenvalues and associated
eigenvectors for signal reconstruction. However, most
often it is difficult to determine the demarcation of the
significant from non-significant eigenvalues. Further,
the MNA dynamics can overlap with the signal
dynamics, hence, choosing the largest eigenvalues does
not necessarily result in an MNA-free signal.

To overcome the above limitations, we have modi-
fied the SSA approach. The first step of our modified
SSA involves computing SVD on both a corrupted
data segment and its most prior adjacent clean data
segment. Under the assumption of a high SNR of the
data, the second step is to retain only the top 5% of the
eigenvalues and their associated eigenvectors. The
third step is to replace the corrupted segment’s top 5%
eigenvalues with the clean segment’s eigenvalues. The
fourth step is to further limit the number of eigenvec-
tors by choosing only those eigenvectors that have
HRs between 0.66 Hz< fs < 3 Hz for both the clean
and noise corrupted data segments. The two extreme
HRs are chosen so that they account for possible sce-
narios that one may encounter with low and high HRs.
With the remaining candidate eigenvectors resulting
from step four, we further prune non-significant
eigenvectors by performing frequency matching of the
noise corrupted eigenvectors to those of the clean data
segment’s eigenvectors, in the fifth step. Only those
eigenvectors’ frequencies that match to those of the
clean eigenvectors are retained from the pool of
eigenvectors remaining from step four. For the
remaining eigenvector candidates, we perform iterative
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SSA to further reduce MNA and match the dynamics
of the clean data segments’ eigenvectors for the final
step. For each iteration we perform the standard SSA
algorithm. It is our experience that this convergence is
achieved within 4 iterations.

Figure 2 shows an example of the iterative SSA
procedure applied to candidate eigenvectors that have
resulted from step four of the procedure for the mod-
ified SSA algorithm. Note that there may be several
eigenvectors remaining after the fifth step, hence, this
example shows an iterative SSA procedure performed
on a particular set of candidate eigenvectors that may

match most closely to an eigenvector of a clean data
segment. The top row of panels of Fig. 2 represents
one of the eigenvectors of the clean signal and the
second row of panels represents the MNA corrupted
signal’s candidate eigenvectors which have the same
frequency as that of the clean signal’s eigenvector. The
remaining lower panels of Fig. 2 represent the candi-
date eigenvectors after they have gone through four
successive iterations of the SSA algorithm. For this
portion of the SSA algorithm, we perform SVD on the
trajectory matrix of Eq. (1) created from the candidate
eigenvector and then reconstruct the eigenvectors

0 500 1000 1500 2000 2500
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-50
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50

100
 Clean Infrared PPG Signal

Clean Infrared PPG

0 500 1000 1500 2000 2500
-400

-200
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200

400
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FIGURE 1. Typical infrared PPG signal; (a) clean, (b) corrupted with motion artifacts.
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FIGURE 2. Iterative reconstruction of a corrupted eigenvector with frequency of 0.967 Hz. Black font signals (top panels) rep-
resent the clean component with frequency of 0.967 Hz; Blue font signals (2nd rows) indicate the corrupted component with the
same frequency; Pink font signals are related to iterative evolution of corrupted component to a clean oscillatory signal. (a)
Reconstruction of 4th corrupted eigenvector compared to the corresponding clean component. The final pattern after 4 iterations
resembles the black font clean component in the top panel. This component is chosen among the components with the same
frequency, since it shows the most similarity to the black font clean component. (b) Reconstruction of 9th corrupted eigenvector
compared to the corresponding clean component. (c) Reconstruction of 22nd corrupted eigenvector compared to the corre-
sponding clean component.
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based on SSA using only the first 3 largest eigenvalues
obtained from the SVD. This process repeats itera-
tively until the shape of the reconstructed eigenvector
closely resembles one of the clean eigenvectors with the
same frequency. It can be seen from Fig. 2 that after 4
iterations the result shown in the (a) panel corresponds
most closely to the clean signal’s eigenvector, hence,
this eigenvector is selected rather than the eigenvectors
shown in panels b–c. We calculate the discarding
metric (DM) at each iteration and compare this value
to the DM value of the corresponding clean compo-
nent. The DM is calculated according to:

DM ¼
P

uj j
.
LðuÞ ð5Þ

where u is the signal component, and :j j, Lð:Þ are
absolute operator and component length, respectively.
The entire procedure for the modified SSA algorithm is
summarized in Table 1.

RESULTS

Noise Sensitivity Analysis

To validate the proposed IMAR procedure, we
added different SNR levels of Gaussian white noise
(GWN) and colored noise to an experimentally col-
lected clean segment of PPG signal. The purpose of the
simulation was to quantitatively determine the level of
noise that can be tolerated by the algorithm. Seven
different SNR levels ranging from 10 dB to 225 dB
were considered. For each SNR level, 50 independent
realizations of GWN and colored noise were added
separately to a clean PPG signal. The Euler–Maruy-
ama method was used to generate colored noise.17

Figure 3 shows the results of these simulations
with additive GWN. The left panels show pre- and

post-reconstruction HR in comparison to the reference
HR; the right panels show the corresponding com-
parison for SpO2. Tables 2 and 3 show the mean and
standard deviation values of the pre- (2nd column) and
post-reconstruction (4th column), and the reference
(3rd column) HR and SpO2 values, respectively, for all
SNR. The last columns of Tables 2 and 3 also show the
estimated HR and SpO2 values obtained by the TD-
ICA method.18 As shown in Fig. 3 and Tables 2 and 3,
the reconstructed HR and SpO2 values using our
IMAR approach were found to be not statistically
different when compared to the reference values for all
SNR except for 220 and 225 dB. However, the TD-
ICA method fails and we obtain significantly different
values to those of the reference HR and SpO2 values
when the SNR is lower than 210 dB.

Tables 4 and 5 show corresponding results to that of
Tables 2 and 3 but with additive colored noise. Similar
to the GWN case, the reconstructed HR and SpO2

values using the proposed IMAR approach are found
to be not significantly different than the reference
values for all SNR except for 220 and 225 dB.
Moreover, the TD-ICA compares poorly compared to
our IMAR as the HR and SpO2 values from the for-
mer method are found to be significantly different to
the reference values for all SNR.

Heart Rate and SpO2 Estimation from Forehead Sensor

As described in ‘‘Motion Artifact Removal’’ section,
we collected PPG data under three different experi-
mental settings so that our proposed approach could
be more thoroughly tested and validated. For all three
experimental settings, the efficacy of our IMAR
approach for the reconstruction of the MNA-affected
portion of the signal will be compared with the

TABLE 1. Iterative motion artifact removal (IMAR) procedure.

Assumption—Heart rate and SpO2 do not change abruptly and are stationary within the short data segment

Application—Offline Motion Artifact Removal

Objective—Reconstruction of corrupted PPG segment for the purpose of estimating heart rates and SpO2

Routine

Step 1. First, compute SVD on both corrupted data segments and their most prior adjacent clean data segments

Step 2. Next, keep the top 5% of the clean and corrupted components, based on the eigenvalues being sorted from largest to smallest

Step 3. Replace the corrupted eigenvalues with corresponding clean eigenvalues

Step 4. Among the clean and corrupted components, only choose those with frequency within the heart rate frequency range of

0.66 < Fs < 3 Hz

Step 5. Apply frequency matching to discard those corrupted components (from Step 4) with different frequencies compared to clean

components’ frequencies

Step 6. Remove corruption from each component obtained from Step 5 by applying the basic SSA algorithm iteratively

6.a. Calculate the discarding metric for components achieved from SSA iterations and their counterpart clean components from Eq. (5)

6.b. Select those processed components with the closest DM and frequency value to the corresponding clean component’s DM and

frequency value

Step 7. Finally, reconstruct the corrupted PPG segment based on the components achieved from Step 6
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reference HR and SpO2 values for all experimental
datasets. Unlike Masimo’s finger pulse oximeter, our
custom-designed forehead pulse oximeter does not
calculate moving average HR and SpO2 values. This is
the reason why the standard deviations of HR and
SpO2 values from the forehead sensor are much larger
than those from Masimo’s finger pulse oximeter (see
Tables 6, 7, 8, 9, 10).

For the error-free SpO2 estimation, Red and IR
PPG signals with clearly separable DC and AC com-
ponents are required. The pulsatile components of the
Red and IR PPG signals are denoted as ACRed and
DCRed, respectively, and the ‘‘ratio-of-ratio’’ R is
estimated22,23 as

R ¼ ACRed=DCRed

ACIR=DCIR
ð6Þ

Accordingly, SpO2 is computed by substituting the
R value in an empirical linear approximate relation
given by

SpO2ð%Þ ¼ ð110� 25RÞð%Þ ð7Þ

After applying the proposed IMAR procedure to
the identified MNA segment of the PPG signal, we
estimate the SpO2 (using Eq. (6, 7)) and HR, and
compare it to the corresponding reference and MNA
contaminated segment values. As was the case with
the ‘‘Noise Sensitivity Analysis’’ section, we compare
the performance of the IMAR algorithm to the TD-
ICA method. The top and bottom panels of Fig. 4
represent a representative HR and SpO2 comparison
result, respectively. We can see from these figures that
the estimated values for both HR (left panels) and
SpO2 (right panels) from the IMAR (black font) track
closely to the reference values recorded by the Masi-
mo transmittance type finger pulse oximeter (red
square line), while the estimated HR and SpO2

obtained from the TD-ICA method (green font)
deviate significantly from the reference signal.
Tables 6 and 7 show comparison of the IMAR and
the TD-ICA reconstructed HR and SpO2 values,
respectively, for all 10 subjects. As shown in Table 6,
there was no significant difference between the finger
reference HR and the IMAR reconstructed HR in 6
out of 10 subjects. However, there was significant
difference between the finger reference HR and the
TD-ICA reconstructed HR in all 10 subjects. Simi-
larly, the reconstructed SpO2 values from the IMAR
were found to be not significantly different than the
finger reference values in 6 out of 10 subjects, but the
TD-ICA method was found to be significantly dif-
ferent for all 10 subjects.
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FIGURE 3. (Left) HR estimated from reconstructed PPG for
different additive white noise levels; (Right) SpO2 estimated
from reconstructed PPG for different levels of additive white
noise.
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TABLE 2. Comparison and statistical analysis of HR estimations from IMAR-reconstructed PPG for different levels of additive
white noise.

SNR

(dB)

Head HR

(mean ± SD)

Finger HR

(Reference)

(mean ± SD)

IMAR

reconstructed HR

(mean ± SD)

ICA reconstructed

HR (mean ± SD)

10 54.80 ± 2.08 54.81 ± 1.81 55.05 ± 0.15 52.86 ± 0.44*

0 54.80 ± 2.72 54.81 ± 1.81 55.05 ± 0.14 50.58 ± 0.62*

25 56.37 ± 8.18 54.81 ± 1.81 55.05 ± 0.15 48.64 ± 0.51*

210 46.02 ± 22.93 54.81 ± 1.81 55.09 ± 0.15 46.85 ± 0.45*

215 121.62 ± 69.33 54.81 ± 1.81 54.73 ± 0.62 45.17 ± 0.28*

220 80.08 ± 37.69 54.81 ± 1.81 56.49 ± 2.69 43.08 ± 0.32*

225 103.62 ± 52.49 54.81 ± 1.81 76.45 ± 7.52* 41.11 ± 0.30*

* p < 0.05.

TABLE 3. Comparison & statistical analysis of estimations from IMAR-reconstructed PPG for different levels of additive white
noise.

SNR

(dB)

Head SpO2

(mean ± SD)

Finger SpO2 (Reference)

(mean ± SD)

IMAR reconstructed

SpO2 (mean ± SD)

ICA reconstructed

SpO2 (mean ± SD)

10 106.88 ± 0.51 94.23 ± 0.80 94.83 ± 0.38 90.92 ± 0.38*

0 108.98 ± 0.14 94.23 ± 0.80 94.81 ± 0.42 86.88 ± 0.16*

25 109.42 ± 0.06 94.23 ± 0.80 94.77 ± 0.26 82.86 ± 0.27*

210 109.69 ± 0.04 94.23 ± 0.80 94.68 ± 0.30 78.81 ± 0.29*

215 109.82 ± 0.02 94.23 ± 0.80 94.90 ± 0.41 74.88 ± 0.23*

220 109.89 ± 0.01 94.23 ± 0.80 107.38 ± 1.06* 70.87 ± 0.22*

225 109.94 ± 0.00 94.23 ± 0.80 97.38 ± 7.39* 66.91 ± 0.26*

* p < 0.05.

TABLE 4. Comparison and statistical analysis of HR estimations from IMAR-reconstructed PPG for different levels of additive
colored noise.

SNR (dB)

Head HR

(mean ± SD)

Finger HR (Reference)

(mean ± SD)

IMAR reconstructed

HR (mean ± SD)

ICA reconstructed

HR (mean ± SD)

10 54.75 ± 1.73 54.81 ± 1.81 55.05 ± 0.26 53.36 ± 0.79

0 55.64 ± 2.72 54.81 ± 1.81 55.06 ± 0.27 50.83 ± 0.54*

25 55.67 ± 2.88 54.81 ± 1.81 55.06 ± 0.15 48.90 ± 0.32*

210 51.05 ± 8.24 54.81 ± 1.81 55.07 ± 0.13 46.79 ± 0.30*

215 61.65 ± 32.08 54.81 ± 1.81 55.17 ± 0.08 45.15 ± 0.30*

220 73.41 ± 47.73 54.81 ± 1.81 45.96 ± 5.59* 42.96 ± 0.41*

225 66.37 ± 40.80 54.81 ± 1.81 61.86 ± 2.12* 41.04 ± 0.37*

* p < 0.05.

TABLE 5. Comparison and statistical analysis of SpO2 estimations from IMAR-reconstructed PPG for different levels of additive
colored noise.

SNR

(dB)

Head SpO2

(mean ± SD)

Finger SpO2 (Reference)

(mean ± SD)

IMAR reconstructed

SpO2 (mean ± SD)

ICA reconstructed

SpO2 (mean ± SD)

10 94.14 ± 0.99 94.23 ± 0.80 94.85 ± 0.41 90.95 ± 0.18*

0 94.71 ± 1.20 94.23 ± 0.80 94.85 ± 0.53 86.84 ± 0.24*

25 96.19 ± 1.41 94.23 ± 0.80 93.92 ± 0.83 82.86 ± 0.34*

210 99.27 ± 1.46 94.23 ± 0.80 94.88 ± 0.96 78.89 ± 0.18*

215 103.00 ± 0.88 94.23 ± 0.80 94.42 ± 1.71 74.87 ± 0.25*

220 107.63 ± 0.26 94.23 ± 0.80 74.74 ± 7.92* 70.89 ± 0.17*

225 105.91 ± 0.49 94.23 ± 0.80 70.75 ± 15.08* 66.89 ± 0.26*

* p < 0.05.
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PPG Signal Reconstruction Performance in Finger
Experiment

The performance of the signal reconstruction of the
proposed IMAR approach is compared to TD-ICA for
the PPG data with an index finger moving left-to-right
patterns. The pulse oximeter on the middle finger of

the right hand, which was stationary, was used as the
reference signal. Since the subjects were directed to
produce the motions for 30 s within each 1-min seg-
ment, corresponding to 50% corruption by duration,
the window length of both clean and corrupted seg-
ments were both set as half length of the signal.

TABLE 6. Comparison and statistical analysis of HR estimations from IMAR-reconstructed PPG for 10 different subjects (Head
Experiment).

Subject

Head HR

(mean ± SD)

Finger HR (Reference)

(mean ± SD)

IMAR reconstructed

HR (mean ± SD)

ICA reconstructed

HR (mean ± SD)

1 68.31 ± 19.25 59.23 ± 1.49 59.76 ± 0.22* 65.68 ± 20.98*

2 85.39 ± 34.53 71.55 ± 3.037 73.72 ± 0.31* 91.02 ± 35.48*

3 76.19 ± 8.88 77.39 ± 1.360 78.705 ± 0.33 68.06 ± 14.14*

4 94.47 ± 39.05 70.55 ± 3.686 73.66 ± 0.38* 75.32 ± 13.42*

5 72.33 ± 29.82 67.88 ± 4.643 66.83 ± 0.39 69.97 ± 20.20*

6 45.09 ± 10.06 51.44 ± 1.481 49.00 ± 0.09* 59.43 ± 22.97*

7 44.82 ± 24.47 59.82 ± 1.486 57.56 ± 0.21 64.49 ± 35.63*

8 63.46 ± 13.35 62.08 ± 0.865 62.23 ± 0.25 60.68 ± 10.70*

9 59.37 ± 30.85 49.05 ± 1.555 49.19 ± 0.20 60.27 ± 13.24*

10 46.89 ± 32.25 79.35 ± 1.323 78.93 ± 0.45 64.80 ± 25.60*

* p < 0.05.

TABLE 7. Comparison and statistical analysis of SpO2 estimations from IMAR-reconstructed PPG for 10 different subjects (Head
Experiment).

Subject

Head SpO2

(mean ± SD)

Finger SpO2 (Reference)

(mean ± SD)

IMAR reconstructed

SpO2 (mean ± SD) ICA reconstructed SpO2

1 82.86 ± 4.86 97.70 ± 0.46 97.94 ± 0.93 76.721 ± 38.132*

2 80.33 ± 2.82 97.67 ± 0.47 97.972 ± 4.048* 111.097 ± 1.496*

3 87.20 ± 4.54 95.41 ± 0.49 98.53 ± 0.727* 74.081 ± 21.678*

4 87.36 ± 2.64 97 ± 0 97,13 ± 0.23 81.391 ± 11.81*

5 84.25 ± 3.76 98 ± 0 96.82 ± 5.25* 77.593 ± 22.16*

6 92.38 ± 2.64 98 ± 0 97.47 ± 0.97 84.069 ± 14.84*

7 85.18 ± 3.06 98.41 ± 0.49 96.68 ± 0.38 75.632 ± 17.24*

8 90.94 ± 2.38 99.82 ± 0.06 97.99 ± 0.38 89.322 ± 17.77*

9 83.93 ± 4.54 98 ± 0 99.61 ± 3.87* 100.15 ± 16.96*

10 84.94 ± 4.24 95.97 ± 0.67 96.53 ± 4.62 86.731 ± 19.305*

* p < 0.05.

TABLE 8. Comparison and statistical analysis of HR estimations from IMAR-reconstructed PPG for 10 different subjects (Finger
Experiment).

Subject

Head HR

(mean ± SD)

Finger HR (Reference)

(mean ± SD)

IMAR reconstructed

HR (mean± SD)

ICA reconstructed

HR (mean ± SD)

1 77.43 ± 1.91 70.61 ± 0.73 70.42 ± 0.42 77.32 ± 8.34*

2 63.60 ± 2.42 78.80 ± 0.41 78.36 ± 0.35 79.57 ± 9.68

3 70.82 ± 15.01 66.18 ± 0.76 67.21 ± 0.26 62.96 ± 22.53*

4 87.70 ± 20.53 72.59 ± 0.26 70.85 ± 0.34 73.58 ± 11.34*

5 84.34 ± 4.86 74.43 ± 0.29 73.51 ± 0.29* 77.62 ± 18.55*

6 81.75 ± 6.34 67.78 ± 0.36 69.07 ± 0.26* 67.75 ± 18.01

7 63.75 ± 3.05 57.57 ± 0.54 58.32 ± 2.49 52.51 ± 24.06*

8 66.75 ± 5.03 58.27 ± 0.75 60.34 ± 0.44* 61.64 ± 28.83*

9 97.27 ± 22.74 74.39 ± 0.46 74.25 ± 0.68 63.60 ± 14.96*

10 73.76 ± 2.85 61.58 ± 0.50 61.40 ± 0.35 50.80 ± 13.72*

* p < 0.05.
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Table 8 compares the HR reconstruction results
between the IMAR and TD-ICA methods for all 10
subjects. As shown in Table 8, the IMAR recon-
structed HR values are not significantly different from
the reference HR in 7 out of 10 subjects. However, the
TD-ICA’s reconstructed HR is significantly different
from the reference HR in 8 out of 10 subjects indi-
cating poor reconstruction fidelity.

PPG Signal Reconstruction Performance for the
Walking and Stair Climbing Experimental Data

The signal reconstruction of the MNA identified
data segments of the walking and stair climbing
experiments using our proposed IMAR and its com-
parison to TD-ICA are provided in this section.
Detection of the MNA data segments was performed
using the algorithm described in Part I of the com-
panion paper. The reconstructed HR and SpO2 values
using our proposed algorithm and TD-ICA are pro-
vided in Tables 9 and 10, respectively. For both HR
and SpO2 reconstruction, the measurements were car-
ried out using PPG data recorded from the head pulse
oximeter. The right hand index finger’s PPG data was
used as HR and SpO2 references. As shown in Table 9,

7 out of 9 subjects’ reconstructed HR values were
found to be not significantly different from the refer-
ence HR values using our algorithm. While 2 subjects’
reconstructed HR values were found to be significantly
different than the reference, the differences in the ac-
tual HR values are minimal. For TD-ICA’s recon-
structed HR values, all values deviate significantly
from the reference values.

For the reconstructed SpO2 values, our algorithm
again significantly outperforms TD-ICA. All but one
subject are not significantly different than the SpO2

reference values for TD-ICA. For our IMAR algo-
rithm, only 4 out of 9 subjects do not show significant
difference from the reference values. Note the zero
standard deviation reference SpO2 values from Mas-
simo’s pulse oximeter in 7 out of 9 subjects. This is
because Massimo uses a proprietary averaging scheme
based on several past values. Hence, it is possible that
the significant difference seen with our algorithm in
some of the subjects would turn out to be not signifi-
cant if the averaging scheme were not used. While
some of the SpO2 values from our algorithm are sig-
nificantly different from the reference, the actual
deviations are minimal and they are far less than with
TD-ICA.

TABLE 9. Comparison and statistical analysis of HR estimations from IMAR-reconstructed PPG for 9 different subjects (Walking
& Stair Climbing Experiment).

Subject

Head HR

(mean ± SD)

Finger HR (Reference)

(mean ± SD)

IMAR reconstructed

HR (mean ± SD)

ICA reconstructed

HR (mean ± SD)

1 62.16 ± 18.96 70.73 ± 5.80 70.55 ± 0.56 77.39 ± 11.90*

2 94.30 ± 20.37 94.40 ± 1.69 95.54 ± 0.86 92.94 ± 9.99*

3 105.53 ± 17.23 120.64 ± 2.98 122.00 ± 1.05 95.67 ± 13.10*

4 95.48 ± 8.37 101.61 ± 3.06 99.89 ± 0.44* 90.89 ± 8.28*

5 82.20 ± 13.07 86.99 ± 3.71 87.71 ± 1.07 82.84 ± 17.96*

6 77.40 ± 12.69 82.48 ± 1.68 81.93 ± 0.48 86.81 ± 12.54*

7 121.02 ± 19.26 107.58 ± 1.51 109.15 ± 0.07 138.62 ± 6.18*

8 86.57 ± 9.85 91.95 ± 6.07 91.73 ± 0.57 80.44 ± 4.61*

9 87.09 ± 6.56 82.55 ± 5.24 84.22 ± 1.93* 104.30 ± 21.43*

* p < 0.05.

TABLE 10. Comparison and statistical analysis of SpO2 estimations from IMAR-reconstructed PPG for 9 different subjects
(Walking & Stair Climbing Experiment).

Subject

Head SpO2

(mean ± SD)

Finger SpO2 (Reference)

(mean ± SD)

IMAR reconstructed

SpO2 (mean ± SD)

ICA

reconstructed SpO2

1 95.70 ± 7.62 99.00 ± 0 97.64 ± 2.50 84.21 ± 1.34*

2 94.55 ± 5.51 95.37 ± 0 96.37 ± 0.99 95.53 ± 1.59

3 91.00 ± 15.58 96.75 ± 0 94.51 ± 0.42* 84.64 ± 4.63*

4 89.61 ± 3.36 99.62 ± 0 102.25 ± 0.65* 87.33 ± 2.67*

5 94.27 ± 8.12 98.00 ± 0.50 97.34 ± 1.45 76.50 ± 1.53*

6 88.50 ± 13.95 96.00 ± 0.31 94.97 ± 4.07* 82.94 ± 1.05*

7 94.92 ± 16.77 98.00 ± 0 100.37 ± 3.15 90.69 ± 8.11*

8 96.11 ± 6.60 97.00 ± 0 98.70 ± 4.16* 96.11 ± 0.39

9 93.78 ± 6.60 98.62 ± 0 95.99 ± 2.39* 89.11 ± 5.03*
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DISCUSSION

In this study, a novel IMAR method is introduced
to reconstruct MNA contaminated segments of PPG
data. Detection of MNA using a support vector ma-
chine algorithm was introduced in the companion pa-
per. The aim of the current paper is to reconstruct the
MNA corrupted segments as closely as possible to the
non-corrupted data so that accurate HRs and SpO2

values can be derived. The question is how to recon-
struct the MNA data segments when there is no ref-
erence signal. To address this question, we use the most
adjacent prior clean data segment and use its dynamics
to derive the MNA contaminated segment’s HRs and
oxygen saturation values. Hence, the key assumption
with our IMAR technique is that signal’s dynamics do
not change abruptly between the MNA contaminated
segment and its most adjacent prior clean portion of
data. Clearly, if this assumption is violated, the
IMAR’s ability to reconstruct the dynamics of the sig-

nal will be compromised. We are currently working on a
time-varying IMAR algorithm to address this issue.

There are hosts of algorithms available for MNA
elimination and signal reconstruction. Various adap-
tive filter approaches to remove MNA have been
proposed with good results but the test data to fully
evaluate the algorithms are either limited or confined
to laboratory controlled MNA involving simple finger
or arm movements.11,19,24,25 Moreover, these adaptive
filter methods work best when a reference signal is
available.

For those methods that do not require a reference
signal to remove MNA, there have been many algo-
rithms developed based on variants of the
ICA.16,18,21,25 Most of the ICA-based methods pro-
duced reasonably good signal reconstructions of the
MNA contaminated data. However, most of these
methods were validated on data that were collected
using laboratory controlled MNA involving pre-de-
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FIGURE 4. (a) HR estimated from IMAR-reconstructed PPG compared to reference and corrupted PPG; (b) HR estimated from ICA-
reconstructed PPG compared to reference and corrupted PPG; (c) SpO2 estimated from IMAR-reconstructed PPG compared to
reference and corrupted PPG; (d) SpO2 estimated from ICA-reconstructed PPG compared to reference and corrupted PPG.
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fined simple side-to-side or up-and-down finger and
arm movements.16,18,21,25

Given that ICA-based methods produced good
signal reconstructions of the MNA contaminated data,
we have compared our proposed approach to the TD-
ICA method as described by Krishnan et al.18 using
simulated data, laboratory controlled data as well as
daily activity data involving both walking and stair
climbing movements. Krishnan et al. proposed fre-
quency-domain ICA and compared its performance to
the TD-ICA but the improvement is marginal at the
expense of higher computational complexity, hence, we
used the latter method. Comparison of the perfor-
mance of our method to TD-ICA was based on
reconstruction of HR and SpO2 values since these
measures are currently used by clinicians.

Comparing HR and SpO2 estimations of the recon-
structed signal to the referencemeasurements using both
simulation and experimental data have shown that the
proposed IMAR method is a promising tool as the
reconstructed values were found to be accurate. The
simulation results fromnoise sensitivity analysis showed
that SNR level down to 220 and 215 dB from additive
white and colored noise, respectively, can be tolerated
well by the application of the proposed IMAR proce-
dure, compared to the SNR values of 210 and 215 dB
for the TD-ICA method. Application of the proposed
IMAR approach and the TD-ICA to three different sets
of experimental data have also shown significantly bet-
ter signal reconstruction performance with our IMAR
algorithm. It is our opinion that ICA is not a good
approach for signal reconstruction because its perfor-
mance suffers from arbitrary scaling and random gain
changes in the output signal; these would detrimentally
affect the accuracy of SpO2 estimates.

The use of singular spectrum analysis (SSA) to a
single channel EEG recordings to extract high ampli-
tude and low frequency MNA has been previously
performed.26 The main aim of the work by Teixeira
et al. was to remove the artifacts in EEG signals,
hence, an iterative approach to reconstruct the main
dynamics of the signal was not implemented. The
novelty of our approach is based on the use of SSA
combined with an iterative approach to reconstruct the
portion of the MNA contaminated data with the most
likely true dynamics (i.e., non-MNA contaminated
data) of the pulse oximeter signal. In summary, the
advantages of the IMAR algorithm is that it can ob-
tain accurate frequency dynamics and amplitude esti-
mates of the signal, hence, the reconstructed HR and
SpO2 estimates should not deviate much from the true
uncorrupted values. The disadvantage of the IMAR
algorithm is that because it is an iterative approach,
the computational complexity is high, hence, in the
current form, it is most suitable for offline data ana-

lysis. We are not aware of any previous applications of
SSA-based algorithms for MNA reconstruction of
pulse oximeter data. In conclusion, a scenario where a
reference signal is not available to remove the MNA,
the proposed IMAR algorithm is a promising new
approach to accurately reconstruct HR and SpO2

values from MNA contaminated data segments.
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