
Abstract—Motion and noise artifacts (MNA) have been a 

serious obstacle in realizing the potential of 

Photoplethysmogram (PPG) signals for real-time monitoring of 

vital signs. We present a statistical approach based on the 

computation of kurtosis and Shannon Entropy (SE) for the 

accurate detection of MNA in PPG data. The MNA detection 

algorithm was verified on multi-site PPG data collected from 

both laboratory and clinical settings. The accuracy of the fusion 

of kurtosis and SE metrics for the artifact detection was 99.0%, 

94.8% and 93.3% in simultaneously recorded ear, finger and 

forehead PPGs obtained in a clinical setting, respectively.  For 

laboratory PPG data recorded from a finger with contrived 

artifacts, the accuracy was 88.8%. It was identified that the 

measurements from the forehead PPG sensor contained the 

most artifacts followed by finger and ear. The proposed MNA 

algorithm can be implemented in real-time as the computation 

time was 0.14 seconds using Matlab®. 

 
Index Terms—Motion and noise artifacts, 

Photoplethysmography, Shannon entropy, kurtosis. 

I. INTRODUCTION 

here is growing interest in the real-time, wearable and 

ambulatory monitoring of vital signs using pulse 

oximeter sensors. However, motion and noise artifacts 

(MNA) are a serious obstacle in realizing this quest. 

Artifacts have been recognized as an intrinsic weakness of 

using the Photoplethysmogram (PPG) that limits its practical 

implementation and reliability for real-time monitoring 

applications. Artifacts are the most common cause of false 

alarms, loss of signal, and inaccurate measurements in 

clinical monitoring [1], where artifacts are more likely due to 

the voluntary and involuntary movements of the patient.  

 While the intelligent design of hardware elements such as 

PPG sensor attachment, form factor, and packaging can help 

to reduce the impact of motion disturbances by making sure 

that the sensor is securely mounted, it is rarely sufficient to 
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entirely avert artifacts. Various algorithms have also been 

attempted to isolate the effects of undesired artifacts with the 

outcomes being less than desired [2]. An algorithm based on 

the comparison between the heart rate (HR) measured from 

electrocardiogram (ECG) and pulse rate calculated from 

PPG for very short segments has been reported for reliable 

artifact detection in PPG signals [3]. This approach is not 

very efficient and practical, since it requires the additional 

recording of the ECG to achieve artifact detection in the 

PPG signal. Statistical measures such as skewness, kurtosis, 

Shannon entropy and Renyi‟s entropy have been shown 

useful for automatic detection of artifacts [2, 4]. However, 

no detailed quantitative results have been reported to verify 

their accuracy and suitability for successful detection of 

artifacts in PPG waveforms. Hence, a comprehensive and 

quantitative approach is needed to accurately and 

automatically detect the presence of artifacts in PPG data.  

Our MNA detection algorithm is based on the 

computation of kurtosis and Shannon Entropy (SE) measures 

from the PPG segments. We hypothesize that our algorithm 

may provide accurate discrimination between artifact-free 

and artifact-contaminated PPG data. We tested the efficacy 

of our computational approach on multi-site PPG data 

containing involuntary artifacts recorded under clinical 

settings and on finger-PPG data containing controlled 

voluntary movements recorded in a laboratory setting. 

II. MATERIALS AND METHODS 

A. Experimental protocol 

We tested our algorithm on PPG signals obtained from 

two distinct scenarios as follows.   

1. Involuntary movements: Multi-site PPG signals 

recorded from 10 healthy volunteers under supine resting 

condition for 5 to 20 minutes in clinical settings was used for 

our analysis.  Three identical reflective infrared (940nm) 

PPG-probes (MLT1020; ADI Instruments, CO Springs, CO, 

USA) were placed at the finger, forehead and ear. While the 

finger and ear PPG probes were attached with a clip, the 

forehead probe was securely covered by a clear dressing. 

The PPG signals were recorded at 100 Hz with a 

Powerlab/16SPdata acquisition system equipped with a 

Quad Bridge Amp (ML795 & ML112; ADI Instruments) 

and a high-pass filter cut-off of 0.01 Hz. The subjects were 
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not restricted from making any sort of movements during the 

recording procedure. 

2. Voluntary movements: Finger-PPG signals were 

obtained from 14 healthy volunteers in an upright sitting 

posture using an infrared reflection type PPG transducer 

(TSD200) and a biopotential amplifier (PPG100) with a gain 

of 100 and cut-off frequencies of 0.05-10 Hz. The MP100 

(BIOPAC Systems Inc., CA, USA) was used to acquire 

finger PPG signals at 100 Hz. After baseline recording for 5 

min without any movements (i.e. clean data), motion 

artifacts were induced in the PPG data by left-right 

movements of the index finger for specific time intervals 

that determined the percentage of noise within each 1 minute 

segment, varying from 10 to 50 %. For example, if a subject 

was instructed to make left-right movements for 6 seconds, 1 

min segment of data would contain 10% noise. Such 

controlled movements were carried out 5 times for each 

level of noise. The recorded PPG signals from both 

protocols were analyzed offline using Matlab®.  

B. Data Preprocessing 

The PPG data were partitioned into 60s segments and 

shifted every 10s for the entire data. Each 60s PPG segment 

was subjected to a finite impulse response (FIR) band pass 

filter of order 64 with cut-off frequencies of 0.1 Hz and 10 

Hz. To account for the time-dependent low-frequency trends 

associated with the PPG signal, either a low- or high-order 

polynomial detrending was used. We used in some cases as 

high as the 32nd-order polynomial fit to eliminate 

nonstationary dynamics in the PPG signal. The use of a 

high-order polynomial detrend is the key to an effective 

classification between clean and artifact-containing signals, 

which will be demonstrated in the Results Section. We 

visually examined the PPG waveforms in each data segment 

and classified them into clean vs. corrupted segments. Any 

sort of disruption in the pulse characteristics was labeled as 

corrupted segments.This was done in order to later 

determine the accuracy of the method. 

C. Computational measures for artifact detection 

Following the preprocessing of each PPG data segment, 

our approach for the detection of artifacts involves the 

computation of the following two parameters.  

1. Kurtosis: Kurtosis is a statistical measure used to 

describe the distribution of observed data around the mean. 

It represents a heavy tail and peakedness or a light tail and 

flatness of a distribution relative to the normal distribution. 

The kurtosis is defined as: 
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where   is the mean of  ,    is the standard deviation of  , 

and      represents the expected value of the quantity  .  

2. Shannon entropy: SE quantifies how much the 

probability density function (PDF) of the signal is different 

from a uniform distribution and thus provides a quantitative 

measure of the uncertainty present in the signal [5]. SE can 

be calculated as 
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where   represents the bin number, and      is the 

probability distribution of the signal amplitude. Presently, 

we have used 16 bins        to obtain a reasonably 

accurate measure of SE [6].  

D. Statistical analysis of computational measures 

The data are reported as mean ± SE. The nonparametric 

Mann Whitney test was conducted to find the significance 

levels (p<0.05) for the SE and kurtosis measures obtained 

from clean vs. corrupted PPG segments of the involuntary 

motion protocol. Meanwhile, the nonparametric Kruskal-

Wallis test with Dunn‟s multiple comparison post test was 

conducted to find the significance (p<0.05) for the two 

measures obtained from clean vs. 10-50% noise-corrupted 

PPG segments of the voluntary motion protocol.  

E. Detection of motion/noise artifacts 

By varying kurtosis values from 0 to 10 with an increment 

of 0.1, and SE values from 0.5 to 1.0 with an increment of 

0.01, we conducted receiver-operator characteristic analysis 

for the population of SE and kurtosis values obtained from 

the respective pool of clean and corrupted PPG segments of 

both protocols. We evaluated the threshold values for 

kurtosis and SE that produced the optimal sensitivity and 

specificity for the detection of artifacts.  

The decision rules for the detection of artifacts were 

formulated as follows: 
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where DKi refers to the decision for artifact detection based 

on Ki, kurtosis for the ith segment. „1‟ represents clean data, 

whereas „0‟ represents corrupted data. KTh refers to the 

Kurtosis threshold. 

 

     
                    
                  

  (4) 

 

where DSi refers to the decision for artifact detection based 

on SEi, SE for the ith segment. „1‟ represents clean data 

whereas „0‟ represents corrupted data.  SETh refers to the SE 

threshold. 

We further investigated the fusion of kurtosis and SE 

metrics with their optimal threshold values for the artifact 

detection and quantified the sensitivity and specificity for 

the fusion of these two metrics. The decision rule for the 

detection of artifacts using a fusion of kurtosis and SE is: 

 

     
                     
                    

   (5) 

 

where FDi refers to the fusion decision for artifact detection 

based on both DKi and DSi for the ith segment. „1‟ represents 

clean data whereas „0‟ represents corrupted data. 
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III. RESULTS 

Our use of a high-order polynomial detrend for artifact 

detection is illustrated in Fig. 1. In a sample of a clean ear-

PPG segment with strong baseline drift, the linear detrend 

(Fig.1a) resulted in a long tail in its PDF. Meanwhile, the 

high-order (e.g., 32nd-order) polynomial detrend (Fig. 1b) on 

the same data resulted in SE and kurtosis values which were 

similar to that of clean data. In a segment of corrupted PPG 

data subjected to a linear detrend (Fig. 1c), the low 

frequency trend masked the high-frequency artifacts. But, 

the high-order polynomial detrend (Fig. 1d) drastically 

changed the PDF, SE and kurtosis values, and clearly 

differentiated from those of clean data. Thus, the high-order 

polynomial detrend is a critical component in enhancing the 

specificity in the presence of strong baseline drift and the 

sensitivity in the presence of artifacts.  

Detection of artifacts in multi-site PPG data with 

involuntary motion/noise artifacts 

Followed by the higher-order polynomial detrending, the 

statistical measures were obtained for artifact detection. The 

SE values obtained for the clean vs. corrupted data segments 

were (0.90±0.0 vs. 0.59±0.03), (0.88±0.0 vs. 0.65±0.01) and 

(0.88±0.0 vs. 0.72±0.0) for ear, finger and forehead PPG 

signals, respectively. The kurtosis values obtained for the 

clean vs. corrupted data segments were (2.29±0.01 vs. 

20.77±3.68), (2.60±0.02 vs. 12.77±1.42) and (2.30±0.02 vs. 

5.48±0.16) for ear, finger and forehead PPG signals. The 

corrupted PPG segments showed significant decrease 

(P<0.001) in SE value and significant increase (P<0.001) in 

kurtosis value in all three probe sites as compared to their 

respective clean PPG segments. The optimal threshold 

values of SE (SETh) and kurtosis (KTh) were found to be 0.8 

and 3.5, respectively. Their specificity, sensitivity and 

accuracy values for the artifact detection in all three probe 

sites are given in Table 1. SE (SETh=0.8) offered an accuracy 

of 99.0%, 94.4% and 91.3%, and Kurtosis (KTh=3.5) offered 

an accuracy of 99.6%, 97.0% and 94.0% to classify clean vs. 

corrupted segments in ear, finger and forehead PPG signals, 

respectively. Table 1 also provides the specificity and 

sensitivity values obtained for the three PPG sites using the 

fusion detection with STh=0.8 and KTh=3.5. The fusion 

detection of SE and kurtosis metrics offered an accuracy of 

99.0%, 94.8% and 93.3% for artifact detection for ear, finger 

and forehead PPG signals, respectively.  

Detection of artifacts in finger-PPG data with voluntary 

motion/noise artifacts 

The SE and kurtosis values obtained for clean (n=350 

segments) and corrupted segments with varying levels (10-

50%) of added artifacts (each with 350 segments) and their 

specificity and sensitivity analysis are shown in Fig. 2. 

Similar to the data with involuntary artifacts, a significant 

(P<0.001) decrease in SE, and a significant increase 

TABLE I 

 

THE PERFORMANCE OF SETH=0.8, KTH=3.5 AND FUSION OF 

THESE TWO METRICS FOR THE DETECTION OF MNA IN MULTI-

SITE PPG RECORDED WITH INVOLUNTARY MOVEMENTS 

 

 

SETh=0.8 KTh=3.5 Fusion detection 

Ear 

PPG 

Fgr 

PPG 

Fhd 

PPG 

Ear 

PPG 

Fgr 

PPG 

Fhd 

PPG 

Ear 

PPG 

Fgr 

PPG 

Fhd 

PPG 

Sp (%) 98.9 94.9 92.1 99.8 96.8 99.4 98.9 93.8 91.9 

Se (%) 100 92.1 89.6 95 97.8 83.0 100 99.3 96.3 

Acc 

(%) 
99.0 94.4 91.3 99.6 97.0 94.0 99.0 94.8 93.3 

 

Fig. 1. Sample clean (a-b) and corrupted (c-d) ear-PPG segments 

applied with linear (a, c) and 32nd order polynomial detrends (b, d) are 

shown along with their respective histograms and calculated kurtosis 

(K) and Shannon entropy (SE) values. The higher-order polynomial 

detrending is critical to enhance the specificity in the presence of 

physiological baseline drift (a) and the sensitivity in the presence of 

artifacts (c). 

 (a)  

 (b)  

 (c)  

 (d)  

Fig. 2. The values of (a) SE and (b) kurtosis measures obtained for clean 

and corrupted finger-PPG segments with 10% to 50% noise (350 

segments in each state). Mean±SEM values are denoted as 

bars;*P<0.001. The specificity (Sp) and sensitivity (Se) analysis are 

shown for (c) SE and (d) kurtosis measures for the classification of clean 

vs. corrupted finger-PPG segments recorded with voluntary MNA. 

 (a)  

 (b)  

 (c)  

 (d)  
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(P<0.001) in kurtosis were found for all levels of noise (10% 

to 50%) as compared to the clean PPG segments (Fig. 2a-b). 

Note that both SE and kurtosis values do not reflect the 

varying level of noise present in the PPG segments. The 

sensitivity and specificity values obtained for the optimal 

threshold values SETh=0.8 and KTh=3.5 are given in Table 2. 

SE offered specificity of 99.4% and sensitivity of 85.0%, 

whereas kurtosis offered specificity of 98.6% and sensitivity 

of 72.6% for the finger-PPG signals induced with voluntary 

left-right movements. When kurtosis and SE measures were 

combined for the artifact detection with the threshold values 

of SETh =0.8 and KTh =3.5, we obtained a specificity of 

98.3% and sensitivity of 86.9%.   

IV. DISCUSSION 

A quantitative and accurate approach for real-time artifact 

detection in raw PPG data has been elusive to date. Our 

algorithm based on the computation of SE and kurtosis 

offered very high accuracy for automatic detection of 

artifacts in multi-site PPG data with involuntary and 

voluntary artifacts. Our success is predicated the use of 

preprocessing stage with higher order polynomial detrend 

that accentuated the differences in SE and kurtosis values 

between clean and corrupted data segments as shown in Fig. 

1. Note that voluntary and involuntary movements are 

significantly different from each other as the latter are 

recorded in a clinical setting while the former are contrived 

in a controlled laboratory environment. Certainly, the 

involuntary movements are a subset of the wide ranges of 

artifacts encountered in voluntary movements. Thus, they 

represent only a small fraction of the true artifact dynamics. 

Despite the different noise dynamics, we obtained the same 

optimal threshold values for SE and kurtosis for both 

voluntary and involuntary movements.  This is important 

because it suggests that our derived threshold values are 

nearly optimal and, therefore, further tuning may not be 

required. Often, threshold values are derived from training 

data, so the accuracy becomes degraded with independent 

test data, but our results suggest that this is another 

advantage of our method.  

    While the specificity of SE and kurtosis measures was 

very high in finger-PPG data with voluntary movements, the 

sensitivity was relatively lower (Table 2). This is primarily 

because repetitive motions such as the left-right movements 

exhibit some degree of periodicity and repetitiveness which 

do not significantly alter the peakedness or tail 

characteristics of the PDF as compared to the clean data 

segments. Hence, we observed overlap in SE and kurtosis 

values between the clean and artifact-corrupted PPG data 

especially at the 10% noise level (Fig. 2b), which decreased 

the sensitivity to a great extent. While the finger-PPG sensor 

employed in the voluntary artifact protocol is from a 

different manufacturer than the sensor used during clinical 

experiments, we do not believe this has led to lower 

sensitivity values with the former data.  

In our second experimental protocol, we simulated 

artifacts via voluntary left-right finger movements for 10% 

to 50% of the total 60 s duration of a PPG segment, since 

episodes of motion probably occur for a short duration of 

time, typically not exceeding 30s in real clinical situations 

[7]. The segment size of the PPG signal for our 

computational algorithm has been chosen to be 60s instead 

of shorter segments of a few seconds duration due to the fact 

that the statistical measures perform more accurately on 

longer segments than on very short segments. Our algorithm 

is able to detect the artifact-corrupted data segments with 

good accuracy when the data length is 1 minute in duration. 

While we have chosen the duration of the sliding window 

length to be 10 seconds, it can be reduced to 1 second but at 

the expense of a significant computational load. Moreover, 

the purpose of our algorithm is to identify artifacts in PPG 

data rather than to localize them so that replacement data can 

be inserted in place of the corrupted segment. Thus, a 

smaller sliding window segment does not provide any better 

accuracy or meet our needs.  

In conclusion, our computational algorithm was presently 

tested for the detection of involuntary and voluntary motion 

artifacts. Our approach offered very high sensitivity and 

specificity for the detection of voluntary and involuntary 

artifacts, and is real-time realizable as it only takes 0.137 

second a 1.66 GHz Intel Core2 processor using Matlab®.  
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TABLE II 

 

THE PERFORMANCE OF SETH=0.8, KTH=3.5 AND FUSION OF THESE 

TWO METRICS FOR THE DETECTION OF MNA IN FINGER-PPG 

RECORDED WITH VOLUNTARY MOVEMENTS 

 

 

Sp 

(%) 

Se  (%) 
Overall 

Se 

(%) 

Acc 

(%) 10% 

noise 

20% 

noise 

30% 

noise 

40% 

noise 

50% 

noise 

SETh=0.8 99.4 77.5 90.3 91.9 89.7 75.4 85.0 87.4 

KTh=3.5 98.6 49.4 72.9 77.5 91.4 71.7 72.6 77.0 

Fusion 

detection 
98.3 77.2 90.0 91.6 95.7 79.7 86.9 88.8 
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