
  

  

Abstract—Video recordings of finger tips made using a 

smartphone camera contain a pulsatile component caused by 

the cardiac pulse equivalent to that present in a 

photoplethysmographic signal. By performing peak detection 

on the pulsatile signal it is possible to extract a continuous heart 

rate signal. We performed direct comparisons between 5-lead 

electrocardiogram based heart rate variability measurements 

and those obtained from an iPhone 4s and Motorola Droid 

derived pulsatile signal to determine the accuracy of heart rate 

variability measurements obtained from the smart phones. 

Monitoring was performed in the supine and tilt positions for 

independent iPhone 4s (2 min recordings, n=9) and Droid (5 

min recordings, n=13) experiments, and the following heart 

rate and heart rate variability parameters were estimated: 

heart rate, low frequency power, high frequency power, ratio of 

low to high frequency power, standard deviation of the RR 

intervals, and root mean square of successive RR-differences. 

Results demonstrate that accurate heart rate variability 

parameters can be obtained from smart phone based 

measurements.  

I. INTRODUCTION 

With the increasing advancement of portable technology, 
it is now possible to create new physiological monitoring 
solutions for personal use. This monitoring can be cheap, 
easy to use and available to anyone. Smart phones have been 
explored as devices in many medical applications [1, 2]. One 
reason smart phones can be used for such monitoring is their 
built-in digital camera, which can be used to collect 
physiological signals. Smart phones are getting more 
advanced with greater resolution on their cameras and higher 
processing power. These advances make them not only useful 
tools for collecting data but also for analysis. 

It has recently been shown that a continuous heart rate 
signal can be extracted from a smart phone video camera 
which can then be analyzed to monitor additional vital signs 
including respiration rate and heart rate variability [3-5]. This 
idea is promising because of the ability to write an 
application for a smart phone to be used as a health monitor 
without the need for additional equipment. Given the 
expanding growth of smart phones, such an application 
would be accessible to a large portion of the population.  
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The ability to obtain a signal with a cardiac pulse 
component from the video image comes from 
photoplethysmographic (PPG) imaging which uses optical 
information caused by color changes in the skin due to 
cardiac activity [3]. This idea can be applied to the camera of 
a smart phone. An area of the skin is illuminated with the 
white LED flash and color changes are recorded with the 
video camera to generate a red-green-blue video [3, 4]. A 
subset of pixels at each frame are then averaged together for a 
particular color band to generate a signal. Signals obtained 
from mobile smart phone cameras have been compared to 
those obtained from a pulse oximeter and shown to produce 
similar waveforms with cardiac pulse peaks [6]. The cardiac 
peaks can then be detected and used to determine the 
continuous HR signal. 

From a continuous heart rate signal the variability can be 
analyzed to monitor the autonomic nervous system to 
determine the influence of the sympathetic and 
parasympathetic components [7]. This is traditionally 
assessed using an electrocardiogram (ECG) with sampling 
rates of at least 250 Hz [8]. Using a PPG signal with 
sampling rates of 250 Hz to derive heart rate variability 
information has previously been shown as an accurate 
alternative to ECG based monitoring [9]. Sampling rates for 
smart phone video cameras range from 25 – 30 Hz. 
Therefore, it is necessary to determine the accuracy of the 
smart phone based devices in terms of estimating the heart 
rate variability (HRV) parameters. 

Here, we compare HR data collected from smart phones 
with that collected from an ECG to investigate the accuracy 
of the smart phone based measurements made with subjects 
in the supine and then tilt positions. We use two different 
smart phones in two separate experiments to compare heart 
rate variability parameters with custom applications to record 
the pulsatile signals. 

II. MATERIALS AND METHODS 

A. Experimental Protocol 

The protocol was approved by the Institutional Review 
Board at Worcester Polytechnic Institute, Worcester, MA. 
Independent experiments were performed to assess the 
performance of heart rate variability statistics computed with 
the Apple iPhone 4s (n=9) and Motorola Droid (n=13). 

Electrodes in the standard 5-lead configuration were 
attached to each subject to measure the ECG with an HP 
78354A system. LabChart software (ADInstruments) was 
used to record the ECG at a 400 Hz sampling rate. Subjects 
placed their right index finger on either the iPhone 4s or 
Motorola Droid camera lens. To record the pulsatile PPG 
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signal, a custom application was designed for each phone that 
averages a 50x50 pixel region in the center of the video 
image at each frame with sampling rates of ~30 Hz for the 
iPhone 4s (green band) and ~20 Hz for the Motorola Droid 
(red band). 

Subjects were instructed to lie in the supine position on a 
cot. ECG and phone data were recorded for 2 min during the 
iPhone 4s experiments and 5 min during the Motorola Droid 
experiments. Subjects were then instructed to sit up in a chair 
in the tilt position where data were recorded for the same 
respective time lengths. 

B. Data Analysis 

Post-recording data analysis was performed in Matlab 

r2011b (The Mathworks). After data collection, the 

LabChart and phone data for each subject were aligned in 

order to allow for direct comparison. Phone data was not 

saved with a fixed sampling rate but was recorded with a 

time stamp at approximately 30 Hz for the iPhone 4s and 20 

Hz for the Droid. The time stamp was used to linearly 

interpolate the iPhone 4s data to 30 Hz and the Droid data to 

20 Hz. Peak detection algorithms were used in order to 

determine R-wave peaks from the ECG signals and cardiac 

pulse peaks from the phone camera PPG signals [10]. 

Missed beats were manually identified and adjusted. Beat to 

beat intervals were determined to derive the RR-interval 

sequence and resampled at 4 Hz using cubic spline 

interpolation in order to determine the continuous HR signal.  

Continuous HR signals were normalized to unit variance 

and then power spectra were determined using the Welch 

periodogram method. The low frequency power (LF) was 

defined as the power spectrum area from 0.04 – 0.15 Hz and 

the high frequency power (HF) was defined as the area from 

0.15 – 0.4 Hz. Additionally, the standard deviation of the RR 

interval (SDNN) and the root mean square of successive 

difference (RMSSD) of RR intervals were determined [7]. 

Data are displayed as mean ± standard deviation (SD). A 

paired t-test was used to compare between the supine and tilt 

positions (p<0.05 considered significant). Additionally, for 

each parameter a paired t-test was used to compare the ECG 

and smart phone based measurements. Parameters were 

compared between the ECG based measurement and phone 

based measurements using Bland-Altman plots to find the 

limits of agreement and by determining the Pearson 

correlation coefficients. The limits of agreement were found 

by taking the standard deviation across the patients of the 

differences in the estimated parameters between the ECG 

and smart phone based measurements and multiplying the 

result by a factor of 1.96. 

III. RESULTS 

An example of green color band data from the iPhone 4s, 
which is similar to a PPG, is presented in Fig. 1(a). 
Continuous HR data derived from both an iPhone 4s and the 
corresponding data from the ECG is shown in Fig. 1(b). The 
power spectrum of the continuous HR signals acquired from 
the iPhone 4s and corresponding ECG are shown in Fig. 1(c). 

 

(a) 

 

(b) 

 

(c) 

Figure. 1. (a) Example of green color data acquired from an  iPhone 4s . (b) 
Example of HR data from an  iPhone 4s (thin black) and from corresponding 
ECG (thick black). (c) Power spectra for the continuous HR signals shown in 
(b) from an  iPhone 4s (thin black) and  its corresponding ECG (thick Black).  

The mean ± SD for the estimated parameters for all 
experiments are listed in Table I for the Droid experiments 
and Table II for the iPhone 4s experiments. 
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TABLE I.  HEART RATE AND HEART RATE VARIABILITY PARAMETERS 

FOR DROID EXPERIMENTS (MEAN ± SD) 

Droid 
HR 

(BPM) 
LF 

(unitless) 
HF 

(unitless) 

ECG 
Supine 71.9±7.9 0.347±0.139 0.269±0.176 

Tilt 77.4±6.9* 0.347±0.150 0.245±0.1525 

RED 
Supine 71.7±7.9 0.230±0.127 0.342±0.178 

Tilt 77.1±7.3* 0.240±0.140α 0.347±0.165α 

     

  
LF/HF 

(unitless) 
SDNN 
(msec) 

RMSSD 
(msec) 

ECG 
Supine 2.84±4.63 0.044±0.043 0.053±0.032 

Tilt 2.13±1.6 0.035±0.027 0.052±0.028 

RED 
Supine 0.700±0.306 0.065±0.023α 0.061±0.025α 

Tilt 0.833±0.565α 0.073±0.026α 0.069±0.026α 

*. Represents significant difference (p<0.05) between supine and tilt position with paired t-test 

α
. Represents significant difference (p<0.05) between ECG and RED with paired t-test 

TABLE II.  HEART RATE AND HEART RATE VARIABILITY PARAMETERS 

FOR IPHONE 4S EXPERIMENTS (MEAN ± SD) 

iPhone 4s HR 
(BPM) 

LF 
(unitless) 

HF 
(unitless) 

ECG 
Supine 70.8±12.2 0.266±0.164 0.349±0.183 

Tilt 75.8±12.0* 0.445±0.271 0.343±0.148 

GREEN 
Supine 70.7±12.1 0.200±0.113 0.417±0.189 

Tilt 75.8±11.9* 
0.298±0.217α 0.432±0.135α 

 

  LF/HF 
(unitless) 

SDNN 
(msec) 

RMSSD 
(msec) 

ECG 
Supine 0.834±0.427 0.030±0.014 0.038±0.012 

Tilt 1.8±1.76 0.029±0.011 0.040±0.012 

GREEN 
Supine 0.57±0.324 0.051±0.013α 0.050±0.013α 

Tilt 0.811±0.767α 0.053±0.018α 0.050±0.013α 

*. Represents significant difference (p<0.05) between supine and tilt position with paired t-test 

α
. Represents significant difference (p<0.05) between ECG and GREEN with paired t-test 

 

Bland-Altman and correlation plots were generated for 
the mean HR and all HRV parameters for either the iPhone 
4s and ECG measurements or Droid and ECG measurements. 
An example Bland-Altman plot is shown in Fig. 2(a) for HR 
data from a tilt experiment from the iPhone 4s and its 
corresponding ECG, and a correlation plot is shown in Fig. 
2(b) for the same. The Bland-Altman plot shows how similar 
the HR is between the green color band and ECG based 
measurements. The horizontal axis represents the mean HR 
for each subject while the vertical axis represents the HR 
difference between the green band from the iPhone 4s and the 
ECG recording.  

 

(a) 

 

 (b) 

Figure. 2. (a) An example Bland-Altman plot with a mean difference of 
0.04 that shows the limit of agreement of 0.29 (dashed lines are mean 
difference ± the limit of agreement) between the continuous HR of a smart 
phone and its corresponding ECG signal. (b) Example of a correlation plot of 
the continuous HR monitored from a smart phone (y-axis) and ECG (x-axis) 
with the regression line and a Pearson correlation coefficient of 1. 

The limits of agreement and the Pearson correlation 
coefficient were found for each parameter. Table III shows 
all of these results for the Droid phone and Table IV shows 
the results for the iPhone 4s. 

TABLE III.  LIMITS OF AGREEMENT (LA) AND PEARSON CORRELATION 

COEFFICIENT (R) BETWEEN DROID AND ECG BASED MEASUREMENTS 

Droid 
HR 

(BPM) 
LF 

(unitless) 
HF 

(unitless) 
LF/HF 

(unitless) 
SDNN 
(msec) 

RMSSD 
(msec) 

Supine 

LA 3.2 0.64 0.56 6.9 0.046 0.02 

R 0.98 0.96 0.94 -0.15 0.92 0.97 

Tilt 
LA 1.4 0.59 0.41 2.7 0.039 0.024 

R 1 0.97 0.94 0.47 0.72 0.9 

TABLE IV.  LIMITS OF AGREEMENT (LA) AND PEARSON CORRELATION 

COEFFICIENTS (R) BETWEEN IPHONE 4S AND ECG BASED MEASUREMENTS 

iPhone 4s HR 
(BPM) 

LF 
(unitless) 

HF 
(unitless) 

LF/HF 
(unitless) 

SDNN 
(msec) 

RMSSD 
(msec) 

Supine 
LA 0.29 0.18 0.21 0.53 0.01 0.009 

R 1 0.84 0.84 0.78 0.92 0.94 

Tilt 
LA 0.29 0.2 0.18 2.1 0.021 0.01 

R 1 0.93 0.8 0.94 0.83 0.93 

IV. DISCUSSION 

It has been found that by using a smart phone camera and 

monitoring the changes in color over time, it is possible to 

identify cardiac relevant information similar to that of a 

PPG. By identifying the cardiac pulse peaks in the PPG 

signal, we can obtain RR intervals and then HRV 
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information over multiple parameters. Through comparison 

of the camera results to the ECG results there is evidence 

that demonstrates accurate HR and HRV parameters can be 

estimated from a smart phone. 

We looked at three statistical measures which support the 

accuracy of the HR and HRV analysis obtained from the 

smart phones. For each measurement, a paired t-test was 

performed between the supine and tilt positions.  It was 

found that for the Droid and corresponding ECG recording 

there were significant changes between the supine and tilt 

positions in HR, however both recordings found no 

significant changes for the 5 HRV parameters. The iPhone 

4s and its corresponding ECG recording both displayed 

significant differences between the supine and tilt positions 

in HR. The Droid and the iPhone 4s based parameters 

produced the same statistical significance between the 

supine and tilt positions as their corresponding ECG based 

parameters. 

The limits of agreement between the phone based 

measurement and ECG based measurement for each 

parameter were similar between the Droid and iPhone 4s. 

Consistent results for each HRV parameter may be 

processed to achieve an accurate result. In the Droid study, 

the correlation coefficients ranged from 0.72 – 1 for all 

parameters except LF/HF which had poor correlations for 

the supine and tilt positions. For the iPhone 4s derived 

parameters, correlation coefficients ranged from 0.8 – 1. HR 

measurements had correlation coefficients of 1 for the 

supine and tilt positions using both the iPhone 4s and Droid 

system. This displays a linear relationship between the smart 

phones and ECG based HR measurements. Lower 

correlation coefficients achieved with the iPhone 4s relative 

to the Droid may be due to the fact that the recording times 

of the iPhone 4s experiments were only 2 min compared to 5 

min recording times during the Droid experiments. 

One of the current issues with this technique is the low 

sampling rates of the cameras found in the phone. It has 

been stated that HRV measurements should be done with 

data that has a sampling rate of at least 250Hz [8]. Using our 

custom applications, the Droid phone had a sampling rate of 

approximately 20Hz and the iPhone 4s was close to 30Hz. 

An additional source of error is that current phones do not 

have a very stable surface for someone to place their finger 

upon and this may cause a number of motion artifacts 

introducing minor variations in the recordings. We manually 

adjusted any missed peaks in the present study, but this 

approach is not applicable to real-time monitoring. Motion 

artifacts can be adjusted for with better methods for 

stabilizing finger-camera interface and motion artifact 

detection systems to identify bad beats.  

 With a smart phone, it is possible to collect data from 

patients and process information to produce real-time 

measurements. The phone itself can be programmed with 

peak detection and HRV algorithms that can instantly 

process the recorded data and display the results. These 

results could then be directly sent to a physician or used to 

notify a patient of any potential cardiac problems.  
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