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Abstract—Accurate and early detection of blood volume loss
would greatly improve intraoperative and trauma care. This study
has attempted to determine early diagnostic and quantitative
markers for blood volume loss by analyzing photoplethysmogram
(PPG) data from ear, finger, and forehead sites with our high-
resolution time–frequency spectral (TFS) technique in sponta-
neously breathing healthy subjects (n = 11) subjected to lower
body negative pressure (LBNP). The instantaneous amplitude
modulations (AM) present in heart rate (AMHR ) and breathing
rate (AMBR ) band frequencies of PPG signals were calculated
from the high-resolution TFS. Results suggested that the changes
(P < 0.05) in AMBR and especially in AMHR values can be used
to detect the blood volume loss at an early stage of 20% LBNP
tolerance when compared to the baseline values. The mean percent
decrease in AMHR values at 100% LBNP tolerance was 78.3%,
72.5%, and 33.9% for ear, finger, and forehead PPG signals, re-
spectively. The mean percent increase in AMBR values at 100%
LBNP tolerance was 99.4% and 19.6% for ear and finger sites,
respectively; AMBR values were not attainable for forehead PPG
signal. Even without baseline AMHR values, our results suggest
that hypovolemia detection is possible with specificity and sensitiv-
ity greater than 90% for the ear and forehead locations when LBNP
tolerance is 100%. Therefore, the TFS analysis of noninvasive PPG
waveforms is promising for early diagnosis and quantification of
hypovolemia at levels not identified by vital signs in spontaneously
breathing subjects.
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I. INTRODUCTION

ACCURATE and early detection of blood loss using non-
invasive methods would greatly improve intraoperative

and trauma care since a sensitive and specific approach to early
recognition of blood loss has been elusive. Standard vital signs
such as heart rate (HR) and blood pressure (BP) do not alert
clinicians in advance of rapid blood loss and cardiovascular col-
lapse [1], [2]. Thus, readily available and reliable detection of
blood loss would be of great benefit in acute hospital settings,
reducing morbidity and mortality as well as the ever-increasing
cost of healthcare.

Toward this goal, the application of photoplethysmogram
(PPG) for blood loss detection has gained more impetus recently
because it is an already ubiquitous diagnostic tool that is easy to
operate, inexpensive, and nonintrusive. For example, McGrath
et al. [2] have recently reported significant reductions in time-
domain PPG pulse features in response to progressive increase in
hypovolemia induced by lower body negative pressure (LBNP).
Significant increase in the respiration-related spectral power of
the PPG waveform has also been shown in spontaneously breath-
ing healthy subjects subjected to blood withdrawal [3], [4] and
LBNP [5]. However, the respiratory variations of the PPG wave-
forms have been shown to be inaccurate in predicting hemody-
namic changes induced by LBNP [6] and passive leg elevation in
spontaneously breathing volunteers [7]. We believe that the pre-
viously mentioned inconsistent results are primarily due to the
computational methods used to date that have largely relied on
linear, time-domain, and time-invariant signal analyses, whose
success has been limited to nearly motion-free environments.

To overcome the aforementioned limitations, time-varying
power spectral density (PSD) [8] and continuous wavelet trans-
form (CWT) [9] approaches have been utilized. Although these
approaches partially solve the time-varying issue, they do not
address the nonlinearity of the respiratory variations in the PPG
amplitude due to baroreceptor feedback. Further, since the time–
frequency resolution of the CWT is suboptimal, it is not the most
effective approach for early blood loss detection. Thus, a major
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technological gap preventing accurate blood loss detection is
due both to the lack of quantitative methods that can account
for time-varying dynamics with sufficient time and frequency
resolution, and to an insensitivity to motion and noise artifacts
at the respiratory and HR frequencies. Hence, it is not surprising
that a real-time, automatic, quantifiable detection of blood loss
from PPG signals has not been realized to date. Therefore, our
overriding goal is to develop an accurate computational method
using PPG signals to detect hypovolemia.

Our innovative technical solutions overcome the aforemen-
tioned limitations by recognizing that the respiration rate mod-
ulates both the amplitude and frequency of the PPG signal [10].
This is similar to the way in which respiratory sinus arrhythmia
modulates the HR signal, a modulation known to be a nonlinear
phenomenon [11]. Variable frequency complex demodulation
(VFCDM) is a novel time–frequency spectral (TFS) method
that provides one of the highest time–frequency resolutions and
accurate amplitude estimates [10], [12]. The amplitude modu-
lations (AM) associated with the HR and BR band frequencies
of the PPG can be continuously extracted from the TFS of the
VFCDM as the AMHR and AMBR components of the PPG,
respectively. Specifically, the AMHR and AMBR components
of the PPG are related to the changes in arterial and venous
pulsations, respectively.

To test the fidelity of our approach for the early detection of
blood loss, we used the application of LBNP since it has been
recognized as an effective model for varying the level of sim-
ulated blood loss, including severe hemorrhage, in conscious
humans [2], [13]. We hypothesized that a significant decrease
in the AMHR component of the PPG would reflect the simu-
lated progressive blood loss induced by LBNP in spontaneously
breathing subjects. Our additional objective of this study was to
identify the optimal site for detecting blood volume loss induced
via LBNP by analyzing simultaneously collected PPG signals
from common pulse oximeter probe sites such as the ear, finger,
and forehead.

II. MATERIALS AND METHODS

A. Design of LBNP Experiment

The LBNP study was approved by the Yale University Hu-
man Investigation Committee and written informed consent was
obtained from all the subjects. Healthy male volunteers (n = 11,
range 23–39 years) with no known cardiovascular or systemic
disease participated in this study. Subjects were instructed to
refrain from caffeine, alcohol, or cigarettes within 12 hour of
the protocol, but were otherwise allowed their normal amounts
of food and fluid intake prior to enrollment.

The LBNP chamber was constructed of a sealed wood and
acrylic box that is connected to a vacuum pump [14]. Each sub-
ject was placed in the LBNP chamber, which was sealed with a
neoprene skirt just above the subject’s pelvis. The LBNP pro-
tocol consisted of a baseline followed by the gradual exposure
to −15, −30, −45, −60, −75, −90, and −100 mmHg or until
the subject showed presyncopal symptoms such as lightheaded-
ness, nausea or any concerns indicated by the subject. The time
interval between each level of LBNP application varied from

20 s to 6 min among the subjects. At the onset of presyncopal
symptoms, the negative pressure was stopped, but data were
continuously recorded during the subsequent recovery stage.
The maximal LBNP tolerance among the subjects was between
−70 and −115 mmHg. One subject did not show any symptoms
even after −110 mmHg of LBNP application. For this subject,
the LBNP was terminated after his HR reached 140 beats/min.
Although one subject showed presyncopal symptoms at
−70 mmHg, the maximal LBNP tolerance in ten participants
was at least −90 mmHg.

B. Data Acquisition and Preprocessing

Three identical reflective infrared PPG-probes (MLT1020;
ADI Instruments, CO Springs, CO, USA) were placed at the
finger, forehead, and ear. While the finger and ear PPG probes
were attached with a clip, the forehead probe was securely cov-
ered by a clear dressing. The autogain function and other filtering
algorithms were disabled during PPG recording. A respiratory
belt transducer (MLT1132; ADInstruments, CO Springs, CO,
USA) was placed around the chest for true respiratory record-
ing. The standard ECG, and arterial BP data using a noninvasive
Finapres monitor (Finometer, Finapres Medical Systems, Ams-
terdam, The Netherlands) were also simultaneously measured.
All data were recorded at 200 Hz with PowerLab/16SP with
Quad Bridge Amp (ML795 and ML112; ADInstruments). The
recorded PPG data were analyzed offline using MATLAB.

Each individual’s PPG data were reapportioned into five
stages between 0% LBNP tolerance (baseline) and 100% LBNP
tolerance (the level at which the subjects showed presyncopal
symptoms) based on the value of LBNP decompression and its
duration [2]. This was necessitated by the fact that individual’s
maximal capacity of LBNP tolerance varied widely (e.g., −70
to −115 mmHg from our data). Thus, in some cases, our reap-
portioned PPG data at each level of LBNP tolerance may not
accurately reflect the true LBNP decompression ratio, but either
rounded up or down to the closest value of the five stages. Our
analysis considered 2 min of PPG data from each level of LBNP
tolerance. From each 2-min PPG data block, a 1-min window
was shifted in 10 s intervals, and thus seven PPG segments were
obtained for our analysis. When the available PPG data was less
than a minute in few cases of early LBNP levels, the PPG data
was considered as a single segment for VFCDM analysis. The
PPG segments were downsampled to 20 Hz, preprocessed, zero
meaned, linearly detrended, normalized to unit variance, and
applied to the VFCDM algorithm to be described hereafter.

C. VFCDM Analysis

The development of the VFCDM algorithm has been previ-
ously reported in detail [10], [12]. Thus, the VFCDM algorithm
will be briefly summarized here as follows.

Consider a sinusoidal signal x(t) to be a narrow band oscil-
lation with a center frequency fo , instantaneous amplitude A(t),
phase φ(t), and the direct current component dc(t)

x(t) = dc(t) + A(t) cos(2πfot + φ(t)). (1)
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For a given center frequency, we can extract the instanta-
neous amplitude information A(t) and phase information φ(t) by
multiplying (1) by e−j2πfo t , which results in the following:

z(t) = x(t)e−j2πfo t = dc(t)e−j2πfo t +
(

A(t)
2

)
ejφ(t)

+
(

A(t)
2

)
e−j (4πfo t+φ(t)) . (2)

A leftward shift by e−j2πfo t results in moving the center fre-
quency fo to zero frequency in the spectrum of z(t). If z(t) in
(2) is subjected to an ideal low-pass filter (LPF) with a cutoff
frequency fc < fo , then the filtered signal zlp (t) will contain only
the component of interest, and the following are obtained:

zlp(t) =
A(t)

2
ejφ(t) (3)

A(t) = 2|zlp(t)| (4)

φ(t) = tan−1 imag(zlp(t))
real(zlp(t))

. (5)

The method can be easily extended to the variable frequency
case as explained in [12], where the modulating frequency is
expressed as

∫ t

o 2πf(τ)dτ and the negative exponential term

used for demodulation is e
−j

∫ t

o
2πf (τ )dτ . The instantaneous fre-

quency can be obtained using the familiar differentiation of the
phase information as follows:

f(t) = fo +
1
2π

dφ(t)
d(t)

. (6)

Thus, the VFCDM method involves a two-step procedure. First,
the fixed frequency complex demodulation (FFCDM) technique
identifies the signal’s dominant frequencies, shifts each domi-
nant frequency to a center frequency, and applies LPF to each
of the center frequencies. The LPF, with a cutoff frequency less
than that of the original center frequency, is applied to each dom-
inant frequency. This process generates a series of band-limited
signals. The instantaneous amplitude, phase, and frequency in-
formation are obtained for each band-limited signal using the
Hilbert transform and are combined to generate a TFS. Later,
the VFCDM method is applied to this spectral estimate wherein
it selects only the dominant frequencies for refinement and pro-
duces a high-resolution TFS. The LPF filter length was set to
64, and the cutoff frequency was selected as 0.03 Hz for the
FFCDM method and 0.015 Hz for the VFCDM method [10].

A representative ear PPG signal, recorded during baseline
from a spontaneously breathing healthy subject, and its TFS are
shown in Fig. 1(a) and (b), respectively. Two dominant oscilla-
tory amplitudes can be observed at two separate frequency bands
of the TFS: 1) a HR ridge, representing the high-frequency phe-
nomenon, and; 2) the breathing rate (BR) ridge, corresponding
to the low-frequency phenomenon. The HR and BR ridges are
outlined in the TFS [see Fig. 1(b)]. The largest instantaneous am-
plitude at every time sample within the desired frequency band
of the TFS constitutes the AM series. The AM series extracted
from the HR band (HR ± 0.2 Hz) and BR band (0.05–0.35 Hz)
were identified as AMHR and AMBR , respectively [as shown in

Fig. 1. (a) Representative ear PPG signal recorded during baseline from a
spontaneously breathing healthy subject. (b) Estimated TFS using VFCDM
with prominent frequency oscillations seen near hear rate (1 Hz) and BR (0.2 Hz)
outlined as boxes in TFS. The extracted spectral power AM of HR band (i.e.,
AMHR ) and BR band (i.e., AMBR ) are shown in (c) and (d), respectively.

Fig. 1(c) and (d)]. Note that these AMHR and AMBR terms rep-
resent the time-varying AM. The initial and final 5 s of the TFS
were not considered for the extraction of AMHR and AMBR
because of the edge effect. The median values of the AMHR
and AMBR components were evaluated for each of the seven
PPG segments and were then averaged. The percent changes in
AMHR and AMBR values were calculated for all LBNP stages
with respect to the individual’s baseline responses. Such mea-
surements of AMHR and AMBR values were carried out in 11
subjects using ear and finger PPG signals at each level of the
LBNP protocol. For forehead PPG, AMHR values were obtained
from ten subjects, because one subject’s forehead PPG signals
were intermittently undetectable. Further, the AMBR measure-
ments could not be obtained from forehead PPG signals in six
out of the ten subjects at various stages of the protocol.

In addition to the relative changes in AM measures of PPG
from baseline value for blood loss detection, receiver operat-
ing characteristic (ROC) curve analysis was performed to find
the threshold value of absolute AM measures offering optimal
specificity and sensitivity for the blood loss detection. The pur-
pose of this was to examine if blood loss detection is possible
without comparing its AMHR values to the baseline condition.

A beat-to-beat R wave detection in ECG recordings was used
to calculate reference HR at each level of the LBNP protocol.
From the Finapres recordings, the beat-to-beat values of systolic
BP (SBP), diastolic BP (DBP), pulse pressure (PP), and mean
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Fig. 2. Changes in (a) SBP-systolic BP, (b) DBP-diastolic BP, (c) PP-pulse
pressure, (d) MAP-mean arterial pressure, and (e) HR-heart rate are given in
mean ± SE for various stages of the LBNP protocol. The significance levels
are found with respect to 0% LBNP tolerance (i.e., baseline). ∗P < 0.05; †P <
0.01, # P < 0.001. PS denotes postsymptomatic.

arterial pressure (MAP) were obtained and averaged for each
level of LBNP.

D. Statistical Analysis

Normality of each measure was assessed using D’Agostino
and Pearson Omnibus normality test. The statistical significance
among various levels of the LBNP protocol was assessed us-
ing either parametric repeated measures analysis of variance or
repeated measures nonparametric Friedman test when appro-
priate. If statistical differences were found, either a Bonferroni
post-test or Dunn’s posttest was performed appropriately to de-
termine the statistical significance between every possible pair
of conditions. The statistical significance was set at P < 0.05.

III. RESULTS

A. Measurements of Vital Signs During the LBNP Protocol

Fig. 2 shows the changes in SBP, DBP, MAP, PP, and HR
obtained from 11 healthy volunteers during various levels of
LBNP application. SBP and PP both decreased (P < 0.01) from
80% LBNP and 60% LBNP, respectively, through 100% LBNP
tolerance level as compared to the baseline [see Fig. 2(a) and
(c)]. During recovery, PP was still lower (P < 0.05) than the
baseline. DBP increased (P < 0.001) at 60% to 100% LBNP
tolerance and remained higher also at the recovery (P < 0.01)

TABLE I
STATISTICAL SIGNIFICANCE AMONG VARIOUS LEVELS OF THE LBNP

PROTOCOL FOUND FOR THE VITAL SIGNS

with respect to baseline [see Fig. 2(b)]. MAP showed no sig-
nificant changes throughout the LBNP protocol [see Fig. 2d].
The HR was increased (P < 0.01) at 40% to 100% of LBNP
tolerance. After the LBNP application was terminated, HR re-
covered but was still lower (P < 0.05) than the baseline value
[see Fig. 2(e)]. Table I shows the statistical significances found
among different stages of the LBNP protocol other than the
baseline condition for these vital measures.

B. Detection and Quantification of Simulated Blood Loss Using
Multisite PPG Signals

Fig. 3 shows the VFCDM analysis of representative ear PPG
data obtained during the LBNP protocol. While the TFS of ear
PPG data showed a marked increase in HR frequency as the
application of LBNP increased, the instantaneous amplitude of
HR oscillations were reduced [see Fig. 3(b)]. This observation
corresponds with the AMHR values of the PPG derived from
the HR ridge of the TFS [see Fig. 3(c)]. The AMBR values of
the PPG derived from the BR band of the TFS showed constant
oscillations throughout the LBNP protocol [see Fig. 3(d)].

The percent changes in AMHR and AMBR measures obtained
from the three PPG probes sites at each level of the LBNP proto-
col (n = 11) are given in Fig. 4. The AMHR measure decreased
(P < 0.05) from 20% LBNP through 100% LBNP for ear and
finger PPG signals [see Fig. 4(a) and (c)], whereas in forehead
PPG, the significant decrease was found only from 80% LBNP
[see Fig. 4(e)]. More importantly, a linearly degraded AMHR
response was observed with the progressive increase in LBNP
decompression from ear PPG [see Fig. 4(a)]. After the termina-
tion of LBNP application, no significant changes in AMHR were
observed from finger and forehead PPG signals, but AMHR of
ear PPG increased (P < 0.05) from the baseline value. In con-
trast to AMHR measure, the AMBR measure increased (P <
0.05) from 20% LBNP through 100% LBNP for ear PPG, but
also in finger PPG except 100% LBNP. No significant differ-
ences were noticed in AMBR measure during the recovery stage
from ear and finger probe sites.

Table II summarizes the statistically significant effects
found among various stages of the LBNP protocol other than
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Fig. 3. (a) Representative ear-PPG data recorded during LBNP experiment.
(b) TFS obtained from VFCDM analysis. The continuous changes in (c) AMHR ,
and (d) AMBR components of PPG signal extracted from TFS of VFCDM.
The gradual decrease in AMHR components of PPG reflect the progressive
increase in simulated blood loss induced by LBNP. The time events of chamber
decompression in mmHg are shown with dotted vertical lines.

baseline condition. The AMHR of the ear PPG was the most sen-
sitive measure as it showed significant changes between every
phase of the progressive blood volume loss caused by LBNP in
spontaneously breathing subjects. The mean percent decrease in
AMHR values at 100% LBNP tolerance was 78.3%, 72.5%, and
33.9% for ear, finger, and forehead PPG signals, respectively.
This observation suggests that the forehead site is not as sensi-
tive as the ear and finger PPG sites. The mean percent increase in
AMBR values at 100% LBNP tolerance was 99.4% and 19.6%
for ear and finger sites, respectively. This observation suggests
that the increase in respiratory related AMBR of the PPG signal
was five times stronger in the ear compared to the finger site.

In addition to the previous analysis of the relative changes
in AM measures to detect the hypovolemia, the absolute val-
ues of AMHR measure were also compared between baseline,
60% LBNP, 80% LBNP, and 100% LBNP as shown in Fig. 5.
We observed more overlapping in absolute values of AMHR
measure during early stages of LBNP (not shown), but with a
very clear separation during later stages of LBNP with respect
to baseline. From ROC analysis, the optimal threshold value of
absolute AMHR measure (in au) that may allow for hypovolemic
detection at 100% LBNP tolerance was found to be 0.43, 0.3,
and 1.1 for ear, finger, and forehead PPG signals, respectively.
Using these threshold values, the specificity and sensitivity val-
ues of AMHR measure for hypovolemic detection are given in
Table III. The AMHR measure of ear PPG offered the specificity

Fig. 4. Percent changes in AMHR (left panels) and AMBR (right panels)
components are given in Mean ± SE for ear (first row), finger (second row), and
forehead (third row) PPG signals. The significance levels are found with respect
to 0% LBNP tolerance (i.e., baseline). ∗P < 0.05; †P < 0.01, # P < 0.001. PS
denotes postsymptomatic.

TABLE II
STATISTICAL SIGNIFICANCE AMONG VARIOUS LEVELS OF THE LBNP

PROTOCOL FOUND FOR AMHR , AMRR MEASURES OF THE PPG SIGNAL

RECORDED AT EAR, FINGER, AND FOREHEAD SITES

of 90.9% and sensitivity of 90.9% for hypovolemic detection at
100% LBNP; for forehead PPG, the sensitivity and specificity
values were 90% and 100%, respectively, at 100% LBNP.

IV. DISCUSSION

Early detection of blood loss is essential so that an immediate
clinical intervention can be made before a patient develops hem-
orrhagic shock. However, early blood loss detection has been a
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Fig. 5. Comparison of absolute AMHR values between baseline (0%), 60%, 80%, and 100% LBNP tolerance conditions are given for (a) ear, (b) finger, and
(c) forehead PPG sites. The bars are referred to mean ± SE. The optimal threshold values of absolute AMHR measure of ear, finger, and forehead PPG were found
to be 0.43, 0.3, and 1.1, respectively, as denoted by the dotted lines.

TABLE III
RECEIVER OPERATING CHARACTERISTIC CURVE ANALYSIS OF AMHR

MEASURE FOR HYPOVOLEMIC DETECTION

challenging task in emergency/critical care medicine, surgery,
and anesthesia because computational methods have not ma-
tured to the point of providing accurate, reliable, and real-time
detection of blood loss. The routinely measured vital signs are
not useful for such early detection, as they become sensitive
only after blood losses have approached critical levels [1]. In-
deed, our study also confirmed this observation. Ours are the
first studies to demonstrate a new approach that allows more
sensitive and far earlier detection of blood loss than given by
vital signs measures. Specifically, the most important finding of
this study is that our AMHR parameter derived from TFS of the
PPG signal offered significant relative changes at a very early
stage (i.e., 20% LBNP tolerance). Further, a clear separation of
AMHR values between the baseline and LBNP tolerance levels
especially at 80% and 100% indicate blood loss detection even
without baseline values.

None of the vital signs produced such significant changes at
very early stage of simulated blood loss. Among the vital signs
measured, HR was the most sensitive as it significantly increased
from 40% LBNP through 100% LBNP with respect to base-
line value. However, the changes in mean HR between 80 and
120 beats/min are clinically considered as the normal HR levels
[see Fig. 2(e)]. Hence, the HR may not be a good surrogate
for blood loss detection. Clinicians have routinely recognized
hypotension as SBP ≤ 90 mmHg. Eastridge et al. [15] have
redefined the clinical alert threshold of SBP for hypotension as
110 mmHg. From our results, even though SBP significantly
decreased from 80% LBNP, SBP was well above the clini-
cal threshold of either 90 or 110 mmHg; hypotension was not

reached until 100% LBNP tolerance [see Fig. 2(a)]. Similar to
SBP, a significant decrease in PP occurred during the later stages
of the LBNP protocol [see Fig. 2(c)]. The decrease in PP may
reflect a reduction in stroke volume and an increase in vaso-
motor tone and peripheral resistance due to the elevated LBNP
decompression.

The PSD of the PPG signal has been previously used to cal-
culate the ratio of the respiratory peak power to the HR peak
power as a measure of respiratory variation [5], [16]. While
PSD is more resistant to motion artifacts than time-domain ap-
proaches and as blood loss detection is localized to either HR
or BR frequency band, PSD does not account for time-varying
dynamics of the HR and BR components of the PPG signal.
Furthermore, determining the precise location of the respira-
tory frequency peak is problematic, since it is often one of the
smallest peaks in the spectrum, and can be increasingly diffi-
cult to decipher with motion or noise artifacts. Therefore, the
PSD and other time-invariant methods are not very successful
for blood loss detection and they are also limited to motion-free
conditions, which preclude their wide clinical usefulness.

Our approach using the time–frequency analysis of PPG sig-
nals indicates using the AMHR values of ear as well as finger
PPG signals that the detection of blood volume loss is possible
at a very early stage of 20% LBNP. Further, the progressive
linear decline in AMHR values concomitant with the increased
LBNP indicates that quantifying the progressive blood volume
loss induced by LBNP is possible well before subjects reach
hypotension and tachycardia. Our approach is more sensitive
than any of the vital sign measures demonstrated in our study.
McGrath et al. [2] have reported some success using a time-
domain approach, but their work showed a statistically signifi-
cant change in the PPG amplitude only at 60% LBNP tolerance.
We believe that the decrease in AMHR is related to the reduction
in central blood volume, a reduction that subsequently results
in the concomitant increase in sympathetic activity, vasomotor
tone and peripheral vasoconstriction [17].

Physically, the AMHR series represents the AM of the cardiac
components of the PPG signal driven by the respiratory rate as
the dominant spectral peak of the AMHR series corresponds to
the breathing frequency. This is similar to the respiratory sinus
arrhythmia modulating the HR variability. Using our VFCDM
approach, we have recently showed that accurate breathing rates
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can be determined by computing spectral density of the AMHR
series [10], [18].

We have also examined whether the AMBR values corre-
late with blood loss. The AMBR series derived from the BR
frequency band (0.05–0.35 Hz) reflects the respiratory-induced
activity and the combined autonomic influence exerted by the
sympathetic and parasympathetic activities on the PPG wave-
form. Note that the AMBR series does not distinguish the au-
tonomic activity from the respiratory induced activity on the
PPG waveform. Unlike the decrease in AMHR , we found sig-
nificantly increased AMBR values at a very early stage of 20%
LBNP that reached a plateau at 60% LBNP for both ear and fin-
ger PPG signals. We believe that the increase in AMBR values
is largely attributable to the fact that relatively empty veins will
collapse in response to negative intrathoracic pressure. Once the
veins collapse, they will not empty further; hence, one does not
see the pronounced further change in the AMBR values during
the later stages of LBNP. Thus, the AMBR values are less sen-
sitive than the AMHR for detection of progressive hypovolemia
during spontaneous ventilation.

Our observation of the increased AMBR values with increased
LBNP agrees with Wendelken et al. [5], who also showed in-
creased respiratory power of PPG signals at later stages of
LBNP. But this observation disagrees with Nilsson et al. [6],
who found that the respiratory variation of PPG signals tends to
be less prominent during spontaneous ventilation. These differ-
ent findings and the fact that AMBR values are not as sensitive as
AMHR further strengthen the importance of the AMHR values
as a marker for early detection of blood loss.

Data from the PPG probe sites at the ear followed by finger
show significant changes in AMHR values at a very early stage of
LBNP. The importance of this finding is that given the available
baseline AMHR values, our method is able to detect blood loss
even as early as 20% of LBNP. In certain instances, the baseline
AMHR may not be available to make diagnostic measure of
blood loss using our approach. However, as shown in Fig. 5,
the fact that there is a clear separation between the baseline and
LBNP tolerance at 80% and 100% especially for ear location
suggest a possible device approach to detection of blood loss
even without the baseline AMHR values. While the forehead
location provided higher specificity than the ear at 100% LBNP
tolerance level as shown in Table III and Fig. 5, it was not as
sensitive when relative changes in AMHR values during various
LNBP tolerance levels are compared to the baseline. Further,
it is our experience that motion and noise artifacts have more
pronounced effect on the forehead than ear PPG signals.

While vital sign measures (see Fig. 2) do indicate significant
changes relative to the baseline values at large LBNP tolerance
levels, their capabilities become limited without baseline values
as they are within the normal operating ranges. These findings
are unique observations of this study. Further, our results show
that the increase in AMBR due to hypovolemia was five times
stronger in ear PPG than the finger PPG, a finding which sug-
gests that the former modality is more sensitive than the latter.
This observation agrees with Shelley et al. [16]. The respiratory
spectral content in the forehead-PPG signals (see Fig. 6) was
found to be very weak, and consequently those extracted AMBR

Fig. 6. Representative forehead-PPG signal recorded during baseline of LBNP
experiment is shown with its TFS of VFCDM. While the HR spectral content
is predominantly seen at 1 Hz, the respiratory spectral content was weak and
found absent for most of the time as highlighted with the box. Therefore, the
AMBR values were not quantifiable in various stages of LBNP and in all the
subjects. Meanwhile, the estimation of AMHR values was possible in all the
subjects as reported in the results section.

values are negligible in some cases. This is the primary reason
why using the estimation of AMRR values from forehead-PPG
signals was not possible for all the subjects. While ear and finger
PPG signals showed significant decreases in AMHR values at
20% LBNP, the forehead site showed significant decreases only
at 80% LBNP. Our results agree with those of McGrath et al. [2],
who found significant decreases in pulse amplitude of forehead
PPG at 60% LBNP. Furthermore, in our recent work, we found
that, when compared to either ear or finger PPG sensors, the
forehead PPG sensor was the most prone to motion and noise
artifacts [19]. These findings suggest that the forehead site is
not as sensitive as the ear and finger PPG sites for the detection
of progressive hypovolemia.

Our computational approach to quantitative and early detec-
tion of blood loss is fundamentally different from others re-
ported in the literature to date. The success of our approach is
predicated on addressing both the time-varying and nonlinear
dynamics of cardiorespiratory system interplay during blood
loss. The success of this approach to early blood loss detec-
tion is largely due to the use of a spectral analysis method with
one of the highest resolutions in both the time and frequency
domains [12], a method that allows extraction of the AM at
the HR frequency. This approach differs from others, because
we do not perform direct calculations on the PPG signal, but
rather we extract the AM time series from which blood loss
is quantified. Thus, our approach is less affected by noise and
motion artifacts than other approaches because the extracted
AM time series is the dominant periodic signal in the narrow
HR frequency band, which reduces the effect of other high- and
low-frequency noise sources. With our approach, if the motion
and noise artifacts still remain in the extracted AM time series,
they are often not persistent at all time points, and thus their
magnitudes are negligible. The PPG segments corrupted with
extreme motion artifacts certainly cannot be included in our
VFCDM analysis for blood loss detection. Thus, an effective
motion artifact detection and removal technique for real-time
blood volume loss applications is essential. In our companion
paper [19], we illustrate approaches for automatic and real-time



SELVARAJ et al.: NOVEL APPROACH USING TIME–FREQUENCY ANALYSIS OF PULSE-OXIMETER DATA 2279

realizable detection of motion and noise artifacts. Finally, our
computational approach for detecting of blood volume loss can
be implemented in real time, since the MATLAB computational
time is 717 ms in a 1.66 GHz Intel Core2 processor.

It should be noted that there are several physiological factors
that may cause vasoconstriction, which subsequently affects our
reliance on AMHR value for blood loss detection. For example,
cold exposure has been shown to significantly decrease the am-
plitude of the finger PPG signals [20]. However, the ear PPG
amplitudes were shown to be immune to the vasoconstrictive
effects with no significant changes [20]. Pain sensation during
blood loss also has a vasoconstrictive effect. It should be noted
that cold pressor test also elicits pain perception. Thus, the fact
that ear PPG amplitude is immune to the vasoconstrictive effects
and the ear being the most sensitive for blood loss in our study,
all suggest that AMHR value may have a diagnostic value in
blood loss detection.

V. CONCLUSION

We presented an approach that suggests that a sensitive, early
detection of blood loss is possible using an ear pulse oximeter
sensor. Further, our study suggests such detection of blood loss
even without baseline values that further enhances the novelty
of the current study. We are unaware of any published reports
that are able to provide such reliable and sensitive blood loss
detection directly from a pulse oximeter. Finally, our algorithm
is real-time realizable as the computation time is less than 1 s.
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