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Abstract—We compare the influence of time–frequency
methods on analysis of time-varying renal autoregulation
properties. Particularly, we examine if detection probabilities
are similar for amplitude and frequency modulation for a
modulated simulation signal among five time–frequency
approaches, and if time-varying changes in system gain are
detected using four approaches for estimating time-varying
transfer functions. Detection of amplitude and frequency
modulation varied among methods and was dependent upon
background noise added to the simulated data. Three non-
parametric time–frequency methods accurately detected
modulation at low frequencies across noise levels but not
high frequencies; while the converse was true for a fourth,
and a fifth non-parametric approach was not capable of
modulation detection. When applied to estimation of time-
varying transfer functions, the parametric approach provided
the most accurate estimations of system gain changes,
detecting a 1 dB step increase. Application of the appropriate
methods to laser Doppler recordings of cortical blood flow
and arterial pressure data in anesthetized rats reaffirm the
presence of time-varying dynamics in renal autoregulation.
An increase in the peak system gain and detection of
amplitude modulation of the Myogenic mechanism both
occurred after inhibition of nitric oxide synthase, suggesting
a connection between the operation of underlying regulators
and system performance.

Keywords—Tubuloglomerular feedback, Myogenic response,

Time–frequency analysis, Time-varying, Transfer functions,

Frequency modulation, Amplitude modulation.

INTRODUCTION

Physiological systems contain time-varying dynam-
ics which are generated by various sources including
coupling between multiple interacting mechanisms and
the impact of external stimuli. Such dynamics generate
physiologically relevant information, and analysis of
these properties can lead to new physiological and
pathological insight. Renal autoregulation, the stabil-
ization of renal blood flow (RBF) during fluctuations
in blood pressure (BP), is one such phenomenon with
time-varying dynamics which are largely due to two
interacting systems, tubuloglomerular feedback (TGF)
and the myogenic response (MR), that regulate glo-
merular filtration rate and prevent systemic BP fluc-
tuations from damaging glomeruli.5 The MR is
intrinsic to most arteriole beds and responds to local
wall tension by either constricting or dilating vessels to
adjust resistance which tends to stabilize RBF. In renal
autoregulation, the MR occurs in the afferent arteriole
and operates within a frequency range of 0.1–0.3 Hz.30

TGF senses salt concentrations in the distal tubule and
transfers this information through release of a media-
tor to the afferent arteriole, altering resistance to adjust
glomerular filtration rate.11 This mechanism generates
limit cycle oscillations within a frequency range of
0.02–0.06 Hz. Both mechanisms act on the afferent
arteriole, creating an inherent interaction between
them.2,4,21

The properties and effectiveness of TGF and the
MR have been analyzed by monitoring the response in
RBF to step changes in BP or by time-invariant fre-
quency domain analysis, including estimation of the
input/output transfer function where BP is considered
the input and RBF the output.1,5 Use of time-invariant
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methods assumes a stationary system, but because of
the need for renal autoregulation to adapt to large BP
fluctuations and the interactions between the two
autoregulatory mechanisms, as well as other related
systems such as the renin-angiotensin system, renal
autoregulation exhibits non-stationary behavior.6 Zou
et al.33 used short-time Fourier transforms (STFT) and
multi-resolution Wavelet analysis to reveal non-
stationary dynamics in RBF. They showed that TGF
and the MR dynamics are highly time-varying, and
that time-varying properties vary between normoten-
sive and hypertensive rat models, illustrating the need
for time-varying analysis to be applied in renal auto-
regulation studies.33

Subsequent studies have applied a number of time-
varying methods including parametric and non-
parametric time–frequency representation (TFR)
techniques and time-varying transfer function (TVTF)
and coherence functions to renal autoregulation
data.3,6,22,31,32 This has revealed properties such as
synchronization between the TGF and MR mecha-
nisms,2,24 time-varying changes in the interactions
between TGF and MR,17 amplitude and frequency
modulation (AM and FM, respectively) of both
mechanisms,10,12,20,22,23 temporal variability in the
system gain,3 and temporal variability in the coher-
ence.31,32 In almost every study a different time-vary-
ing method was applied, adding complexity to the
interpretation of results. Further, to our knowledge no
direct quantitative comparison has been performed,
thus, it is unknown if any one single method is the best
for understanding overall dynamics of renal autoreg-
ulation or if a set of different methods is required.

The purpose of this study is to directly compare
time-varying methods that have previously been
applied to the study of renal autoregulation to deter-
mine if different results may be obtained that could
lead to different physiological conclusions depending
on the choice of method. We compare the accuracy of
AM and FM detection within the TGF and MR fre-
quency ranges using five time–frequency techniques,
and we hypothesize that the variable frequency com-
plex demodulation (VFCDM) approach provides the
most accurate detection of modulation because it has
previously been shown to have one of the highest
resolutions when applied to renal autoregulation.28 In
addition, we compare 4 TVTF estimation methods to
detect temporal changes in system gains, and we
hypothesized that the use of a parametric modeling
method would produce the most accurate gain esti-
mates because it estimates only the most significant
terms related to the renal autoregulation dynamics.
We then apply the methods to analyze time-varying
characteristics of renal autoregulation in anesthetized
rats.

MATERIALS AND METHODS

Time–Frequency Spectral Methods

Five methods were used to estimate time-varying
spectra: STFT, continuous Wavelet transform (CWT),
smoothed pseudo Wigner-Ville distribution (SPWV),
VFCDM,and the time-varyingoptimalparameter search
(TVOPS) for autoregressive parameter estimation. In the
following, we briefly describe each of the methods.

Short-Time Fourier Transform

The STFT is computed by using a sliding time-
window and computing the Fourier transform over
each section expressed as

STFT t; fð Þ ¼
Z1

�1

x uð Þh� u� tð Þe�i2pfudu ð1Þ

where x(u) represents the signal, h(u 2 t) a windowing
function, and (*) the complex conjugate. We used a
Hamming window of length 64 samples; adjusting the
length of the window alters the time and frequency
resolution of the STFT. This window size provided a
frequency resolution small enough to detect changes in
the test signal for frequency modulation.

Continuous Wavelet Transform

The CWT is computed by convolving a wavelet
function with a time series as the wavelet function is
dilated across scales and translated in time:

W t; sð Þ ¼ 1ffiffi
s
p

Z1

�1

x sð Þw� s� t

s

� �
ds: ð2Þ

A wavelet function, w, is a zero-mean function that can
be localized in time and space.26 We used the Morlet
wavelet, shown in Eq. (3). A center frequency, xo, is
chosen for the Morlet wavelet to set the relationship
between the frequency and each scale, s. xo was set to
6, similar to other groups that have used the Morlet
wavelet for analyzing renal autoregulation10,22–24

w tð Þ ¼ p�1=4eixote�t
2=2: ð3Þ

Smoothed Pseudo Wigner-Ville

The SPWV distribution is a member of the Cohen’s
class of TFRs and can be obtained from a signal x(t) as

SPWV t; fð Þ ¼
Z1

�1

hðsÞ
Z1

�1

g s� tð Þx sþ s
2

� �
x� s� s

2

� �

� e�i2pfsdsds ð4Þ
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using a frequency smoothing window, h, and temporal
smoothing window, g.7 In this study, we used a Ham-
ming window for both h and g sized at 64 and 16 data
points, respectively. The frequency smoothing window
was set to match that used for the STFT. The temporal
smoothing window, g, was set to minimize the influence
of cross-terms introduced into the Wigner-Ville distri-
bution when multiple frequencies are present in a single
signal.7 The size of the temporal smoothing window was
set as a compromise to minimize the effect of cross-
terms without introducing smoothing to the point where
modulation could not be recognized.

Variable Frequency Complex Demodulation

The VFCDM approach is described in detail in
Wang et al.28 It is performed in a two-step procedure
as described below. The fixed-frequency approach is
used to generate an initial time–frequency estimate,
and the dominant frequency components in that esti-
mate are used as backbone frequencies to generate a
refined estimate using the variable frequency approach.

Fixed-Frequency Approach
Fixed-frequency complex demodulation (FFCDM) is
performed by

1. The signal, x(t), is multiplied by e�i2pfot at a set
of fixed center frequencies fo [0.01, 0.02…
0.49 Hz].

2. The resulting complex demodulate at each
center frequency is low-pass filtered (normal-
ized cut-off frequency of 0.01 Hz) breaking the
signal into a series of band-pass filtered com-
ponents.

3. The amplitude and phase of each component
are determined and then used to reconstruct
each component, y(t), at its center frequency

y tð Þ ¼ A tð Þ cos 2pfotþ u tð Þð Þ: ð5Þ

4. The Hilbert transform is taken of each y(t) to
determine the instantaneous amplitude and
frequency, and a TFR is constructed by com-
bining the instantaneous amplitudes and fre-
quencies of all components.16

Variable Frequency Approach
After FFCDM is performed to obtain an initial time–
frequency estimate, the dominant frequencies are
extracted as the new, now time-varying, center fre-
quencies. VFCDM is performed by

1. The original signal, x(t), is multiplied by

e
�i
R t

o
2pfo sð Þds

, where fo(s) represents the new set
of time-varying center frequencies.

2. A low-pass filter (normalized cut-off frequency
of 0.005 Hz) is applied to each variable fre-
quency complex demodulate to generate a
series of band-pass filtered components.

3. Amplitude and phases are determined of each
component for reconstruction at the time-
varying center frequency as

y tð Þ ¼ A tð Þ cos
Z t

0

2pfo sð Þdsþ uðtÞ

0
@

1
A: ð6Þ

4. TheHilbert transform of each band-pass filtered
y(t) determines the instantaneous amplitude and
frequency, and a refined time–frequency esti-
mate is generated.

Time-varying Optimal Parameter Search

The TVOPS method for autoregressive parameter
estimation fits the time-varying model shown in
Eq. (7), where a are the AR parameters at each time
index n, y is the signal, and e is the prediction error
between the model and the signal. The AR parameters
are estimated using TVOPS as described by Zou et al.34

by expanding the system onto a set of basis functions.
5 Legendre basis functions and an initial AR model
order of 14 were used. TVOPS is designed to select
only the significant model terms from an initial over-
determined model order, and has been shown to be
more accurate than other model order criteria such as
the Akaike Information criterion and minimum
description length.18

y nð Þ ¼ �
XP
i¼1

a i; nð Þy n� ið Þ þ eðnÞ ð7Þ

From the AR parameters, the time-varying spectral
representation is generated as

S n; fð Þ ¼ T

1þ
Pm

k¼1 aðk; nÞe�i2pfTk
�� ��2 ð8Þ

where T represents the sampling interval and m the
model order.

TVTF Methods

Non-Parametric Approaches for TVTF Estimation

Four methods were used for estimating TVTF. For
the non-parametric methods (FFCDM, CWT, and
STFT), TVTF estimation is as follows. The time-
varying spectra were computed for the input and
output signals (SX for input spectra, SY for output
spectra) and the cross-spectrum (SXY) was computed
using the codrature and quadrature spectra as in
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Eqs. (9) and (10). The co- and quadrature spectra were
then smoothed in the temporal and frequency dimen-
sions.29 CWT spectra were smoothed with an adaptive
window relative to the size of the Wavelet at each scale,
as described by Torrence et al.26 STFT and FFCDM
spectra were smoothed with a boxcar window. Cross-
spectra were then computed using Eq. (11), and
TVTFs (HXY) were computed using Eq. (12)

COXY t; fð Þ ¼ real SX t; fð ÞS�Y t; fð Þ
� �

; ð9Þ

QUXY t; fð Þ ¼ �imag SX t; fð ÞS�Yðt; fÞ
� �

; ð10Þ

SXY t; fð Þ ¼ COXY � iQUXY; ð11Þ

HXY t; fð Þ ¼ SXYðt; fÞ
SXðt; fÞ

: ð12Þ

VFCDM finds the dominant components of a signal,
and creates a line graph where only the most dominant
frequencies are present. For transfer function analysis
the goal is to understand how the input is modified at
all frequencies, therefore only FFCDM was used for
TVTF analysis.

Time-varying Optimal Parameter Search

The TVOPS technique for TVTF estimation is an
extension of that for time–frequency spectral analy-
sis.32 Autoregressive, a, and moving average, b, coef-
ficients as presented in Eq. (13) are estimated using the
TVOPS procedure. The TVTF gain is then determined
using both sets of coefficients in Eq. (14)

y nð Þ ¼ �
XP
i¼1

a i; nð Þy n� ið Þ þ
XQ
j¼0

b n; jð Þx n� jð Þ þ eðnÞ;

ð13Þ

H n; fð Þ ¼
PQ

j¼0 b n; jð Þe�i2pfj

1þ
Pm

k¼1 aðk; nÞe�i2pfk
�� ��2 : ð14Þ

Test Signals

Comparative Test for Frequency and Amplitude
Modulation

Two test signals were designed to test the detection
of AM and FM sequences present in renal autoregu-
lation using the time–frequency methods. The first test
signal, shown in Eq. (15), contains a low frequency
(LF) component at 0.025 Hz, representative of TGF,
and a high frequency (HF) component at 0.16 Hz,
representative of the MR, which are both constant in
amplitude and frequency over 1000 s

y tð Þ ¼ sin 2p � 0:025 � tð Þ þ sin 2p � 0:16 � tð Þ: ð15Þ

This signal was designed to determine a significance
threshold for when AM or FM do not exist but may be
mistakenly identified by either an influence of the time–
frequency method or the background noise. 1000
realizations of Gaussian white noise (GWN) were
added to the signal at signal-noise ratios (SNR) of 0 to
10 dB, in 1 dB increments. For each of the 1000 real-
izations at each noise level, the TFR was generated for
the five time–frequency methods and a threshold was
determined for significant modulation for each time–
frequency method. From each TFR, the maximum
amplitude and corresponding frequency at each time
instant were extracted within the TGF (0.02–0.06 Hz)
and MR (0.1–0.3 Hz) frequency ranges. These consti-
tuted the LF and HF AM and FM sequences. Next,
the fast Fourier transform (FFT) was computed for
each sequence. Statistical thresholds were computed
for each of the four sequences (LF-AM, LF-FM,
HF-AM, HF-FM), as well as for each noise level, as the
mean plus two standard deviations of the FFT mag-
nitudes at each frequency over the 1000 realizations.

The second test signal was designed to test if the
methods detect AM and FM when it exists. This signal
contains an LF component at 0.025 Hz and an HF
component at 0.16 Hz. The LF component contains
AM and FM at a frequency of 0.01 Hz, a frequency
previously identified in renal autoregulation.9,20 The
HF component contains AM and FM at 0.025 Hz,
representing the interaction previously shown between
TGF and the MR.22 The expression for the second test
signal and corresponding AM and FM components are
shown in Eqs. (16a)–(16e)

y tð Þ ¼ 1þAMLF tð Þð Þ � sin 2p � 0:025 � tþ FMLF tð Þð Þ
þ . . . 1þAMHF tð Þð Þ
� sin 2p � 0:16 � tþ FMHF tð Þð Þ ð16aÞ

AMLF tð Þ ¼ 0:25 � sin 2p � 0:01 � tð Þ; ð16bÞ

AMHF tð Þ ¼ 0:5 � sin 2p � 0:025 � tð Þ; ð16cÞ

FMLF tð Þ ¼ 2p � 0:005 �
Z t

0

sin 2p � 0:01 � sð Þds; ð16dÞ

FMHF tð Þ ¼ 2p � 0:025 �
Z t

0

sin 2p � 0:025 � sð Þds: ð16eÞ

GWN was added to the test signal at SNRs from 0
to 10 dB, in 1 dB increments. The TFRs were gener-
ated using each of the 5 methods, and AM and FM
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sequences were extracted as described above for the
non-modulated signal. The modulation frequency was
found as the peak FFT magnitude within the fre-
quency ranges of 0.005–0.02 Hz for the LF sequences
and 0.005–0.06 Hz for the HF sequences. Modulation
peaks were considered significant if greater than the
threshold derived from the non-modulated test signal.
This statistical test fixes the probability of detecting a
false positive (detecting modulation for a non-modulated
signal) at 5%.

If significant modulation was found within the mod-
ulated test signal at a frequency within ±0.0025 Hz of
the set modulation frequency in (16) a true positive was
declared, otherwise a missed detection was declared.
The probabilities of detecting a true-positive (PD) were
computed for each time–frequency method for AMLF,
FMLF, AMHF, and FMHF over 1000 realizations at
each noise level. An example of the test for the detec-
tion of modulation is shown in Fig. 1.

Comparative Test for Identifying Time-Varying
Changes in System Gain

A transfer function, represented by the z-transform
H(z) in Eq. (17), was designed with an LF (0.04 Hz) and
HF (0.18 Hz) peak to represent TGF and the MR,

respectively. The parameter A is used to adjust the sys-
tem gain, shown by the frequency response in Fig. 2a

H zð Þ¼A0:0496z�1�0:1206z�2þ0:0923z�3�0:0213z�4
1�2:774z�1þ3:6z�2�2:727z�3þ0:9727z�4 :

ð17Þ

FIGURE 1. Procedure for detection of amplitude and frequency modulation. (a) The short-time Fourier transform (STFT) of the
non-modulated test signal with GWN added at a signal to noise ratio of 10 dB, the signal contains stationary amplitude and
frequency components over time and (d) the STFT of the modulated test signal with GWN containing high and low frequency
components both with amplitude and frequency modulation. (b) Extracted amplitude sequences from the high frequency region for
the non-modulated (black) and modulated (blue) signals. (e) Extracted amplitude sequences from the low frequency region for the
non-modulated (black) and modulated (blue) signals. (c) FFT of high frequency amplitude sequence for modulated test signal
(blue). Spectral peak at 0.025 Hz on blue represents the frequency of amplitude modulation. For comparison, the high frequency
amplitude modulation threshold derived from the non-modulated signal using the STFT with GWN added to the non-modulated
signal for 1000 realizations is shown (red). (f) FFT of low frequency amplitude sequence for modulated test signal (blue). Spectral
peak at 0.01 Hz on blue represents the frequency of amplitude modulation for the low frequency component. The threshold derived
for the low frequency amplitude modulation is shown (red). The frequency corresponding to the maximum amplitude for the low
and high frequency components at each time point is also extracted and the FFT of that sequence is used to determine if frequency
modulation exists. This procedure is repeated for each time–frequency representation at SNRs from 0 to 10 dB.

FIGURE 2. (a) Frequency response of the transfer function,
H(z), in Eq. (17) for two different values of the gain parameter
A. (b) Time-varying transfer function generated by increasing
A at 250 s.
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A 500 s TVTF was generated by setting a step increase
in A at 250 s, as shown in Fig. 2b. TVTFs were
designed so that the step increase in gain ranged from 0
to 8 dB in 1 dB increments. TVTFs were estimated
from 1000 output sequences generated from Eq. (17)
with 1000 realizations of GWN as the input. The
maximum gain within the LF (0.02–0.06 Hz) and HF
(0.1–0.3 Hz) regions were extracted at each time point
for each TVTF estimate. A t test was performed to
determine if the gain increase was significant (p< 0.05)
between the first and last 250 s. The probability of
detecting the change in gain at each step increase was
then determined over the 1000 estimates for each of the
four methods.

Renal Autoregulation Data

All experiments were performed at the State Uni-
versity of New York at Stony Brook and approved by
the Institutional Research Board (IACUC). Sprague-
Dawley rats (SDR, n = 7) and spontaneously hyper-
tensive rats (SHR, n = 7) were anesthetized with
isoflurane (3% initial, 1% maintenance), and then
placed on a temperature controlled surgical table to
maintain body temperature at 37 �C. The left femoral
artery was catheterized for measurement of arterial
pressure and the left femoral vein was catheterized for
saline infusion (PE-50 and PE-10 tubing). The left
kidney was isolated and placed in a Lucite cup with a
thin plastic film covering the cortical surface to prevent
evaporation. A supra-renal aortic clamp was used to
control renal perfusion pressure. A laser-Doppler
instrument (Transonic, Ithaca, NY) was used to
monitor cortical blood flow (CBF) with a blunt
11-gauge needle probe placed on the cortical surface.
CBF and BP were recorded continuously during the
following protocol: (1) 3–5 min spontaneous BP, (2)
renal arterial pressure was reduced by 20–30 mmHg
below spontaneous BP by adjusting the aortic clamp,
(3) CBF was allowed to stabilize at the reduced BP
(approximately 1 min) and then the clamp was quickly
released, (4) CBF and BP were monitored for an
additional 3–5 min. Nx-nitro-L-arginine methyl ester
(L-NAME, Sigma-Aldrich) at 5 mg/kg body weight in
5 mL normal saline was continuously infused for 1 h,
after which the protocol measurements were repeated
with L-NAME present.

CBF and BP data were recorded at 100 Hz
(Powerlab, ADInstruments, Mountain View, CA).
Data were low-pass filtered with a cutoff frequency of
0.5 Hz to avoid aliasing, and then down-sampled to
1 Hz. Time–frequency spectral (CBF signal) and
TVTF (BP as the input signal and CBF as the output
signal) methods were applied to the recordings from

the entire monitoring protocol after removal of the
linear trend. The maximum spectral amplitude and
corresponding frequency were extracted for AM and
FM detection after release of the aortic clamp from the
TFRs for the MR frequencies. Modulation of TGF
was not examined due to the 3–5 min data length. The
maximum gain from the TVTFs was extracted from
the 50 s time point after release of the aortic clamp for
the TGF and MR frequencies.

A statistical threshold for modulation was derived
for each CBF signal. The SNR for the TGF and
Myogenic peaks were determined for each signal from
the power spectral density. The TGF power within the
range of 0.02–0.05 Hz was compared with the power in
the assumed TGF noise region of 0.05–0.08 Hz, and the
Myogenic power within the range of 0.1–0.3 Hz was
compared with the power in the assumed Myogenic
noise region of 0.3–0.5 Hz. A test signal was generated
as the sum of two non-modulated sinusoids at the peak
TGF and Myogenic frequencies with added GWN and
a length equal to that of the data. The power of the
TGF and Myogenic peaks relative to the GWN was set
to equal the SNR of the data. 1000 realizations of this
signal were generated, and a significance threshold was
determined for the mean plus two standard deviations
of the FFT of the AM and FM sequences extracted
from the TFR’s for both frequency ranges. This
method tests for modulation in the data compared to a
signal without modulation but with the same frequen-
cies, SNR, and data length of the data.

Statistics

Statistical analysis was performed with SigmaStat
3.5 (Systat Software Inc.) with p< 0.05 considered sig-
nificant. Renal autoregulation parameters were deter-
mined to be non-Gaussian using the Kolmogorov-Smirnov
test. Extracted renal autoregulation parameters from
after release of the clamp were compared using either
the non-parametric Rank Sum test (SDR baseline vs.
SHR baseline) or Signed Rank test (SDR baseline vs.
SDR during L-NAME). Spearman Rank Order corre-
lation coefficients were used to compare estimated
gains between methods.

RESULTS

Comparison of Methods with Test Signals

Test for Amplitude and Frequency Modulation

Example time–frequency spectra for the modulated
signal with added GWN (SNR of 8 dB) for the five
methods are shown in Fig. 3. Only the first 500 s of the
spectra are shown for visualization. Not all methods
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are able to identify modulation at both LF and HF.
Figure 4 shows the detection probabilities for the
modulated test signal at SNRs from 0 to 10 dB.
VFCDM, STFT, and SPWV methods had high levels
of detection for AM and FM within the LF region
across all noise levels. The CWT approach had high
detection of modulation within the HF region for low
SNR, but the VFCDM method also approached high
detection at higher SNR. The TVOPS parametric

approach did not accurately identify modulation at
any noise level.

Test for Time-Varying System Gain

Examples of the extracted LF and HF gains aver-
aged over 1000 realizations are shown in Figs. 5a and
5c, respectively, for the estimated TVTFs for an 8 dB
step increase in gain at 250 s. TVOPS accurately

FIGURE 3. Example time–frequency representations of the modulated test signal with added noise (signal-noise ratio of 8 dB).
(a) Short-time Fourier transform, (b) Wavelet transform, (c) smoothed pseudo-Wigner-Ville distribution, (d) variable frequency
complex demodulation, (e) time-varying optimal parameter search autoregressive method.

FIGURE 4. Probability of detection (PD) for amplitude or frequency modulation in the simulation signal compared to the threshold
levels at signal to noise ratios (SNR) from 0 to 10 dB for five time–frequency methods. (a) Amplitude modulation in the low
frequency range, (b) frequency modulation in the low frequency range, (c) amplitude modulation in the high frequency range,
(d) frequency modulation in the high frequency range. The dashed black line represents the 95% detection level.
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estimates the correct gain, while the non-parametric
methods underestimate the maximum gain. PDs for
each step increase in gain determined from the 1000
realizations are presented for the LF and HF gains in
Figs. 5b and 5d, respectively. In the LF range, the four
methods have approximately the same PD at each gain
increase. For the HF range, TVOPS had higher PD

than the non-parametric approaches at each step
increase in gain.

Application to Renal Autoregulation

Detection of Amplitude and Frequency Modulation
in Renal Cortical Blood Flow

Figure 6a shows a typical low-pass filtered and
down-sampled laser Doppler CBF and arterial BP
signal recorded for an SDR after infusion of L-NAME,
and the corresponding TFR generated with the
VFCDM is shown in Fig. 6b. CBF signals were tested
for AM and FM after release of the aortic clamp for
the SDR and SHR animals before (baseline) and
during L-NAME. Because our simulations showed that
only the Wavelet and VFCDM methods reliably detect
AM and FM in the MR range, we only present the
results for those two methods. The number of signals
detected to contain modulation out of the total num-
ber tested (7) is shown in Fig. 7a for AM and Fig. 7c
for FM. The frequency at which modulation was
detected is presented in Figs. 7b and 7d for AM and
FM, respectively. AM of the MR was detected during
baseline for 4 animals using CWT but was not detected
using VFCDM. During L-NAME, modulation was
detected for all 7 SDR and 5 out of 7 SHR animals, for
both methods. This is in accordance with our simula-
tion results were it was shown that wavelets had better
detection within the HF region at low SNR. The

frequency of significant AM ranged from 0.0078 to
0.0244 Hz using CWT and 0.0078–0.0498 Hz using
VFCDM for SDR, but was limited to 0.0098–
0.0137 Hz for SHR using both CWT and VFCDM.
FM of the MR was detected using either approach,
and the frequency detected depended partly upon the
approach used. CWT showed FM at higher frequen-
cies (0.0088–0.0352 Hz) than VFCDM (0.0078–
0.0205 Hz) during L-NAME.

Transfer Function Analysis of Renal Blood Flow
and Blood Pressure

Examples of the estimated TVTFs from the BP and
CBF data in Fig. 6a are shown in Fig. 8. A peak gain

FIGURE 5. Estimated maximum gains within the low frequency (a) and high frequency (c) regions using the 4 time-varying transfer
function methods (mean of 1000 realizations). (b) Probability of detecting the step increases in gain for the low frequency com-
ponent over 1000 realizations of GWN. (d) Probability of detecting the step increases in gain for the high frequency components.

FIGURE 6. (a) Example renal data from laser Doppler flow
probe (blue) and arterial blood pressure (green) obtained
during renal clamping experiment from a Sprague-Dawley rat
during infusion of L-NAME. Blood pressure is clamped at
approximately 90 s and held for approximately 90 s after
which the clamp is released. (b) Time–frequency plot gener-
ated using variable frequency complex demodulation for flow
data in (a) showing the two renal autoregulation dynamics.
The myogenic response occurs at approximately 0.2 Hz and
TGF occurs at approximately 0.05 Hz.
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at ~0.2 Hz can be visualized for all four methods cor-
responding to an MR peak. The TGF peak (~0.05 Hz)
strengthens after release of the aortic clamp. The
median and ranges of the gains after release of the
aortic clamp using each of the four methods are shown
in Table 1. Gain of the MR significantly increased
during L-NAME in the SDR group, determined by each
of the four methods. The MR gain for SHRs was not
significantly different than the SDR gain during base-
line for any of the four methods, consistent with pre-
vious results.27 For TGF, SDR gain significantly
decreased using the FFCDMmethod during L-NAME,
but was not significantly different using any of the other
TVTFmethods. SHR animals had significantly reduced
TGF peak gain determined by the FFCDM, CWT, and
STFT methods, but not TVOPS. Spearman Rank Or-
der correlation coefficients estimated for the MR and
TGF gains between each pair of methods, Table 2,
demonstrate that changes in gain are in accordance
between the various methods.

DISCUSSION

In this study, we investigated analytical methods
used for monitoring time-varying renal autoregulation
dynamics. Our modulation and time-varying gain tests
complement each other in that one is looking for the
interaction between autoregulation components2 and
the other is looking at how the system responds to
changes in BP.3 By detecting multiple properties from
the signals we can develop a better understanding of
the physical regulation, and in turn how this changes
the overall effectiveness of the system. Our test for AM
and FM detection showed the VFCDM, STFT, and
SPWV to have high PD across noise levels in the LF
range, and Wavelet analysis showed the best detection
in the HF range across noise levels. The VFCDM
produced the best combination of AM and FM
detection in the low and HF regions. Our test for
detecting time-varying changes in system gain showed
that the TVOPS estimation technique detected a step

FIGURE 7. (a) Number of experiments with significant myogenic amplitude modulation (out of 7) for SDR and SHR rats after
release of the pressure clamp during the baseline condition and during L-NAME. Results are shown for detection with Wavelet
(black) and variable frequency complex demodulation (white) time–frequency methods. (b) Frequency at which myogenic ampli-
tude modulation is detected for significant experiments in (a). Each circle represents an animal with significant modulation at that
frequency, and an ‘x’ through the circle represents two animals with significant modulation at that frequency. (c) Number of
experiments with significant myogenic frequency modulation. (d) Frequency at which the frequency is being modulated at for
significant experiments in (c).
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increase in gain within the HF region better than the
non-parametric methods. These results demonstrate
that to fully characterize renal autoregulation a variety
of analysis techniques with parameters tuned to the
specific component of interest should be used.

We used the same time–frequency analysis param-
eters for analyzing the MR and TGF frequency ranges.
All four non-parametric methods (STFT, CWT,
SPWV, and VFCDM) identified AM and FM in at
least the TGF or MR region for the simulated signals.
The difference in the results between the two frequency
regions is a function of the selection of the time- and

FIGURE 8. Time-varying transfer functions of laser Doppler flow and arterial pressure data shown in Fig. 6a. (a) Fixed-frequency
complex demodulation, (b) time-varying optimal parameter search, (c) Wavelet transform, (d) short-time Fourier transform.

TABLE 1. Estimated transfer function gains (dB) (median, min–max) after release of the clamp for the myogenic and TGF
components during baseline and with L-NAME infused.

FFCDM TVOPS Wavelet STFT

Myogenic

SDR—baseline (n = 7) 1.2

21.6 to 3.5

2.7

21.7 to 5.7

3.4

21.9 to 4.7

4.3

0.3–6.1

SDR—during L-NAME (n = 7) 8.8a

1.9–11.6

16.5a

12.0–33.7

19.0a

8.6–26.1

13.5a

6.2–15.8

SHR—baseline (n = 7) 20.05

22.0 to 2.2

2.89

22.0 to 17.0

0.78

21.1 to 17.0

2.9

0.1–7.3

Tubuloglomerular feedback

SDR—baseline (n = 7) 22.7

24.8 to 0.1

26.6

210.0 to 1.7

22.3

28.6 to 4.2

20.6

24.8 to 2.4

SDR—during L-NAME (n = 7) 24.6a

28.3 to 21.4

26.74

214.0 to 25.8

1.1

212.9 to 8.8

20.9

28.9 to 4.6

SHR—baseline (n = 7) 25.5a

28.4 to 0.2

28.5

212.1 to 0.6

25.2a

29.7 to 22.7

25.4a

28.5 to 0.2

a denotes significance from SDR during baseline conditions, p < 0.05.

TABLE 2. Spearman Rank Order correlation coefficients
between the methods for the estimated transfer function peak

gains after release of the clamp.

CDM TVOPS Wavelet STFT

CDM 0.61a 0.76a 0.95a

TVOPS 0.41 0.83a 0.75a

Wavelet 0.46a 0.54a 0.85a

STFT 0.81a 0.50a 0.82a

The upper triangle (bold entries) contains the coefficients for the

myogenic range, and the lower triangle (italic entries) contains the

coefficients for the TGF range. a signifies that the correlation

coefficient is significant, p < 0.05.
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frequency-window settings for each method. For
example, by varying the initial parameters that deter-
mine the frequency resolution it is possible to alter
each method to better identify modulation in the MR
and TGF frequency regions. This also implies that
using the same parameters for both frequency regions
may not be always appropriate. A window containing
more samples is required to analyze the TGF than the
MR dynamic because TGF operates at a slower fre-
quency. For a window of any given size, more oscil-
lations from the MR will be captured than TGF (since
the former has faster frequency dynamics than the
latter) and therefore temporal changes will be
smoothed at a different rate relative to the oscillation
for the two components. Wavelet methods adjust the
frequency resolution based on the frequency being
analyzed but concomitantly adjust the temporal reso-
lution. Hence, the Wavelet temporal resolution within
the TGF region was not sufficient to identify the
temporal changes in the simulated TGF dynamics
caused by modulation at 0.01 Hz.

For the SPWV, an AM sequence occurred at an
incorrect frequency for the HF region during the mod-
ulation test. This resulted in poor detection of the true
AM sequence and may be a function of cross terms that
exist from the estimation of the SPWV distribution.
Increasing the length of the temporal smoothing win-
dow will decrease these cross terms but also decrease
detection of temporal changes such as modulation. This
results in a trade-off between artifacts generated by
cross terms and loss of information due to smoothing.7

TVOPS was not able to resolve the modulation in the
spectral analysis because of an insufficient model order.
The model order was selected based on optimization for
the TVTF analysis, where the TVOPS showed the most
accurate results, and was kept constant for the modu-
lation test to show the necessity of selecting the model
order based on a particular analysis.

Siu et al.20 used a VFCDM based AM/FM detec-
tion procedure to find significant MR modulation by a
0.01 Hz frequency in whole kidney blood flow during
telemetric recordings. Sosnovtseva et al. used a double
Wavelet approach to monitor modulation in tubular
pressure of single nephrons, and they initially showed
that the MR was modulated by TGF.10,22,23 Later, it
was shown that the MR could be modulated by both
TGF and a 0.01 Hz frequency.12 In the present study,
we looked for modulation of the MR from 0.005 to
0.06 Hz. We found that the dominant frequency of
modulation of MR can range from 0.01 to 0.06 Hz,
agreeing with the study by Pavlov et al. that the MR
amplitude and frequency may be modulated by either a
0.01 Hz mechanism or TGF.12

Many factors influence the dynamics of renal
autoregulation, including nitric oxide (NO).5 NO is a

vasodilator synthesized by nitric oxide synthase (NOS)
from its precursor L-arginine. It plays an important
role in regulating glomerular capillary pressure, glo-
merular plasma flow, and TGF.5 The role of NO in the
control of renal afferent arteriole resistance was stud-
ied by Pittner et al.15 using the isolated perfused rat
kidney. The afferent arteriole did not autoregulate
during the cell-free perfusion of the kidney, however, it
did during cell-free perfusion with L-NAME.15 These
results suggest that NO release is related to impaired
autoregulation. Since L-NAME is an inhibitor of NOS,
we expected enhanced autoregulation.19 In SDRs, we
see that during L-NAME infusion there is an increase
in the MR peak gain that is accompanied by significant
AM of the MR by either TGF or a 0.01 Hz compo-
nent. These results agree with those from Shi et al. that
show augmentation of the MR during inhibition of
NOS19 and Sosnovtseva et al. that show increased
modulation after infusion of L-NAME.25 By using
analytical methods to detect modulation and track
temporal changes in the system gain we are able to
identify that changes in the transfer function may be
due to changes in the interactions between the MR and
TGF. The autoregulation mechanisms are more active
after L-NAME,19 so it stands that the interaction
between them should be more pronounced given that
they both act on the afferent arteriole. It may also
represent a change in TGF regulation over the MR
after NOS inhibition. Use of multiple analytical
methods allows us to better understand how interac-
tions between the MR and TGF may contribute to the
overall effectiveness of renal autoregulation.

Without examining coherence we cannot say if
changes in transfer function gain of the CBF oscilla-
tions are caused by a linear transformation of the input
BP signal, as coherence determines the confidence of
the transfer function analysis.13 Coherence has been
repeatedly studied in renal autoregulation.1,3,5,14,19,32

The frequency region >0.1 Hz, containing the MR,
has been reported to have high coherence showing that
the MR is a direct consequence of changes in BP.14,19

Time—invariant coherence is often shown to be low in
the TGF frequency range,3 contributing to the concept
that TGF can be driven by either non-linear self-sus-
tained oscillations or time-varying dynamics.8 Using
time-varying approaches directly accounts for the
contribution of non-stationarity as we are now able to
look at specific time points when time-varying coher-
ence may be high or low and treat the transfer function
results appropriately.3 In the present study, we did not
examine coherence, and the transfer function gain
results should be interpreted with this in mind.

We have compared a number of time-varying
analysis methods, and it is clear that a single method
with fixed parameters cannot uncover all the complex
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characteristics of the MR and TGF. If one is interested
in determining modulation of the dynamics over time
between the two control systems, it may be best to use
a non-parametric method with settings not fixed for
the MR and TGF regions but instead set for each as
appropriate. Alternatively, a parametric method such
as TVOPS might be the most appropriate for accurate
estimation of temporal changes in transfer functions to
describe how the system alters its response to BP over
time.3 In this study, we limited our comparisons to AM
and FM phenomena and time-varying changes in sys-
tem gain, but the same type of quantitative compari-
sons could be made for additional parameters of
interest such as coherence and phase relationships.
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