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Statistical Approach to Quantify the Presence
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Abstract—The bispectrum is a method to detect the presence of
phase coupling between different components in a signal. The tra-
ditional way to quantify phase coupling is by means of the bicoher-
ence index, which is essentially a normalized bispectrum. The ma-
jor drawback of the bicoherence index (BCI) is that determination
of significant phase coupling becomes compromised with noise and
low coupling strength. To overcome this limitation, a statistical ap-
proach that combines the bispectrum with a surrogate data method
to determine the statistical significance of the phase coupling is in-
troduced. Our method does not rely on the use of the BCI, where the
normalization procedure of the BCI is the major culprit in its poor
specificity. We demonstrate the accuracy of the proposed approach
using simulation examples that are designed to test its robustness
against noise contamination as well as varying levels of phase cou-
pling. Our results show that the proposed approach outperforms
the bicoherence index in both sensitivity and specificity and pro-
vides an unbiased and statistical approach to determining the pres-
ence of quadratic phase coupling. Application of this new method
to renal hemodynamic data was applied to renal stop flow pressure
data obtained from normotensive (N = 7) and hypertensive (N =
7) rats. We found significant nonlinear interactions in both strains
of rats with a greater magnitude of coupling and smaller number
of interaction peaks in normotensive rats than hypertensive rats.

Index Terms—Bicoherence, bispectrum, cross bispectrum, non-
linear interactions, quadratic phase coupling, surrogate data.

I. INTRODUCTION

THE BISPECTRUM is a useful tool for identifying a pro-
cess that is either non-Gaussian or is generated by nonlin-

ear mechanisms. Application of the bispectrum has been espe-
cially popular in biological systems because of the ubiquity of
inherently nonlinear characteristics of biological mechanisms.
One such characteristic is the presence of nonlinear interac-
tions that have been detected in neural [1]–[4], renal [5], [6],
and cardiovascular [7], [8] systems, in particular. Detection of
nonlinear interactions has been particularly useful in neural sys-
tem studies because the bispectrum has been used effectively to
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detail changes in interactions with the level of anesthesia and
sedation [9]–[11]. Furthermore, it has been used in an attempt
to detect and predict epileptic seizure events [12].

While nonlinear interactions can be identified in many forms,
including phase coherence, the bispectrum is ideally suited to
detecting phase coupling between two components of a process
[13]. The power spectrum suppresses phase relations; thus, it
cannot be used for detection of phase coupling.

Quantification of phase coupling via the bispectrum is ob-
tained by estimating the bicoherence index (BCI), which is
essentially a normalized bispectrum obtained by dividing the
bispectrum by the power spectra of the signal [13]. The theoret-
ical values of the BCI correspond to a range from insignificant
to highly significant phase-coupled peaks. Phase coupling im-
plies both frequency and phase coupling, in which the third
frequency peak and its phase are the sum of the first two fre-
quency peaks and phases. The BCI is designed to consider only
phase-coupled components, eliminating bispectral peaks result-
ing from frequency locking alone that should not be present in
a bispectrum but are often represented. However, due to tech-
nical considerations such as using an insufficient number of
segments to compute the bispectrum, frequency-coupled peaks
will sometimes appear in the BCI. Further, for finite-length data
sets, the high variability present in the bicoherence index will
cause theoretically Gaussian processes to have a nonzero value.

To avoid making erroneous decisions about the presence of
phase coupling based on the BCI, a method was proposed by
Elgar and Guza [14] that is based on modeling the significance
level for zero bicoherence. In this work, the level of significance
was based primarily on the number of segments used in the
calculated bicoherence. We have recently proposed an autore-
gressive bispectrum combined with surrogate data method to
test the statistical significance of the obtained quadratic phase-
coupled peaks [6]. This approach allows better detection of
phase-coupled peaks, even with noise contamination. While
this approach, known as S-statistics, is certainly an improve-
ment over the BCI itself, the method still suffers from low
specificity due to a normalization procedure that can allow in-
significant bispectral peaks to become significant. In addition,
in certain instances, the BCI values are greater than one when a
small amount of time variance was introduced into the data. This
further complicates the interpretation of results, as most physi-
ological data inherently have some degree of time variance. To
compensate for this problem, Pinhas et al. [15] introduced a
method that statistically removes these erroneous peaks. How-
ever, this method suffers from the fact that it is based on the
central limit theorem, which requires a large amount of data
that may be difficult to obtain with physiological data.
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Given the aforesaid problems associated with the detection of
phase coupling with the use of the BCI as well as S-statistics,
the aim of the present work is to circumvent the limitations of
both methods. The approach we propose does not involve the
use of the BCI, rather, it uses bispectrum estimation followed
by testing the significance of the results against surrogate data
realizations. The goal of the surrogate data transformation is
to destroy the nonlinear dynamics in the data. This leaves a
time series with only linear properties; thus no phase coupling
should be detected. As a result, only bispectral peaks remaining
must arise from harmonic components and are insignificant. The
efficacy of our new method, based on the use of the bispectrum
estimation followed by the use of a surrogate data technique,
will be compared to the traditional BCI as well as combination
of the BCI and the S-statistics method.

II. METHODS

A. Bispectral Analysis

There are two nonparametric approaches, direct and indirect,
to compute the bispectrum. The indirect method involves com-
putation of the third-order cumulant followed by the 2-D Fourier
transform of the third-order cumulant. For our analysis, we use
the direct method, which is estimated by taking the average of
triple products of the Fourier transform over K segments

BS(f1 , f2) =
1
K

K∑

k=1

Xk (f1)Xk (f2)X∗
k (f1 + f2) (1)

where Xk (f) is the Fourier transform of the kth segment and ∗
indicates the complex conjugate. Note that as the size of each
segment decreases, the frequency resolution will also decrease.
Therefore, it is important to choose the proper segment size
so that there is sufficient resolution to resolve the dynamics in
the signal while retaining enough segments to properly reduce
variance in the bispectrum for the detection of phase coupling.
This tradeoff between time and frequency resolution also per-
tains to the indirect method and to a lesser extent to parametric
approaches. In addition, while our estimation results are all
based on the direct method of computing the bispectrum, our
approach of statistically quantifying the presence of phase cou-
pling equally applies to both indirect and parametric (model
based) approaches to estimating the bispectrum.

B. Necessity of Statistical Analysis in Bispectral Analysis

To illustrate the necessity of complementing bispectral es-
timation with statistical analysis, a simple simulation example
is provided. The simulation consists of two test signals, both
involving three frequencies, as shown next:

y1,2(t) = sin(2πf1t + θ1)

+ sin(2πf2t + θ2) + A sin(2πf3t + θ3) (2)

where f1 and f2 are set to 0.1 Hz and 0.2 Hz, respectively. For
both test signals, the third frequency, f3 , is set to f1 + f2 = 0.3
Hz in order to achieve the frequency coupling. Phases associated
with the first two frequencies (θ1 and θ2) are randomly generated

Fig. 1. Bispectra (middle panels) and bicoherence (bottom panels) with (left
panels) and without (right panels) phase coupling. Note the similar phase cou-
pling magnitudes for both phase uncoupled and coupled system.

between −π and π with a uniform distribution. For the first test
signal (y1(t)), the third frequency is also phase coupled such
that θ3 = θ1 + θ2 .The second test signal (y2(t)) is not phase
coupled so that θ3 is also randomly generated to be between −π
and π. The amplitude A is set to 0.5 for the phase-uncoupled
signal whereas it is set to 1.5 for the phase-coupled signal. The
amplitude of the phase-uncoupled signal is set to a high value
to simulate a condition, where high bispectral values can be
obtained from frequency-matching components alone. Both test
signals were generated at 1-Hz sampling rate and contained 2048
data points. For both test signals, 32 segments, each containing
64 data points, with no overlapping segments, were used to
estimate the bispectrum.

The resulting bispectra (middle panels) and the BCI (bottom
panels) for the phase-coupled and uncoupled signals with their
respective power spectra (top panels), are shown in the left and
right panels of Fig. 1. The power spectra of the phase-coupled
and uncoupled signals are indistinguishable in terms of fre-
quency information, albeit the amplitude of the phase-coupled
spectrum is lower especially at 0.3 Hz. Although the phase-
coupled signal has lower spectral amplitude than the phase-
uncoupled spectral peak, we observe a similar bispectral peak
magnitude at the frequency pair (0.1, 0.2) Hz in these two sys-
tems. This example demonstrates an important issue. Due to in-
herent limitations associated with the bispectrum estimation, it is
possible to obtain a bispectral peak for the phase-uncoupled sig-
nal under certain frequency and amplitude combinations. That
is, frequency coupling alone is sufficient to generate peaks in the
bispectrum. Hence, a statistical method is needed to distinguish
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true peaks resulting from frequency and phase coupling from
erroneous peaks resulting from frequency coupling alone. The
bottom panel shows the bicoherence of the test signals. As shown
on the bottom right panel, the BCI was able to correctly elim-
inate the phase-uncoupled peaks as these peaks have values
lower than the threshold value of 0.306, as derived by Elgar and
Guza [14]. However, note the inadequate frequency resolution
especially on the bottom left panel as compared to the figure
shown on the top left panel. In addition, this simulation is based
on noise-free and relatively long data records, conditions which
are seldom met with experimental data. The limitations of the
BCI will be further illustrated in Section III.

C. Traditional Statistical Methods

Traditionally, determination of phase-coupled peaks in the
bispectrum required the calculation of a normalized bispectrum,
called the bicoherence index (BCI). The BCI is calculated by

BCI(f1 , f2) =
BS(f1 , f2)√

P (f1)P (f2)P (f1 + f2)
(3)

where P (f) is the power spectrum of the signal.
From the BCI, one would then need a method for determining

significance in the peaks observed. The method developed by
Elgar and Guza [14] for determining significance in the BCI
based on describing the significance levels for zero bicoherence
was used here. Specifically, it was found that the 95% signif-
icance level for zero bicoherence is approximately

√
6/2m,

where m is the number of segments. Further, the S-statistical
method [6], based on surrogate data, was also used here for
comparison. While the S-statistics method was developed for
use with autoregressive-model-based bispectral estimation, we
adopt this technique for the direct method of computing the
bispectrum.

Surrogate data are a modified form of the original data that
eliminates nonlinear properties while retaining linear statistical
properties. Randomization of phases accomplishes the elimina-
tion of nonlinearity and since randomization can be performed
in many ways, we can obtain multiple realizations of surrogate
data from a single time series. This is useful in the statistical
testing of nonlinearity, as one can then use the generated sur-
rogate data as the null condition to be tested against. We chose
the iteratively refined surrogate data technique (IRSDT) [9].
The IRSDT will destroy any nonlinearity in the signal, and has
been shown to be more accurate than the amplitude-adjusted
Fourier transform technique [16] because it iteratively corrects
for deviations in the spectrum as well as maintains the correct
distribution of the signal.

The S-statistic approach involves generation of multiple real-
izations (∼100 suffice) of surrogate data. The BCI is calculated
for each realization of surrogates as well as for the original data.
The S value, which tests for the 95% significance of the de-
tected quadratic phase coupling, is based on the assumption that
the distribution of the surrogates follows a normal distribution.
In the current work, the threshold for S-statistics is set as the
95th percentile of the distribution of the BCI estimated on the
100 realizations of surrogate data. The threshold value is then

subtracted from the BCI value of the original data. Values above
zero are considered significant for the S-statistics.

We will show using simulation examples that the BCI and S-
statistics lack sensitivity and specificity, respectively. Due to the
inherent limitations of these traditional methods, a new approach
for evaluating quadratic phase coupling, based on surrogate data
of the bispectral estimate and completely bypassing the compu-
tation of the BCI, is described in the following section.

D. Proposed Approach: Surrogate Data Threshold Method
Applied to the Bispectrum and Not BCI

The bispectrum with surrogate (BWS) method is similar to
S-statistics, being also based on surrogate data. However, a
key distinction is the fact that it does not utilize BCI but only
the bispectrum estimate, since its statistical determination of
the presence of phase coupling uses surrogate data realizations.
The procedure involves generating 100 realizations of surrogate
data from the original data. The bispectrum of each of the sur-
rogates, as well as the original data, is calculated. The mean
and standard deviation of all 100 surrogates’ bispectral esti-
mates are calculated. The 95% statistical threshold values are
defined as the mean plus 2 standard deviations. To accentuate
specificity, we used a single threshold value (determined as the
largest among all candidate threshold values) for all frequencies
instead of having different threshold values for each frequency.
If higher sensitivity is desired, varying threshold values can be
used for different frequencies. Note that the statistical thresh-
old of the BWS, based on the normality assumption, is verified
using the Kolmogorov–Smirnov goodness-of-fit test [17]. Any
bispectral peaks estimated from the original data that are above
these threshold values are considered to have significant fre-
quency and phase coupling. Therefore, the difference between
the bispectrum value from the original data and the threshold
value is then calculated. Difference values above 0 will indi-
cate a bispectrum value above the threshold, and are therefore,
considered significant.

E. Simulation Conditions

The three methods, the BCI, S-statistics, and our proposed
approach (BWS) were tested by using simulated data under
different conditions. Unless otherwise noted, the test signal used
consisted of a phased-coupled triplet as described earlier, at a
1-Hz sampling rate with 2048 data points. The frequencies used
were f1 = 0.1, f2 = 0.2, and f3 = 0.3. The bispectra was also
calculated as described before with segment size of 64, but 128
points were used for the fast Fourier transformation (64 points
zero padding), and there were no overlapping segments.

To guard against counting the same bispectral peak twice
(especially possible if the frequency resolution is not high),
each peak was checked against its eight nearest neighbors. If
the magnitude of a peak was higher than any of its neighbors,
it was then considered a peak. We repeated this process for the
entire bispectrum. We then tested the peaks for significance of
using the three methods.



SIU et al.: STATISTICAL APPROACH TO QUANTIFY THE PRESENCE OF PHASE COUPLING USING THE BISPECTRUM 1515

F. Application of the BWS to Renal Blood Flow

The BWS was applied to experimental renal hemodynamic
data to demonstrate its efficacy. All experiments were performed
under protocols approved by The Institutional Animal Care and
Use Committee at Stony Brook and The University of South
Florida. The data were collected from a previous study in which
stop flow pressure (SFP) recordings from a single nephron
were measured in Sprague–Dawley (SDR, 240–300 g, n = 7)
and spontaneously hypertensive rats (SHR, 12-week old, n =
7) [18]. Surgical preparation and the stop flow pressure mea-
surements are detailed in our previously published study [6];
thus, they will only be briefly described here. Animals were
anesthetized with halothane administered in an oxygen–nitrogen
mixture and artificially ventilated after the administration of a
muscle relaxant. Tubular flow was interrupted with bone wax in
a selected proximal tubule, and intratubular hydraulic pressure
proximal to the wax block was measured via a 1-3 µm diameter
micropipette attached to a servo-nulling pressure circuit. Data
was recorded on a TEAC R-61 4-channel cassette data recorder
for offline analysis. The recorded data were replayed through an
electronic low-pass filter with a roll-off frequency of 1.5 Hz and
sampled digitally at 4 Hz. Before bispectral analysis, the data
were further filtered by a digital low-pass filter with a cutoff
frequency of 0.5 Hz, and downsampled to 1 Hz.

III. RESULTS AND DISCUSSION

A. Test for Normality

Our statistical threshold, based on the normality assumption,
was verified using the Kolmogorov–Smirnov goodness-of-fit
test [17]. The calculated P value was >0.05, which confirms
that this set is drawn from a normally distributed population.

B. Test of Robustness Against Noise Corruption

We tested the three methods for robustness against noise-
corrupted data. The generated signal was corrupted by additive
Gaussian white noise (AGWN) such that the SNR ranged from
25 to −25 dB. Ten independent realizations of Gaussian white
noise at each noise level were generated to corrupt the signal
in order to achieve a statistical result. The bispectrum was then
calculated for each realization of the noise-corrupted signal to
examine how robust each method was in detecting only the
true phase-coupled peak. To test the sensitivity of each method,
the calculated value of each method at the generated frequen-
cies were recorded for each realization and averaged. Further,
to test for specificity, the total number of significant detected
peaks across the entire bispectrum was also recorded for each
realization. The mean of sensitivity and the median of speci-
ficity results are reported in the top and bottom panels of Fig. 2,
respectively. Note that for the BCI, the thresholding method
proposed by Elgar and Guza was used [14], while for the S-
statistics and the BWS methods, a threshold value of 0 was used
as this represents the difference between the bicoherence value
of the data and surrogate data results. All of these threshold
values are noted as dashed lines.

Fig. 2. Comparison of three bispectral methods with noise contamination.
The data were corrupted by a variable amount of Gaussian white noise. The top
panels show the calculated value of each method at the generated frequencies.
The bottom panels show the median number of significant peaks detected at
each noise level.

As shown in the top panels of Fig. 2, the BCI is most suscep-
tible to noise corruption as it needs an SNR greater than −11 dB
to detect the true peak. The S-statistics method is able to tolerate
a greater amount of noise as it remains robust even with SNR at
−µ−20 dB (robust in the sense that it always detects the phase-
coupled peak, even if it also detects extraneous peaks). The
performance of the BWS is the best out of the three, being able
to detect the frequency peak at a noise level as low as −22 dB.

Comparison of the specificity information for the three meth-
ods is shown in the bottom panels of Fig. 2. We observe that
the S-statistics method is nonspecific, as it detects an average
of 14 additional nonphase-coupled peaks over the range of SNR
that we have used. The BCI and BWS methods have high speci-
ficity, detecting only the phase-coupled peak up until the noise
level at which these methods fail. This simulation shows that the
BWS has the optimal combination of specificity and sensitivity
in the case of varying amounts of noise in the data. Further, it
should be noted that the degree of coupling in the test signal
was not varied. Therefore, ideally the calculated values should
not change with noise corruption. The top panel of Fig. 2 shows
that all three methods’ average calculated values decrease with
increasing noise. However, the BWS is most resistant to this
effect, with a relatively unchanging calculated value up until
approximately 0 dB. This suggests that the calculated values
from the BWS used to assess coupling strength are the most
accurate, as the BWS method is the least affected by noise cor-
ruption. Further supporting evidence to this effect is shown in
the next few sections.

C. Test of Amount of Phase Coupling

This example was designed to determine each method’s fi-
delity in discriminating uncoupled phases. The amount of phase
coupling was varied by injecting a number of data points that
had uncoupled phases. The amount of phase coupling varied
from 0% to 100% at an increment of 1%. For each level of
phase coupling, 100 realizations of the test signals were gen-
erated. Each realization of the test signal was corrupted by 0
dB AGWN. For sensitivity testing, the calculated value for each
method was recorded at the known phase-coupled frequency.
For specificity, the total number of significant detected peaks in
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Fig. 3. Comparison of three bispectral methods with varying amounts of
coupling. Plotted on the top panels are the calculated values at the known
phase-coupled frequency for each of the three methods. The dotted lines show
the significant threshold levels for each of the three approaches.

the entire bispectrum was recorded and the median between the
realizations is reported. These values are shown in Fig. 3 as a
function of varying percent of phase coupling.

As shown in the top panels of Fig. 3, the percent of coupling
that each method was sensitive to was approximately 50%, 35%,
and 18% for the BCI, S-statistics, and the BWS, respectively.
The bottom panels show the specificity of the three tests. The
trend here is the same as the prior example, where the speci-
ficity for the BCI and BWS is very high, while it is poor for
the S-statistics method. This example provides evidence that
the BWS has the best combination of sensitivity and specificity
in detecting low levels of phase coupling. Further, it should be
noted that the calculated value for the BWS linearly increases
with increasing coupling percent for values above 18%, thereby
suggesting that the BWS method provides a good quantification
of the actual amount of phase coupling present in the system.
The BCI and the S-statistics, however, show a more sigmoidal
relationship with only a small window of linearity from approx-
imately 40% to 70% coupling. The problem here is that it would
be difficult to distinguish between two signals with high cou-
pling strengths with the BCI and the S-statistics, as they will
show up with similar values. This suggests that the BCI and S-
statistics are less able to distinguish relative degrees of coupling
when signals are strongly coupled.

D. Effects of Segment Number

Varying the number of segments is tested, as it has been
demonstrated that only by having a sufficient number of seg-
ments will one detect the presence of phase coupling, if it ex-
ists [13]. The size of each segment was kept constant at 64 data
points. The number of segments was varied from 1 to 32 at an in-
crement of one. For example, 1 segment means there are 64 data
points and 32 segments correspond to 2048 data points in total,
still 64 in each segment. For each segment, 100 realizations of
the test signal were generated. Each realization was corrupted
by 0 dB AGWN. Similar to previous simulations, the calculated
value of the three tests and the number of detected peaks will be
recorded for sensitivity and specificity, respectively. The result
of this simulation is shown in Fig. 4.

The top panels of Fig. 4 show the calculated values of each
method as a function of segment number. It should be noted

Fig. 4. Comparison of three bispectral methods with varying number of seg-
ments. The top panels show the calculated value of each method at the known
phase-coupled frequency. The dotted lines in the top panels show the threshold
levels for each method: 0.5 for the BCI, 2 for the S-statistics, and 0 for the BWS.
The bottom panels show the number of detected peaks for the three methods.

TABLE I
COMPARISON OF THE THREE BISPECTRAL METHODS’ ABILITIES TO TOLERATE

A SMALL AMOUNT OF TIME VARIANCE IN THE DATA

here that the threshold for the BCI, shown as the dashed curve,
changes with the segment number according to the method by
Elgar and Guza [14]. It can be seen from the top panels that the
minimum number of segments needed to detect significant peaks
for the BCI, S-statistics, and BWS are 6, 4 and 3, respectively.
This corresponds to 384, 256, and 192 points, respectively. The
specificity analysis in the bottom panel shows a similar trend as
in previous tests, where the BCI and the BWS have the highest
specificity, while the S-statistics method detects many erroneous
peaks. From these results, it could be concluded that the BWS
has the best tolerance to small amounts of data.

E. Test of Small Amount of Time Variance

In this simulation, we test the problem of having a small
amount of time variation (nonstationarity) in the data while
using the time-invariant bispectrum for analysis. This problem
was originally reported by Pinhas et al. [15]. The simulated test
signal consisted of 2048 data points at a sampling rate of 1 Hz.
This signal contains 32 segments of 64 data points each. Two
frequency triplets are used in the signal. The first frequency
triplet contains frequencies 0.05, 0.1, and 0.15 Hz. The second
frequency triplet contains frequencies 0.2, 0.25, and 0.45 Hz.
Both frequency triplets are fully phase coupled. The second
frequency triplet exists only in the last segment of the data,
while the first frequency triplet exists in all data. This simulates
a signal, where a small portion of it is different from the rest.
One hundred realizations of the test signal were generated in
this simulation, and the results are averaged. The three methods
are compared and the results are summarized in Table I.
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Fig. 5. Comparison of three bispectral methods with two triplets of varying
amounts of phase coupling. In this simulation, the first triplet was fully phase
coupled, while the second triplet had a varying amount of phase coupling ranging
from 2 to 100%, in 1% increments. The calculated values for each method for
the two triplets were recorded, and the ratio between the calculated values of
the two triplets is shown in the top panels. The bottom panels show the number
of detected peaks from the three methods.

As shown in Table I, the calculated values for the BCI and
S-statistics show a much higher value for the second triplet
compared to the first triplet. This is an erroneous result, as the
second triplet only exists in a small amount of data, which
should, in theory, lead to a smaller magnitude of coupling. For
the BWS, the calculated value of the second triplet is lower than
the first. Further, the value of the first triplet is 32.35 times that
of the second. This matches very well to the 32:1 ratio (# of
segments between the first and the second frequency triplets)
between the first and second triplet, which may suggest that the
calculated value of the BWS accurately quantifies the degree of
coupling that is in the signal. It is important to note here that for
the BCI and the S-statistics, the calculated values also show a
32 to 1 ratio, except in the opposite direction (the value for the
second triplet is 32 times that of the first). This phenomenon is
further investigated in the next section.

F. Test of the Relative Magnitudes of the Calculated Values

In this simulation, the three methods were tested for their
ability to quantify the relative coupling strengths between mul-
tiple coupling processes in a signal. The simulation signal used
was the additive sum of two different frequency triplets, result-
ing in a signal with six frequency components. Each frequency
triplet was generated in the same manner as described in Sec-
tion II–B. The specific frequencies used were f1 = 0.05 Hz,
f2 = 0.1 Hz, f3 = f1 + f2 = 0.15 Hz, f4 = 0.2 Hz, f5 = 0.25
Hz, f6 = f4 + f5 = 0.45 Hz. The coupling percent of the
f4f5f6 triplet was varied between 0% and 100% at an incre-
ment of 1%, while the f1f2f3 triplet was fully phase coupled.
The signal was generated at a 1-Hz sampling rate with 2048 data
points. One hundred realizations of the test signal were gener-
ated, and the averaged results are shown. The calculated values
at the two simulated frequency triplets, and the total number of
detected peaks in the entire bispectrum, were recorded. Further,
the ratio between the calculated values of the two triplets was
also calculated. This ratio should ideally change linearly with
coupling percent if the calculated values represent the actual
strength of coupling.

The top panels of Fig. 5 show the plot of the ratio between
the calculated values of the two triplets. Similar to the previous

Fig. 6. Stop-flow pressure tracing (A) and the corresponding bispectrum with-
out (B) and with surrogate data (C). Note the elimination of many peaks in (B)
with the use of the BWS.

simulation, the BCI and the S-statistics both have a linear region
at the start of their detectable range. However, the ratio quickly
saturates to the value of 1. For the BWS, the ratio remains rela-
tively linear over its entire range. Linear regression of the ratio
from the BWS yields an R2 of 0.97. This linear behavior of the
ratio is important when multiple components exist in a signal,
and one wishes to quantitatively compare the degree of coupling
between the mechanisms. For the BCI and the S statistics, this
will be difficult at best since the ratio between the calculated val-
ues of 70% to 100% shows a very similar value. The BWS, on
the other hand, shows a linear relationship across its detectable
range, allowing for a meaningful quantitative comparison be-
tween the different components in the signal.

The bottom panels of Fig. 5 show the number of detected
peaks from the three methods. The trend in this simulation is
similar to all the other examples, where the BCI and the BWS are
very sensitive and detect the correct number of peaks for their
detectable range, while the S-statistics method is not specific
and detects a high number of peaks over all ranges.

In summary, the two simulations presented in this section
show that the BWS is able to correctly determine the relative
magnitude of different coupling components in the same signal.
The other two methods, on the other hand, are less effective in
quantifying the degree of coupling between dynamics.

G. Application of the BWS to Renal Data

Our previous data analysis involving autoregressive bispec-
trum revealed quadratic phase coupling at the prescribed myo-
genic (MYO: 0.1–0.3 Hz) and tubuloglomerular feedback (TGF:
0.02–0.05 Hz) frequency ranges [6]. Thus, the purpose of this
section is to demonstrate the presence of such quadratic phase
coupling using the BWS method, as well as its ability to dis-
criminate only the significant phase coupling peaks. A typical
BWS result is shown in Fig. 6. Panel A of Fig. 6 shows the time
series of a typical single nephron stop flow pressure. Note both
fast and slow oscillations in the stop flow pressure data, which
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Fig. 7. Summary of the application of the BWS on renal stop flow pressure
measurements on both SDR (n = 7) and SHR (n = 7). The top panel shows the
number of significant peaks between the two strains, with the blue + represent-
ing the median. Both the magnitude and the number of peaks are significantly
different (P < 0.05), with the SHR showing a lower magnitude as well as a
greater number of peaks. Bottom panel shows the average BWS magnitude of
significant peaks between the TGF and MYO mechanisms in log scale.

reflect the activity of the two autoregulatory mechanisms. Panel
B shows the bispectral estimation without the use of surrogate
data on the data shown in panel A. The largest peak is at the
prescribed frequency pair (TGF: 0.0234 Hz, MYO: 0.1328 Hz)
associated with the TGF and MYO mechanisms. In addition to
the largest peak, there are many smaller peaks present in the
bispectral plot. It is difficult to discern whether these smaller
peaks are the result of true phase-coupled peaks or if they sim-
ply arise from frequency coupling alone, measurement noise, or
estimation error. Panel C shows the bispectrum of the same time
tracing after using the BWS method to eliminate the erroneous
peaks. The smaller peaks shown in panel B have mostly been
eliminated, preserving only the phase-coupled peak. Summa-
rized results for both SDR (n = 7) and SHR (n = 7) are shown
in Fig. 7. As shown in the top panel of Fig. 7, we observe non-
linear interactions between MYO and TGF in all SDR and SHR
and this result is consistent with past studies [6], [19], [20]. In
addition, we found that there was a greater number of signifi-
cant nonlinear interaction peaks with SHR than SDR. However,
the strength of interactions is significantly greater in SDR than
SHR (P < 0.05) as shown in the bottom panel of Fig. 7. The
magnitude result is shown in log scale due to the SDR having
a BWS magnitude of more than an order of magnitude larger
than that of the SHR.

IV. DISCUSSION

The simulation examples presented generally show that our
proposed approach, BWS, offers the best combination of sen-
sitivity and specificity under all of the tested conditions. Fur-
ther, the BWS in general is more sensitive than the BCI and
the S-statistics method in detecting coupling. The S-statistics
method detects many spurious peaks; the culprit is the nor-
malization procedure inherent in the computation of the BCI.
The S-statistics method is reliable and appropriate to use when
there is a priori information about the presence of quadratic
phase coupling at specific frequencies. Furthermore, the use of
S-statistics is more appropriate with parametric approaches to

bispectral estimates, as the process of finding the proper number
of autoregressive terms limits introduction of spurious peaks [6].
Otherwise, the use of S-statistics via the direct method to com-
puting the bispectrum is not advised. Finally, the BWS provides
more accurate quantitative measure of the degree of coupling
strength than either the BCI or S-statistics methods do, as shown
in Figs. 3 and 5. It should be noted, however, that the BWS does
not provide a normalized indicator for coupling strength; thus,
the BWS will be more appropriate for comparison between dif-
ferent conditions.

Although not specifically shown in this paper, the BWS can
also be applied to the cross bispectrum. In the cross bispectrum,
phase coupling that may exist between two signals is detected.
A similar method can be used, where surrogate data realizations
are generated for each of the two signals, and the cross bispec-
tra are calculated between the surrogates in order to obtain a
statistical threshold. Moreover, while the results presented are
based on the direct method of calculating the bispectrum, both
indirect and model-based bispectra are equally applicable to the
BWS.

In this paper, a statistical method based on surrogate data
was introduced to analyze bispectral data. Our approach com-
pletely bypasses the use of the bicoherence index. As shown
in our results, the normalization factor in the computation of
the bicoherence index is the main culprit in providing less sen-
sitive and less specific results. The BWS, because it does not
use the BCI at all, provides results far superior to either the
BCI or S-statistics. It should be noted that the bispectrum de-
tects not only quadratic phase-coupled phenomenon but it also
provides information regarding nonlinearity, and deviation from
Gaussian process. Therefore, with the BWS approach, one can
obtain statistical quantification regarding the phase coupling,
nonlinearity, and deviation from normality.

The BWS, BIC, and S-statistics were all based on nonpara-
metric bispectral estimation. However, all of the methods are
also applicable to parametric bispectral estimation. In fact, the
S-statistics method was already used with an autoregressive bis-
pectral approach [6]. Given the fact that the BWS outperforms
the S-statistics and BIC, we surmise that the BWS will also be
applicable as an accurate approach for determining the statistical
threshold levels of the parametric bispectrum. The advantages
of using the parametric over the nonparametric bispectrum are
higher frequency resolution and its ability to retain the accuracy
for data with short data records. However, the main disadvan-
tage of the parametric approach is the determination of model
order, which can be complex.

As in our previous study [6], we observe consistent phase
coupling in tubular pressure recordings from both SDR and
SHR with the application of the BWS. The BWS revealed that
the SHR has a significantly greater number of MYO and TGF
interaction peaks, but the strength of coupling is smaller than
SDR. This may be due to either more transient behavior or
the TGF frequency shifting, both of which we have previously
reported [5], [21]. These results are also consistent with a recent
modeling study [22], which suggests that the TGF mechanism
in the SHR switches between different dynamic modes. This
shifting of modes can lead to the increased amount of peaks
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detected in the SHR as each mode would show up as a separate
peak. Furthermore, the shifting of modes would decrease the
amount of time of each mode in the total time record, leading to
a decrease in the magnitude of coupling observed.

The significance of detecting the presence of phase coupling
in renal blood flow is that perhaps this can be used as a marker in
differentiating normal versus disease conditions that may arise
because of autoregulatory dysfunction in kidneys. It can be
speculated that with progressive renal autoregulatory dysfunc-
tion, the presence of quadratic phase coupling, which is needed
for efficient autoregulation in normal conditions, may dissipate.
However, further studies are needed to determine if such a sce-
nario occurs. We are currently evaluating nephron-to-nephron
interactions and how they may differ in both normotensive and
hypertensive rats using the cross BWS, and we hope to report
our findings in the near future.
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