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Abstract—The cross-bispectrum is an approach to detect the
presence of quadratic phase coupling (QPC) between differ-
ent components in bivariate signals. Quantification of QPC is
by means of the cross-bicoherence index (CBI). The major
limitations of the CBI are that it favors only the strongly
coupled signals and its accuracy becomes compromised with
noise and low coupling strength. To overcome this limitation,
a statistical approach which combines CBI with a surrogate
data method to determine the statistical significance of the
QPC derived from bivariate signals is introduced. We
demonstrate the accuracy of the proposed approach using
simulation examples which are designed to test its robustness
against noise contamination as well as varying levels of phase
coupling and data lengths. Comparisons were made to the
traditional CBI and the method based on the use of cross-
bispectrum followed by a surrogate data technique. Our
results show that the cross-bicoherence with surrogate data
technique outperforms the two other methods compared in
both sensitivity and specificity, and provides an unbiased and
statistical approach to determining the presence of QPC in
bivariate signals. These results are in contrast to our recent
study where the auto-bispectrum combined with surrogate
data approach had the best performance. Application of this
approach to renal hemodynamic data was applied to renal
stop flow pressure data obtained in the nephrons of the
normotensive (N = 18) and hypertensive (N = 15) rats. We
found significant nonlinear interactions between nephrons
only when they are derived from the same cortical renal
artery. The accuracy was 100% and verified by comparing
the results to the known vascular connectivity between
nephrons.
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INTRODUCTION

In our previous work, nonlinear coupling between
tubuloglomerular feedback (TGF) and the myogenic
(MYO) mechanisms within a single nephron11,15 as well
as the whole kidney level2,11 was detected for both
normotensive and spontaneously hypertensive rats
(SHRs) using a bispectrum approach. The reason for
the interest in the detection of nonlinear interactions is
that they can give rise to a number of system properties,
including chaos, synchronization, and frequency mod-
ulation,16 which may be physiologically important, and
which do not occur in linear systems. The bispectrum is
an algorithm used to detect both frequency and phase
coupling between different components of a signal and
bispectral peaks should only appear when these two
criteria have been met.9 However, in practice, having
only the frequency coupling or insufficient segment
averaging can lead to erroneous bispectral peaks. A
long held dogma is that these erroneous peaks can be
rejected by the use of a bicoherence index, but its
determination of significant peaks favors only those
with strong coupling. To overcome this limitation, we
recently developed an algorithm which combines the
bispectrum with surrogate data method to determine
the statistical significance of the phase coupling.15 Our
approach completely bypasses the use of the bicoher-
ence index. Our method showed far greater sensitivity
and specificity than the bicoherence index and paved a
way for an unbiased and statistical approach to deter-
mine the presence of quadratic phase coupling (QPC).

For bivariate signals, the cross-bispectrum can be
used to detect QPC between dynamic components
from two different signals. For example, it will be
possible to detect coupling between the autoregula-
tory mechanisms from different nephrons.15 Our aim
is to apply the cross-bispectrum to examine if there
are any differences in nephron-to-nephron interac-
tions between normotensive and hypertensive rats.
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Inherent weaknesses of the cross-bispectrum are
nearly identical to those of the auto-bispectrum. For
example, the cross-bispectrum also requires a sufficient
number of segments to detect proper phase coupling. If
these are not available, non-phase coupled components
will appear in the resulting cross-bispectra, confound-
ing the interpretation of the results. The most widely
used approach to suppress these non-phase coupled
peaks is via the cross-bicoherence index (CBI). Using
multiple realizations of Gaussian white noise (GWN)
signals, Shils et al.14 provided a quantitative approach
to determine a 95% significance level to discriminate
between erroneous and true phase coupled peaks,
based on the number of segments used. However, the
main disadvantage of this approach is that the distri-
bution of white noise is different than the data. In
addition, the significance level derived by the white
noise is a stringent criterion and may miss weak cou-
plings between two signals, thereby leading to type II
error.

Given the aforesaid limitations and the fact that we
found a solution to selection of the significance of the
determined auto-bispectral peaks based on a surrogate
data technique, we initially assumed the same method
can be used for cross-bispectrum. That is, first cal-
culate the cross-bispectrum followed by surrogate
data to determine the statistical significance of the
calculated cross-bispectral peaks. Note that in our
recent study, it was found that using the auto-
bispectrum followed by surrogate data to determine
the statistical significance was more accurate than
using either the conventional bicoherence index or
bicoherence followed by the surrogate data.15 Similar
to the auto-bispectrum case, we expected poor per-
formance of the CBI for quantitative determination of
the significance of the cross-bispectrum. To our sur-
prise, the most accurate approach for auto-bispectrum
(bispectrum followed by surrogate data) was not as
effective for cross-bispectrum. Thus, the aim of the
present study was to systematically investigate and
compare three different approaches to determine the
most accurate way to assess the significance of the
estimated cross-bispectral peaks. The three methods
compared are: (1) cross-bicoherence index (CBI), (2)
cross-bispectrum with surrogate (CBS) data, and (3)
cross-bicoherence with surrogate data. We have pre-
viously shown that the method of using bicoherence
followed by the surrogate data works better than
using only the bicoherence, but its accuracy was lower
than the bispectrum with surrogate data approach.15

Note that the second and third methods as defined
above differ in that the former method uses cross-
bispectral values whereas the latter method uses the
cross-bicoherence values to determine the statistical
significance.

To quantitatively compare three methods, computer
simulations involving their effectiveness against vary-
ing levels of noise, coupling, and data lengths were
investigated. Unlike the auto-bispectrum, it was found
that the approach of cross-bicoherence with surrogate
data performed the best for all test conditions con-
sidered. The technique of the cross-bicoherence with
surrogate data was applied to stop flow pressure
measurements obtained from two nephrons simulta-
neously in both normotensive and hypertensive rats to
detect and discern quantitative differences in the QPC
between two conditions.

METHODS

Cross-Bispectral Analysis

Given two stationary zero mean processes, x(n) and
y(n), the direct method of computing the cross-bi-
spectrum, Bxyx, involves taking the average of triple
products of the Fourier transform over M segments:

Bxyxðx1;x2Þ ¼
1

M

XM

m¼1
Xmðx1ÞYmðx2ÞXm�ðx1 þ x2Þ

ð1Þ

where Xm(x1) and Ym(x2) are the Fourier transform of
the m-th segment and * indicates the complex conju-
gate.

Similar to auto-bispectrum, the cross-bispectrum
will reveal peaks when QPC occurs between the two
signals. An example of the QPC via the cross-
bispectrum is illustrated in Fig. 1 using the following
example10:

x1ðnÞ ¼ e j 2pfxð1ÞnDþ/xð1Þð Þ

x2ðnÞ ¼ e j 2pfxð2ÞnDþ/xð2Þð Þ

y1ðnÞ ¼ e j 2pfyð1ÞnDþ/yð1Þð Þ

y2ðnÞ ¼ e j 2pfyð2ÞnDþ/yð2Þð Þ

xðnÞ ¼ x1ðnÞ þ x2ðnÞ þ x1ðnÞx2ðnÞ
yðnÞ ¼ y1ðnÞ þ y2ðnÞ þ y1ðnÞx2ðnÞ

ð2Þ

The signals x(n) and y(n) are the two composite
outputs of the simulation. In this simulation, the
frequencies are set to: fx(1) = fy(1) = 0.03 Hz and
fx(2) = fy(2) = 0.12 Hz to simulate the slow and fast
mechanisms of renal autoregulation. Thirty-two seg-
ments of 128 data points of both x(n) and y(n) were
generated (for a total of n = 4096 data points and
step size D = 1 s each), with the initial phase of each
segment, /, randomly distributed along 0 and 2p.
Phase coupling is unidirectional from y(n) to x(n),
with the third term in y(n) being responsible for the
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coupling. Note that the simulated signals have imag-
inary portions. For visualization purposes, only the
real portion of the signals is shown in the top two
panels of Fig. 1. The bottom left panel shows the
resulting cross-bispectra for these two simulated sig-
nals. Note that a single large peak is shown at the
(0.03, 0.12) Hz frequency pair, suggesting significant
phase coupling between the signals. The example
provided was free of noise. More realistic example is
to contaminate the signals as described in Eq. (2) with
GWN. The signal-to-noise (SNR) ratio was set to
�20 dB. The result is shown in the middle panel of
Fig. 1. While the largest peak is the coupled peak,
with such a low SNR, we observe many noise-related
peaks in the cross-bispectrum.

To address how one can comb through to find only
the significant phase coupled peak, the most widely

used approach is a CBI, which is essentially a nor-
malized cross-bispectrum:

bicxyxðx1;x2Þ ¼
Bxyxðx1;x2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pxðx1ÞPyðx2ÞPxðx1 þ x2Þ
p ð3Þ

where bicxyx denotes the cross-bicoherence and P
denotes the power spectrum. Shils et al.14 introduced a
95% threshold of

ffiffiffi
3
p

=
ffiffiffiffi
N
p

; where N is the number of
segments. Using this threshold value for the simulation
above, we would erroneously reject the true phase
coupled peak at (0.03, 0.12) Hz frequency pair, as
illustrated in the right panel of Fig. 1. This type II
error is likely due to the fact that the above-defined
95% threshold value is too stringent since it was based
on GWN simulations, thus it is not able to discern a
phase coupling that is contaminated by significant
noise. While not shown, a similar type II error would

FIGURE 1. Simulation demonstrating the necessity of a new quantification method for the cross-bispectrum. The top two panels
show a pair of simulated signals that are phase coupled with each other. The bottom left and middle panels show the cross-
bispectrum of a pair of clean and noisy signals, respectively. Noise confounds interpretation of the results as shown in the bottom
right panel even with the use of cross-bicoherence index.
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occur when the magnitude of the phase coupled peak is
weak. These issues will be further illustrated in the
‘‘Results’’ section.

To circumvent this white noise based 95% threshold
value of the CBI, we demonstrate utility of two meth-
ods that utilize the concept of surrogate data tech-
nique. Specifically, the two methods utilize a surrogate
data testing approach to determine the statistical sig-
nificant threshold value for either the cross-bispectrum
or cross-bicoherence values. Surrogate data technique
generates multiple random realizations of signal from
real data that contain only the linear characteristics
from the original signal. In essence, the surrogate data
will not contain the phase couplings that are in the
original signals, and can therefore be used as the null
condition for statistical comparison. We chose the
iteratively refined surrogate data technique (IRSDT).19

The IRSDT will destroy any nonlinearity in the signal,
and has been shown to be more accurate than the
amplitude adjusted Fourier transform technique18

because it iteratively corrects for deviations in the
spectrum present in the amplitude adjusted Fourier
transform technique as well as maintains the correct
distribution of the signal.13

One hundred realizations of surrogate data pairs
were generated, and the cross-bispectrum and cross-
bicoherence values were calculated for each of the two
methods. The mean and standard deviation between
the 100 cross-bispectra or cross-bicoherence indices
were then calculated, and the threshold was set to be
the mean plus 2 standard deviations of the maximum
peak in the cross-bispectrum or cross-bicoherence
values. The magnitude of coupling is determined to be
the difference between the original bispectrum and the
calculated threshold. Using this method, the threshold
for the cross-bispectrum is statistically determined and
not based on arbitrary decision. The surrogate method
based on the cross-bispectrum will henceforth be
termed cross-bispectrum with surrogate (CBS) and the
surrogate method based on the cross-bicoherence will
henceforth be called CBicS.

Simulation Procedures

Computer generated data were used to compare the
efficacy of the three methods. In these simulations,
pairs of phase coupled signals were generated, per Eq.
(2). Each of the bivariate signals contains 4096
data points with zero mean, and unit variance. The
calculation of the cross-bispectra and cross-bicoherence
is based on FFT resolution of 0.0078125 with the
segment length of 128 and 50% overlap.

In the first simulation, fully phase coupled signals
were generated and a varying level of GWN was added
to the signal. In the second simulation, phase coupling

was varied from 0 to 100%. For the third simulation,
the number of data points was varied in increments of
128. For each simulation, 100 realizations are gener-
ated for each condition and an average value was
obtained. Further, the specificity of the algorithm was
assessed by searching for the total number of signifi-
cant peaks across each calculation. Theoretically, if the
specificity is high, only one peak is shown.

Experimental Procedure

All experiments were performed under protocols
approved by The Institutional Animal care and Use
Committee at Stony Brook and The University of
South Florida. Data were collected from a previous
study where stop flow pressure recordings from two
nephrons were simultaneously measured in normo-
tensive Sprague-Dawley rats (SDRs, 240–300 g, n =

15) and SHRs (weight matched, 12 week old, n = 18).
Surgical preparation and the stop flow pressure mea-
surements are detailed in our previously published
study,3 thus, will only be briefly described here. Ani-
mals were anesthetized with halothane administered in
an oxygen–nitrogen mixture and artificially ventilated
after the administration of a muscle relaxant. Tubular
flow was interrupted with bone wax in a selected
proximal tubule, and intratubular hydraulic pressure
proximal to the wax block was measured via a 1- to
3-lm diameter micropipette attached to a servo-nulling
pressure circuit. A similar procedure was performed
onto a second nephron that is in close proximity to the
original. Data from the two nephrons were recorded
on a TEAC R-61 4-channel cassette data recorder for
off-line analysis. The recorded data were replayed
through an electronic low-pass filter with a roll-off
frequency of 1.5 Hz and sampled digitally at 4 Hz.
Vascular connections between nephrons were con-
firmed with vascular cast after measurement. Nephron
pairs that did not show vascular connections were also
analyzed to serve as negative control. In total, 9 of
the 15 SDRs and 7 of the 18 SHRs show vascular
connections under vascular cast.

Data Analysis

Data recorded at a sampling rate of 4 Hz were
further down-sampled to 1 Hz after an anti-aliasing
low-pass filter at 0.5 Hz. The data were then zero
meaned, detrended, and normalized to unit variance in
order to facilitate comparison. Since the direction of
coupling is unknown between the nephrons, the CBicS
method was applied in both directions (e.g., Bxyx and
Byxy) to search for significant phase coupling. The total
number and average magnitude of coupling for each
dataset were recorded. As described earlier, all datasets
were analyzed regardless of whether physiological

K. L. SIU AND K. H. CHON1842



connections were present under vascular cast. Statis-
tical testing was done using student’s t-test or Mann–
Whitney rank sum test.

RESULTS

Test for Normality

Both of the surrogate methods introduced in this
study make use of the descriptive statistics of mean and
standard deviation, which assumes normality. There-
fore, it is important to first confirm that the calculated
set of 100 surrogate cross-bispectrum and cross-bico-
herence values follows a normal distribution. One
hundred realizations of the test signal were generated
according to Eq. (2), and 100 surrogate data realiza-
tions were generated from each of the 100 test signals.
The cross-bispectrum and cross-bicoherence were cal-
culated for each surrogate dataset, and the value at the
coupling frequency was recorded. Each of the 100
sets of surrogate data cross-bispectrum and cross-
bicoherence were tested for normality using the
Kolmogorov–Smirnov goodness of fit test.21 All of the
surrogate datasets were statistically confirmed to be
from a normally distributed population (p> 0.05).

Case 1: Noise Contamination Simulation

The three method’s ability to correctly detect cou-
pling in the presence of noise was tested. In this sim-
ulation, varying levels of GWN were used to corrupt
the test signal pairs. The noise was varied from 30 to
�30 dB, in steps of �1 dB. At each noise level, 100
realizations of the test signal pairs according to Eq. (2)

were generated, and each pair was corrupted by an
independent pair of GWN. The calculated mean value
across the 100 test datasets at the true frequency pairs,
and the median number of detected peaks were
recorded. The result from this noise simulation is
shown in Fig. 2. The top panels show the mean cal-
culated value for each respective method, while the
bottom panels show the median number of detected
peaks. The dotted line on the top panels shows the
threshold for significance for each method. The col-
umns are arranged with cross-bicoherence results on
the left, CBS in the middle, and the CBicS on the right.

The cross-bicoherence is able to discern significant
phase coupling up to �18 dB of noise. Both surrogate
data methods were able to discern significant phase
coupling up to the simulation limit of �30 dB of noise.
However, the middle bottom panel shows the CBS
loses specificity with increasing noise, detecting a
median of four peaks at �30 dB. The cross-bicoher-
ence and the CBicS were very specific as both methods
never detect more than 1 peak. Therefore, both cross-
bicoherence based methods offer great specificity as
neither detects erroneous peaks. However, the sensi-
tivity of the cross-bicoherence was less compared to
that of the CBS and the CBicS, as it was only able to
discern phase coupling up to �18 dB of noise. Taken
together, this shows that the CBicS offers the best
combination of sensitivity as well as specificity in noise
corrupted data.

It is interesting to note that the CBS’s behavior with
increasing noise is opposite of that of the two cross-
bicoherence based methods in that its magnitude of the
calculated value increases with increasing noise. A
possible explanation for this phenomenon is that since

FIGURE 2. Simulation summary to test the three algorithm’s efficacy against varying noise levels. The top panels show the
calculated value of the respective methods, while the bottom shows the median number of detected peaks. Simulations were
performed in steps of 1 dB with 100 realizations at each noise level.

Detection of Phase Coupling in Cross-Bispectrum 1843



the noise is Gaussian, as the noise level goes up, the
magnitude of the cross-bispectra will increase at all
frequency pairs, including the magnitude at the fre-
quency of coupling. In contrast, the normalization
procedure in the calculation of the cross-bicoherence
suppresses this power from non-coupling mechanisms,
therefore leading to a decrease in calculated value as
the noise increases.

It is important to note that the noise levels (noise
variance is ~100 times greater than the variance of the
noiseless signal) used in this simulation are generally
much higher than that which is normally experienced
in real experiments. However, one must keep in mind
that the test signals used in this simulation are all
designed to specifically be detected by cross-bispectra
techniques. Real signals from experiments are never in
this form, and hence the algorithm’s efficacy may
decrease. Therefore, it is important to keep in mind
that the results shown here are purely for comparative
purposes and not to be used as guidelines for noise
tolerance for the algorithms in experimental settings.

Case 2: Coupling Percent Simulation

In this simulation, the amount of phase coupling
needed to discern significant phase coupling was
compared between the three methods. Test signal pairs
were generated according to Eq. (2), with one part of
the signal being phase coupled while the other part
having random phases. The amount of the signal that
was phase coupled was varied between 1 and 100%, in
steps of 1%. At each percent, 100 realizations of the
test signal pairs were generated. Similar to the previous
simulation, the mean calculated value and the median

number of detected peaks between the 100 realizations
for each percent level were recorded. The results are
shown in Fig. 3 and they are arranged the same way as
in Fig. 2.

It is important to note that the CBS algorithm was
able to detect significant coupling independent of the
amount of phase coupling. This highlights a disad-
vantage of the CBS algorithm in that frequency cou-
pling alone is sufficient for the CBS algorithm to
detect as the presence of QPC. The results for the two
cross-bicoherence-based methods show that the cross-
bicoherence requires that the signals be at least 60%
phase coupled. The CBicS, on the other hand, requires
only 25% of the data to be coupled for detection. This
gives the CBicS a big advantage in that the algorithm
can detect weakly phase coupled signals. Further,
physiological systems are often time-varying in nature,
which may result in signals that have intermittent
coupling. This can be seen as a weakly coupled signal,
as the phase coupling only exists in selected portions
of the data. Again, the CBicS algorithm is able to
detect this time-varying coupling better than either the
cross-bicoherence or CBS algorithms.

Taking the noise and percent coupling simulation
together points to a weakness in the cross-bicoherence
based algorithms. It could be seen that the calculated
value goes down regardless of whether it is due to
increase in noise levels or decrease in coupling percent.
Therefore, when the magnitude of the CBicS between
two signals is compared, one can never be sure of
whether it is due to differences in noise levels or the
degree of coupling. This is similar to coherence anal-
ysis, where noise and the degree of coherence will both
affect the magnitude of the result. Although this may

FIGURE 3. Simulation summary to test the three algorithm’s efficacy against different percent of coupling. The top panels show
the calculated value of the respective methods, while the bottom shows the median number of detected peaks. Simulations were
performed in steps of 1%, with 100 realizations at each percent level.
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be an inherit weakness in the algorithm, in most
experimental cases one can usually assume that the
noise levels are comparable between experiments and
hence, this should not be an issue. One possible way to
resolve this weakness would be to use a time-varying
bispectral analysis, as a low coupling percent could be
viewed as a time-varying process. In theory, the sur-
rogate approaches could be implemented into a time-
varying cross-bispectrum algorithm, allowing for sta-
tistical quantification.

Case 3: Data Length Simulation

In this simulation, the data length was varied in
order to assess the data length requirements for each
algorithm. Phase coupled test signals were generated
according to Eq. (2). The data length was varied in
steps of 128 points from 128 to 4098 in order to keep
the segment number constant at 128. At each data
point step, 100 realizations of the test signal pairs were
generated and analyzed with the three algorithms. The
results are shown in Fig. 4 and arranged in the same
way as previous figures. Note that the threshold for
the cross-bicoherence in this simulation changes as the
number of segments changes.

The results show that the performance of both the
cross-bicoherence and CBicS are similar, where the
methods are able to discern significant coupling for
four and three segments, respectively. The CBS algo-
rithm was able to detect significant coupling with as
few as 128 points (1 segment), but detected erroneous
peaks with fewer than 2176 points (17 segments).
Further, the calculated value for the CBS increased
with decreasing data length. These points to a weakness

in the CBS algorithm: at low segment numbers, the
method loses specificity.

The simulation result for the cross-bicoherence
points to a weakness in the segment number-based
threshold in that at low segment numbers, the thresh-
old becomes extremely high. This leads to a severe
drop in sensitivity at low data points. One possible
solution to this problem would be to decrease the
segment size to increase the number of segments.
However, this will lead to a decrease in resolution, as
the segment size determines the frequency resolution.
Therefore, one must keep this tradeoff of resolution vs.
ability to detect significant coupling in mind while
choosing segment size.

The simulation for the CBicS here also points to a
potential weakness in the algorithm in that the calcu-
lated value decreases drastically with data points less
than approximately 1000 points, even though it was
able to still correctly detect a single coupling peak with
low data points. Therefore, when analyzing physio-
logical data one must keep the data length between
datasets similarly sized for comparison.

Experimental Data Results

To reiterate the importance of a statistical method
for the analysis of bispectral results, analysis for a
representative dataset of anatomically connected
nephrons is shown in Fig. 5. The top two panels of
Fig. 5 show the stop flow pressure time traces from
two simultaneously measured nephrons. The bottom
left panel shows the cross-bispectrum of the datasets.
Note the large peak shown at the MYO–TGF
frequency range (0.13 and 0.023 Hz, respectively).

FIGURE 4. Simulation summary to test the three algorithm’s efficacy against different number of data points. The top panels
show the calculated value of the respective methods, while the bottom shows the median number of detected peaks. Simulations
were performed in steps of 128 points, with 100 realizations at each data length.
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Further, many other smaller peaks are also present,
whose magnitude suggests that they may also be sig-
nificant peaks, hence complicating the interpretation of
data. The bottom right panel shows the result after the
application of the CBicS algorithm, which shows a
single large peak at the frequencies associated with
MYO (0.13 Hz) and TGF (0.023) mechanisms. All of
the smaller peaks shown on the cross-bispectrum were
eliminated statistically using the CBicS algorithm,
therefore allowing for the proper interpretation of
data.

To further show the high efficacy of the CBicS
algorithm, the data were analyzed for all three meth-
ods. From vascular cast, 9 of 15 SDR and 7 of 18 SHR
datasets were measured to have a physiological con-
nection. The cross-bicoherence method correctly did
not detect coupling from non-physiologically con-
nected nephrons, but it was not able to detect coupling

from all physiologically connected nephrons (6 of 9
SDRs and 4 of 7 SHRs). The CBS was able to detect
significant coupling from all nephron pairs with
physiological connections, but it also detected some
coupling from non-physiologically connected nephrons
(2 of 6 SDRs and 5 of 11 SHRs). Only the CBicS
algorithm correctly detected coupling from all physi-
ologically connected nephrons and no coupling from
non-physiologically connected nephrons. These results
show a similar outcome to the simulation results,
where the cross-bicoherence suffers from low sensitiv-
ity, while the CBS suffers from low specificity. This
further demonstrates the high sensitivity and specificity
of the CBicS algorithm for the determination of sig-
nificant phase coupling. Therefore, the CBicS was the
chosen method for the analysis of the renal flow data.

The summarized results from the analysis of only
the nephron pairs that show a physiological vascular

FIGURE 5. Representative data from the stop flow pressure measurements. The top two panels show pressure measurements
from two simultaneously measured nephrons. The bottom left panel shows the cross-bispectrum of this pair of data. Note that in
addition to a large peak, many other smaller peaks appear, confounding the interpretation of the cross-bispectrum. The bottom
right panel shows the result from the application of the cross-bichoerence with a surrogate method. The non-significant peaks
shown in the cross-bispectrum are all removed, leaving only one significant true peak.
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connection are shown in Fig. 6. The top panel of Fig. 6
shows the mean magnitude of coupling across the
datasets between the two animal groups, which was
shown to be significantly different from each other
(p< 0.05). The bottom panel of Fig. 6 shows the
number of significant peaks from the datasets, which
was not significantly different from the normotensive
and hypertensive rats.

The CBicS algorithm is able to discern significant
phase coupling between nephrons only if they are
located on the same cortical radial artery. The nephrons
that do not have vascular connections failed to show
any significant phase coupling. This would suggest that
synchronization between nephrons is achieved via
proximity on the vasculature. One possible mechanism
for such coupling was originally observed by Schner-
mann and Briggs12 and modeled later by Moore et al.8

Basically, the theory is that when one segment of the
afferent arteriole undergoes vasoconstriction via renal
autoregulatory mechanisms, the pressure in a section of
the vasculature upstream of the constriction site will be
increased, thereby leading to enhanced response from
the autoregulatory mechanisms. If this response is
extrapolated to the cortical radial artery, then it may be
possible that it is responsible for the coupling observed
in this work. Further, this response would naturally
decay with increasing distance from the original site of
constriction. Therefore, the results here also suggest
that the upper limit of distance for this response is at the
distance of the cortical radial artery.

Another possible explanation for this coupling
phenomenon is that an electrochemical signal is
propagated via the vasculature originating from the
TGF. Possible methods for this propagation have been
proposed as the voltage gated Ca channels7 or vianitric
oxide activity.4,5

Although not shown, the coupling detected in this
work only existed between TGF and MYO or the self-
coupling between MYO and MYO itself. Absent was

the coupling between TGF and TGF. This may be a
result of experimental condition of the stop flow
pressure. In essence, since both nephrons’ flow was
interrupted via a bone wax plug, each of the nephron’s
own TGF mechanism was unable to sense the other’s
activity. On the other hand, since the MYO mechanism
sense flow at the level of the afferent arteriole, it is still
able to sense and interact with the TGF mechanism.
Therefore, this explains the presence of TGF–MYO
and MYO–MYO interactions and not TGF–TGF. It is
important to note that although only two modes of
coupling can occur, more than two peaks can be
detected. This is because both TGF and MYO mecha-
nisms can operate in any of the frequency within 0.02–
0.5 Hz and 0.1–0.3 Hz bands, respectively. In other
words, in certain occasions, they may operate at dif-
ferent frequencies but within the above-defined bands.
Thus, in these cases, we can obtain more than two
possible couplings.

Given the fact that a rat’s kidney is composed of
approximately 30,000 nephrons, it is reasonable to
expect that nonlinear interactions observed at the
whole kidney2,11 arise from coupling between nephrons
derived from the same cortical radial artery.1,6,20 In a
study by Sosnovtseva et al.,17 it was noted that the
coupling between nephrons in SHR was shown to be
less common in free flow nephrons. While our study
differs from them because we used the stop flow
pressure data, we still observe decrease in magnitude of
coupling in SHR when compared to SDR. A decrease
in the degree of coupling can result from intermittent
coupling. Indeed, we previously found more intermit-
tent coupling in SHR at the single nephron level.11

Such intermittent coupling may indicate a time-varying
system. Thus, implementing a time-varying version of
the algorithm presented here in the future may yet
reveal more information about the nature of the cou-
pling phenomenon.

CONCLUSION

In summary, we presented a surrogate data-based
approach to statistically quantify QPC based on the
cross-bispectrum, adapted from a method we previ-
ously developed for the auto-bispectrum. Simulations
were used to assess the efficacy of the algorithm along
with the traditional method of cross-bicoherence.
Simulation results showed that surrogate data tech-
nique combined with cross-bicoherence offered the best
combination of specificity and sensitivity between the
methods compared. These results are in contrast to the
results we obtained in an earlier work on the auto-
bispectrum, where surrogate data combined with the
bispectrum was found to be superior. Application of

FIGURE 6. Summary results from the stop flow pressure
experiment, with n 5 9 and n 5 7 for SDR and SHR, respec-
tively. Statistical significance is shown with * (p £ 0.05).
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this method to renal data revealed nephron-to-nephron
interactions when they were derived from the same
cortical renal artery. Having at hand the information
on the connectivity between the nephrons, we were
able to validate the accuracy of CBicS results; it was
found that the accuracy was 100%. The CBicS method
is a general purpose algorithm, thus it can be adapted
to many different physiological signals. For example,
quantitative determination of possible loss of coupling
during epileptic seizures is an attractive application of
the method.
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