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Abstract—We introduce a novel method for automatic 

detection of Atrial Fibrillation (AF) using time-varying 

coherence functions (TVCF) and Shannon Entropy (SE). The 

TVCF is estimated by the multiplication of two time-varying 

transfer functions (TVTFs).  Two TVTFs are obtained using two 

adjacent data segments with one data segment as the input 

signal and the other data segment as the output to produce the 

first TVTF; the second TVTF is produced by reversing the input 

and output signals. The detection algorithm was tested on RR 

interval time series derived from two databases: the MIT-BIH 

Atrial Fibrillation (AF) and the MIT-BIH normal sinus rhythm 

(NSR). The MIT-BIH database contains a variety of short and 

long AF beats from 25 subjects and the MIT-BIH NSR database 

consists of only normal sinus rhythms from 18 subjects. Using 

the receiver operating characteristic curves from the 

combination of TVCF and SE, we obtained the accuracy of 

97.49%, sensitivity of 97.41% and specificity of 97.54% for the 

MIT-BIH AF database. Furthermore, the specificity of the 

MIT-BIH NSR database was 100%. 

I. INTRODUCTION 

TRIAL fibrillation is the most common sustained 

dysrhythmia worldwide.  Over 2.3 million Americans 

are currently diagnosed, and the prevalence of AF is 

increasing with the aging of the U.S. population [1]. Through 

its association with increased risk for heart failure, stroke and 

mortality, AF has a profound impact on the longevity and 

quality of life of a growing number of people [2-3]. Although 

new AF treatment strategies have emerged over the last 

decade, a major challenge facing clinicians and researchers is 

the paroxysmal which is difficult to detect because it is short 

lasting and intermittent. Thus, there is a pressing need to 

develop methods for accurate AF detection including 

paroxysmal rhythms. This technology has important clinical 

applications for pre- and post-treatment detection of AF. For 

these reasons, the importance of developing new AF 

detection technologies has been emphasized. 

Many algorithms have been developed to detect AF and 

can be categorized as being based on 1) P-wave detection or 

2) RR interval (RRI) variability [4-12]. AF detection based on 
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P-wave absence, has not gained a wide acceptance because 

determination of the P-wave fiducial point localization is 

challenging especially for Holter monitoring applications.  

Indeed, for Holter monitoring, it is difficult to find 

uncontaminated RR intervals due to motion and noise 

artifacts which can confound the accuracy of P-wave 

detection. Subsequently, many studies have used variability 

of RR interval time series instead [8-12].  Specifically, the 

aim is to quantify markedly increased beat-to-beat variability 

RR interval time series in AF. Consequently, most algorithms 

show higher sensitivity and specificity values than the 

methods that screen for the absence of P-wave. However, 

most of these RR intervals methods are based on comparing 

the density histogram of the data segment with 

previously-compiled standard density histogram of RR 

segments during AF using the Kolmogorov-Smirnov test [12].  

A main disadvantage of this method is that it requires storage 

of large amounts of histogram data and threshold values of 

various characteristics of AF. 

In this paper, we used our previously-developed 

time-varying coherence function (TVCF) approach [16] to 

discriminate between AF and nonfibrillatory cardiac rhythms.  

Note that Sarraf et al. [13] have previously used a 

time-invariant coherence function approach to discriminate 

between AF and non-AF rhythms with good results. To 

account for nonstationary dynamics of AF as well as to 

capture transitions from AF to sinus rhythms, Lovett and 

Ropella [14] have used a spectrogram approach.  However, 

this study was not intended for AF detection; hence its 

accuracy value is not known. Further, because the 

spectrogram does not provide the best time- and 

frequency-resolutions, its ability to find the transition 

between AF and normal sinus rhythms is not optimal.     

In general, higher time- and frequency-resolutions offered 

by the parametric over nonparametric approaches are well 

documented [15].  Hence, our autoregressive moving average 

(ARMA) model-based TVCF offers higher time and 

frequency resolutions than nonparametric counterparts. 

Specifically, an ARMA model-based time-varying transfer 

function (TVTF) is calculated between two adjacent data 

segments with one data segment as the input and the other as 

the output signal.  We then reverse the input and output 

signals and compute the second TVTF, and then multiply two 

TVCFs to obtain TVCF [16].  Our underlying hypothesis for 

the use of TVCF approach is that if the two adjacent segments 

are normal sinus rhythms (NSRs), the resultant TVCF will 

have values close to one throughout the entire frequency 

ranges. However, if either or both segment(s) partially or 

Atrial Fibrillation Detection using Time-Varying Coherence 

Function and Shannon Entropy 

J. Lee, Member, IEEE, D. McManus and K. Chon, Senior Member, IEEE  

A 

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 4685

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011



  

fully contains AF, the coherence values will decrease 

significantly lower than one at the time instant AF occurs. 

Finally, to increase the accuracy of our AF detection, we 

combined TVCF results with Shannon entropy (SE). 

II. METHODS 

A. MIT-BIH Database 

We used two databases consisting of the MIT-BIH AF and 

the MIT-BIH NSR. The AF database contains 25 ECG 

recordings with a total of 299 AF episodes. Each ECG 

recording is approximately 10 hours in duration. For all 

databases we used RR interval series.  The data sets 4936 and 

5091 were excluded from our study due to incorrect AF 

annotation. The NSR database contains 18 ECG recordings, 

and each recording is approximately 24 hours. The NSR 

database does not contain any AF episodes; hence, it is useful 

for evaluation of the specificity value of AF detection. 

B. Time-Varying Coherence Function (TVCF) 

To demonstrate the use of the TVTF in obtaining the TVCF, 

we first define the TVCF via the nonparametric 

time-frequency spectra as: 
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where         and         represent the time-frequency 

cross-spectrum, and          and          represent the 

auto spectra of the two signals x and y, respectively. 

Specifically, the second term is the coherence function when 

x is considered as the input and y as the output. Similarly, the 

third term in Eq. (1) is the coherence function when y is 

considered as the input and x as the output. For a linear TV 

system with x as the input and y as the output, TVTF in terms 

of time-frequency spectra can be obtained as 
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where           is the TVTF from the input x to the output y 

signal. Similarly, for a linear TV system with y as the input 

and x as the output, the TVTF can be obtained as 
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Thus, time-varying magnitude           is obtained by 

multiplying the two transfer functions,     

                                     (4) 

Given the relationship of (4), a high resolution TVCF can be 

obtained from a ARMA model: 
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(5-2) 

where (5-1) represents y(n) as the output and x(n) as the input. 

Similarly, (5-2) represents x(n) as the output and y(n) as the 

input. Given the ARMA models of (5), the two transfer 

functions of (4) can be obtained as [16] 
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Fig. 1.  TVCF at different frequency according to each beat from subject 7910 of the MIT-BIH AF database. (a) frequency at 0.09Hz, 

(b) frequency at 0.17Hz, (c) frequency at 0.25Hz, (d) frequency at 0.33Hz, (e) frequency at 0.41Hz and (f) frequency at 0.48Hz 
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Finally, we obtained TVCF by multiplying the two transfer 

functions as described in (6). For the parameter estimation, 

we used the time-varying optimal parameter search (TVOPS) 

criterion [17], as it has been shown to be accurate when 

applied to diverse physiological signals [18-19]. In all cases, 

the TVOPS has been shown to be more accurate than the AIC, 

minimum description length (MDL) and the fast orthogonal 

search criterion [18-19]. 

 

C. Frequency Variability of TVCF for AF Detection 

For AF detection, we formulate two adjacent beat segments 

with the length of seg using the following ARMA models: 

                                     

  

   

                             

  

   

      

                                                 

  

   

                       

  

   

       

(7) 

where               and                     are two adjacent 

RR interval time series from the (i+1)th to the (i+seg)th and 

from the (i+seg+1)th to the (i+2  seg)th, respectively. By 

substituting (7) into (6), the two transfer functions are 

obtained, and the TVCF is finally yielded by multiplication of 

the two TVCFs. In order to validate the formulation of AF 

detection, we calculated TVCF using ARMA (5,5) with the 

first order Legendre function for the subject 7910 of the 

MIT-BIH AF database. We used a 128 beat segment, which is 

then shifted by 128 beats.  We used a 64 point FFT, which 

results in the frequency resolution of 0.0156 Hz.  Fig. 1 shows 

the resultant TVCFs at 5 different frequencies out of the 32 

possible frequencies. For example, Figs. 1(a)-1(e) correspond 

to frequencies at 0.09, 0.17, 0.25, 0.33, 0.41 and 0.48 Hz, 

respectively. Note that with higher frequencies, the TVCF 

values tend to have lower values during AF. Thus, for each 

time instant or each beat, we calculate the variance of TVCF 

values, termed the frequency variations (FV) among all 32 

frequencies.  Fig. 2 shows the FV of TVCF at each beat with 

the true AF annotation for the subject 7910 taken from the 

MIT-BIH AF database. As shown in Fig. 2, this approach 

results in an accurate detection of the time onset of AF and the 

transition to NSR.  

D. Shannon Entropy Combination 

The FV-TVCF may cause false negatives and false 

positives when premature or ectopic beats occur. Thus, we 

combined the FV-TVCF with Shannon Entropy (SE), which 

characterizes information complexity. The SE was one of the 

most powerful tools for AF detection as it is designed to 

characterize randomness of a signal [8]. 

E. Detector Optimization 

The condition for AF detection is now given by a simple 

logical AND condition: 

 If (FV-TVCF       ) AND (SE       ), then 

classify it as AF. Else classify it as non-AF 

For the FV-TVCF, we can shift a segment by segment 

length and compare two adjacent segments. For SE, we shift a 

segment by one beat. ROC analyses are used to find      , 

     and seg for optimum sensitivity and specificity. In 

summary, the algorithm parameters considered for this 

optimization problem are: 
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Fig. 2.  Frequency variances of TVCF at each beat and True 

AF annotation from subject 7910 of the MIT-BIH AF database 
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Fig. 3.  Accuracy according to       and     . The highest 

accuracy is 0.9749 when              and      = 0.78. 
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Fig. 4. ROC curves (sensitivity vs (1-specificity)) according to 

different       and    . The sensitivity and specificity is 

0.9741 and 0.9754, respectively, when the accuracy is 0.9749. 
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 Segment length seg for FV-TVCF varied from 32 to 

128. (segment length for SE is constant with 128) 

       varied from 0 to 0.1 at interval of 0.0001 

      varied from 0 to 1 at interval of 0.01 

We can now define a 3-element vector of algorithm 

parameters                      . The vector parameter 

can now be varied according to the ranges defined above. For 

each particular value of the vector   , we find the number of 

True Positives (    , True Negatives (    , False Positives 

(     and False Negatives (    . We use the sensitivity 

              specificity               and 

accuracy                             on the 

MIT-BIH AF database. To find     , we first fixed seg to 128 

and found the optimal       and     . We repeated the 

procedure by changing seg to 32 and 64. After finding     , 

we applied the same parameters to MIT-BIH NSR database. 

III. RESULTS 

Fig. 3 shows the accuracy values according to different 

      and      on the MIT-BIH AF database. The segment 

length seg was 128, and the highest accuracy was 0.9749 

when              and      = 0.78. Fig. 4 shows the 

ROC curves (sensitivity vs (1-specificity)) according to 

different       and     . The sensitivity, specificity and 

accuracy are 0.9741, 0.9754 and 0.9749, respectively.  Using 

this approach, we repeated the same procedure by changing 

seg. We found that the accuracy values were 0.8788 and 

0.9571 for seg=32 and seg=64, respectively. In summary, the 

vector parameter      providing the highest accuracy was 

found as                    and we achieved a sensitivity of 

97.41%, a specificity of 97.54% (accuracy of 97.49%) for the 

MIT-BIH AF database. In addition, we applied the optimal 

parameters to the MIT-BIH NSR database, and achieved the 

specificity of 100%. A comparison to the recently published 

algorithms on the MIT-BIH AF and MIT-BIH NSR databases 

is presented in TABLE I. As shown, our proposed algorithm 

provides the best accuracy for both databases.  

IV. CONCLUSION 

In this paper, we presented a novel method for AF 

detection. The accuracy values were 97.49% and 100% on the 

MIT-BIH AF and the MIT-BIH NSR databases, respectively. 

The most attractive feature of TVCF is that it can be used to 

find the AF onset and transition to NSR. Our method is 

applicable for a Holter system and can be real-time realizable. 
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TABLE I 

COMPARISON OF RECENT ALGORITHMS ON THE MIT-BIH AF 

DATABASE AND THE MIT-BIH NSR DATABASE 

Our Proposed Algorithm

Huang et al [12]

Dash et al [8]

Tateno and Glass [11]

Logan and Healey [10]

Kikillus et al [9]

97.41

96.1

94.4

94.4

96.0

94.4

97.54

98.1

95.1

97.2

89.0

93.4

100

97.9

99.7

(not reported)

(not reported)

96.9

specificity

(%)

MIT-BIH AF database
MIT-BIH NSR 

database

sensitivity

(%)

specificity

(%)

Methods

 

4688


