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Abstract
We present an algorithm of respiratory rate extraction using particle filter (PF),
which is applicable to both photoplethysmogram (PPG) and electrocardiogram
(ECG) signals. For the respiratory rate estimation, 1 min data are analyzed with
combination of a PF method and an autoregressive model where among the
resultant coefficients, the corresponding pole angle with the highest magnitude
is searched since this reflects the closest approximation of the true breathing
rate. The PPG data were collected from 15 subjects with the metronome
breathing rate ranging from 24 to 36 breaths per minute in the supine and upright
positions. The ECG data were collected from 11 subjects with spontaneous
breathing ranging from 36 to 60 breaths per minute during treadmill exercises.
Our method was able to accurately extract respiratory rates for both metronome
and spontaneous breathing even during strenuous exercises. More importantly,
despite slow increases in breathing rates concomitant with greater exercise
vigor with time, our method was able to accurately track these progressive
increases in respiratory rates. We quantified the accuracy of our method by
using the mean, standard deviation and interquartile range of the error rates
which all reflected high accuracy in estimating the true breathing rates. We are
not aware of any other algorithms that are able to provide accurate respiratory
rates directly from either ECG signals or PPG signals with spontaneous
breathing during strenuous exercises. Our method is near real-time realizable
because the computational time on 1 min data segment takes only 10 ms on a
2.66 GHz Intel Core2 microprocessor; the data are subsequently shifted every
10 s to obtain near-continuous breathing rates. This is an attractive feature
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since most other techniques require offline data analyses to estimate breathing
rates.

Keywords: photoplethysmography, electrocardiography, respiratory rate
during exercise, particle filter, metronome breathing, spontaneous breathing

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Monitoring of respiratory rate is of great importance in early detection and diagnosis of
potentially dangerous conditions such as sleep apnea (Younes 2008), sudden infant death
syndrome (Rantonen et al 1998) and chronic obstructive pulmonary disease (Hasselgren
et al 2001). Respiratory rate is usually measured by using transthoracic impedance
plethysmography (Allison et al 1964, Ashutosh et al 1974, Hamilton et al 1967), nasal
thermocouples (Marks et al 1995) or capnography (Mason et al 2000), which measures
CO2 production. However, most of these methods are all labor intensive and expensive by
requiring a mask, nasal cannula or wearing chest band sensors. In addition, these devices are
uncomfortable, may interfere with natural breathing or sleep positions and are unmanageable
in certain applications such as ambulatory monitoring and stress testing.

Recently, the use of photoplethysmography and/or electrocardiogram for respiratory
extraction has gained significant interest due to its simplicity and non-invasive measurement
capability. The photoplethysmogram (PPG) waveforms and electrocardiogram (ECG)
waveforms have been used by several accurate nonparametric methods such as time–frequency
spectral analysis (Chon et al 2009, Leonard et al 2003) and parametric methods such
as autoregressive (AR) model-based approaches (Lee and Chon 2010b). Specifically, the
continuous wavelet transform (CWT) (Addison and Watson 2004) and variable frequency
complex demodulation (VFCDM) (Chon et al 2009) methods were utilized to extract either
frequency modulation or amplitude modulation seen in the frequency range associated with the
heart rate. Both CWT and VFCDM methods have been shown to provide accurate respiratory
rate extraction in the low and moderate breathing rates (12–36 breaths per minute). However,
the extraction capability of these time–frequency methods became less reliable with increased
respiratory rates (Chon et al 2009). As a parametric method, an AR model has been adopted by
selecting the pole angle with the highest magnitude obtained from resultant coefficients. The
AR model was aided by the optimal parameter search (OPS) criteria (Wang et al 2002, Zhao
et al 2004), and the resultant parameters were factorized into multiple pole terms. The method
showed more accurate respiratory rate extraction especially for high breathing rates (36–48
breaths min−1) (Lee and Chon 2010b). However, as the signal-to-noise ratio (SNR) decreases,
the probability increases that incorrect poles are associated with the highest magnitude, which
ultimately affects the accuracy of the method.

Recently, we have developed time-varying approaches to better estimate respiratory rates
(Lee and Chon 2010a, 2011) by accounting for nonstationary dynamics in pulse oximeter
devices as the latter modality can also be used to estimate breathing rates. Using a variant of the
particle filtering approach on metronome breathing experimental data, we have demonstrated
that accurate breathing rates in the range of 12–90 breaths min−1 can be obtained (Lee and
Chon 2010a). In the former study, metronome-controlled breathing rates were used to verify
the algorithm, but the main disadvantage is that the controlled breathing artificially reduces
nonstationary respiratory dynamics during data collection. In addition, while subjects were



Respiratory rate extraction from pulse oximeter and electrocardiographic recordings 1765

breathing spontaneously during exercise, the duration could not be sustained for more than 2
min, and a metronome-controlled respiratory protocol does not truly simulate exercise-induced
high breathing rates.

Thus, the goal of this study was to examine the robustness of our particle filter (PF)
approach to extract respiratory rates directly from ECG signals as well as PPG signals.
Also, the robustness was examined for spontaneous breathing during exercise as well as
for metronome breathing. While there have been some studies to extract breath-by-breath
respiratory rates directly from an ECG and a pulse oximeter (Dash et al 2010, Yoshida
et al 2007), our study is one of the few that examine this capability on both metronome and
spontaneous breathing, a feat which has not been successful to date.

2. Materials and methods

2.1. Subjects

Fifteen healthy subjects for metronome breathing and 11 healthy subjects for spontaneous
breathing during exercise participated in the study. For the metronome breathing, 7 females
and 8 males of age 21.0 ± 1.2 years were involved. None of the subjects had cardiorespiratory
or related pathologies. For the spontaneous breathing, 11 males of age 36.0 ± 1.0 years were
involved, and each subject underwent a complete medical screening, including complete blood
count, complete metabolic panel, lipid profile evaluation, urinalysis, physical examination,
skinfold body fat measurement and determination of maximal oxygen uptake (V̇O2 max).
All subjects were healthy, active and normotensive nonsmokers who were not taking any
medications that would affect responses in the study. Approval was obtained from the
Institutional Review Board of the Navy Experimental Diving Unit. Each subject gave written
informed consent, and all procedures conformed to the Declaration of Helsinki.

2.2. Experimental set-up and measurements

The metronome and spontaneous breathing experiments were performed by collecting PPG
and ECG waveforms, respectively. In the metronome breathing experiment, we used an
MP506 pulse oximeter (Nellcor Oximax, Boulder, CO) reusable sensor (Durasensor DS-
100A), which incorporates a conditioning circuit and has an analog output of 4.864 kHz.
The PPG waveforms were collected on 15 healthy subjects with metronome respiratory rates
ranging from 0.4 to 0.6 Hz at an increment of 0.1 Hz. The PPG data were collected in
the supine and upright positions for subjects instructed to breathe at each breathing rate (i.e.
0.4, 0.5 and 0.6 Hz). The pulse oximeter sensor was attached to the subjects’ left index
or middle finger. The subjects were instructed to breathe at a constant rate according to a
timed beeping sound so that the subjects inhaled and exhaled when the beeping sound was
heard. Three minutes of PPG data were collected for each position for each breathing rate.
We also simultaneously measured respiration signals using the Respitrace system, which uses
inductive plethysmography to provide calibrated voltage outputs corresponding to rib cage
and abdominal compartment volume changes. From the Respitrace system, true respiratory
rates were evaluated by counting the number of peaks in a given minute.

In the spontaneous breathing experiment, ECG signals were recorded by a five-lead
surface ECG (Dash 3000, General Electric). Respiratory frequency (turbine flowmeter) and
V̇O2 were measured using a breath-by-breath gas exchange analyzer (COSMED K4b2), which
was calibrated before each test according to the manufacturer’s instructions. The flowmeter
and gas sampling line connect to a sealed oro-nasal face mask. Data from the COSMED K4b2
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(a) (b)

Figure 1. Representative recordings of the ECG (left panel) and pulse oximeter (right panel) data.

were acquired using associated COSMED software. ECG data were sampled and logged
at 400 Hz in LabVIEW (National Instruments). Eleven subjects completed a submaximal
exercise trial after a single 6 h oxygen dive. After abstaining from alcohol for 2 days and
caffeine for 1 day before the exercise trial, and dressed in running shorts and a t-shirt, each
subject reported to the laboratory between 8 am and 10 am. The subjects were instrumented
with ECG leads for measurement of R–R interval, and with a mask to determine respiratory
frequency and for expired gas analysis. For each exercise trial, the subjects ran on a treadmill
(Pro XL, Woodway) at a workload corresponding to 85% of their respective V̇O2 max (Franklin
et al 2000) until volitional fatigue. Each subject was encouraged to give the maximum effort.
Respiration for each subject during exercise trials was not controlled. The chosen workload
provided a sufficient stimulus to continuously increase respiratory frequency over the duration
of the exercise trial. The left and right panels of figure 1 show representative recordings of the
ECG and pulse oximeter data, respectively.

2.3. AR model for respiratory rate candidates

Respiratory rate starts from an AR model:

x(n) = −
∑K

k=1
akx(n − k) + e(n), (1)

where K is the model order, ak are the unknown coefficients and e(n) is the prediction error.
By using OPS criteria, we obtain accurate parameter estimation among the over-determined
model order K. The OPS can be designed to automatically select the optimal model order for
any signal and, thus, can be tuned to each signal without any human subjectivity. With any
initial model order of K, the significant model order Kopt is determined by the ratio of two
neighboring projection distances (Zou et al 2003). Once the unknown AR parameters, ak, are
estimated, they are formulated as the transfer function H(z) as shown below:

H(z) = 1∑Kops

k=1 akz−k
= zKops

(z − z1)(z − z2) · · · (z − zKops)
, (2)

where the AR coefficients are factorized into Kops pole terms, where Kops � K. The real and
complex conjugate poles define the power spectral peaks with the larger magnitude poles
corresponding to the greater magnitudes (Lee and Chon 2010b). The resonant frequency of
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Figure 2. Graphical representation of poles.

each spectral peak is given by the phase angle of the corresponding pole; the phase angle θ

of a pole at frequency f is defined as 2πf �t, where �t is the sampling interval. Among the
poles, we set the region of interest for respiratory rates between f low and f high (e.g. 0.15 and
1.0 Hz). Let us denote the number of pole angles within the region of interest by Kroi. If Kroi

� 2, the pole with the highest magnitude is chosen to be representative of the respiratory rate.
In previous studies, the OPS showed better performance than both CWT- (Leonard et al 2003,
Clifton et al 2007, Addison and Watson 2004) and VFCDM-based (Chon et al 2009, Wang
et al 2006) time–frequency spectral techniques. The AR model approach to the respiratory
rate extraction approach requires prefiltering of the PPG waveforms in order to minimize the
cardiac effects. Thus, the ECG or PPG waveforms are detrended, filtered and downsampled
to 2 Hz so that we can increase the angular resolution between 0 and 1 Hz.

To illustrate the phase angle of poles for respiratory rate extraction, we tested a 60 s
segment PPG signal with respiratory rate of 0.5 Hz, heart rate of 1.1 Hz and sampling rate
of 200 Hz. The resultant poles are shown in figure 2. We set f low and f high as 0.15 and
1.0 Hz, respectively, and found the pole (0.0008 + j0.9774) with the highest magnitude;
the corresponding angle results in the respiratory rate of 0.4997 Hz which is close to the true
respiratory rate of 0.5 Hz. However, the pole angle with the highest magnitude may not always
lead to accurate estimation of the respiration due to low SNR or interaction among poles. To
improve the accuracy of an AR model approach, we combine it with the PF algorithm.

2.4. PF for final respiratory rate estimation

Given a true waveform of either a PPG or an ECG signal from time n − nseg to time n denoted
by Sn−nseg:n, we define the respiratory rate at time n as R(n), where nseg is the signal segment
length. By using the OPS technique and the breathing rates’ region of interest, we obtain the
measurement vector P(n) including Kroi pairs of pole angles and their magnitudes:

P (n) = [
pa

1 pa
2 · · · pa

k · · · pa
Kroi

pm
1 pm

2 · · · pm
k · · · pm

Kroi

]T
, (3)
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where pa
k and pm

k represent the kth pole angle and magnitude, respectively. Under the
assumption that the respiratory state is a Markov process, the respiratory state can be modeled
as

R(n) = T (R(n − nsam),Q(n)) = R(n − nsam) + Q(n), (4)

where nsam is the time interval at which the respiration is considered, T(·) is a known, not
necessarily linear function of the previous state at the time sample n − nsam and Q(n) is a noise
term which is not necessarily Gaussian. We assume that R(n) is a stationary process.

Let P(n0 : n) = [P(n0) · · · P(n − nsam)P (n)] denote the concatenation of all
measurements up to time n, where n0 is the initial time. The aim is to recursively estimate
the conditional probability density p(R(n)|P(1 : n)) from which the respiratory rate can be
obtained as the mean of the density function. In practice, the posterior probability density
is not available. However, assuming that the posterior probability density at time n − nsam

is available, the posterior probability density at time n can be found through the Chapman–
Kolmogorov equation and Bayes’ rule:

p(R(n)|P (n0 : n − nsam)) =
∫

p(R(n)|R(n0 − nsam)) · p(R(n0 − nsam)|P (n0 : n − nsam))

· dR(n0 − nsam), (5)

p(R(n)|P (n0 : n)) ∝ p(P (n)|R(n)) · p(R(n)|P (n0 : n − nsam)), (6)

where p(R(n)|P (n0 : n − nsam)) is the posterior probability density, p(R(n)|R(n − nsam))

is the state transition density, p(R(n)|P (n0 : n)) is the prediction probability density and
p(P (n)|R(n)) is the likelihood. For the solution of equations (5) and (6), we used a PF
approach, which is suitable for non-Gaussian problems, and approximated equations (5) and
(6) via Monte Carlo simulations by representing the density function with a set of particles.

In the PF algorithm, a set of particles is generated, and the particles represent a prior
probability density function p(R(n)|P (n0 : n − nsam)). Given the particles corresponding
to the posterior probability density function of p(R(n − nsam)|P (n0 : n − nsam)) obtained at
time n − nsam, new particles are generated at time n. After the new particles corresponding to
the prior probability density function p(R(n)|P (n0 : n − nsam)) are generated, each particle
weight should be evaluated based on the measurement vector P(n) which is obtained via
OPS criteria. The weighted particles represent the posterior probability density function
of p(R(n)|P (n0 : n)). For the particle weight evaluation, we use the strongest neighbor
(SN) likelihood, in which the measurement with the highest intensity among the validated
measurements is used and the others are discarded (Bar-Shalom 1990). The SN likelihood is
evaluated as

wi(n) = exp

(
−

(
R1(n) − pa

max

)2

2σ 2
gau

)
, (7)

where i = 1, 2, . . . , N for the number of particles, and pa
max is the pole angle with the highest

pole magnitude among the pole angles.
Subsequently, we normalize the particle weight and calculate the mean of the particles’

posterior probability density for the respiratory rate. In addition, we resample the particles to
generate new particles at the next time instant, n + nsam, to reduce the effect of the degeneracy
problem. However, it can lead to a loss of diversity of the particles. For example, the resultant
resampled particles may contain many repeated points due to the resampling algorithm, which
may lead to all particles collapsing to a single point in the worst case scenario. Consequently,
a set of resampled particles may incorrectly represent the posterior probability density and can
also lead to the incorrect prior probability density function. We can overcome this limitation
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by using a particle diversity loss measure, the effective sample size Neff (Arulampalam et al
2002) defined by

Neff(n) = I

1 + Var(w̄∗i (n))
≈ 1∑I

i=1 (w̄i(n))2
, (8)

where w̄∗i (n) and w̄i(n) are the ith true particle weight and ith normalized particle weight,
respectively. Hence, when 1∑I

i=1 (w̄i (n))2
is smaller than I/2 (Yu et al 2010), we replace the

resultant posterior density function by a previously obtained posterior density function defined
as p(R(n)|P (n0 : n)) = p(R(n − nsam)|P (n0 : n − nsam)). Since respiratory rate changes
slowly in most cases, the replacement approach does not affect the overall performance.

2.5. Data analysis

We performed the respiratory rate estimation on 60 s segments. All data segments were shifted
by 10 s for the entire PPG and ECG recording. We set the initial model order K to 30 for
the OPS. The respiratory rate of interest was set to f low = 0.15 Hz and f high = 1.0 Hz. The
PF parameters were set to σ 2

gen = 0.02, σ 2
gau = 0.004 and I = 100, where σ 2

gen represents the
generated particle variance, σ 2

gau is the likelihood variance and I is the number of particles
(Lee and Chon 2010a). For an initial set of particles, the pole angle with the highest magnitude
at the beginning of the time sample was chosen. Since PF provides different results at each
realization due to randomly generated particles, we tested 100 realizations. Each calculated
respiratory rate time corresponds to the end of each segment. For each 60 s (nseg = 60) ECG
or PPG segment, the 100 realizations of the combined PF and AR model were performed and
averaged to provide a single breathing rate estimate. In order to compare the performance of
the two methods consisting solely of the AR and of the AR model with the PF method, we
first calculated the percentage error with every 60 s data segment with 10 s interval (nsam =
10) for each method as

Error rate(%) =
∣∣∣∣True respiratory rate − Estimated respiratory rate

True respiratory rate

∣∣∣∣ × 100. (9)

Especially for the spontaneous breathing data, the true respiratory rate was obtained as the
average rate over each 60 s segment obtained from the reference breath gas exchange analyzer.
The error rates were calculated from all subjects. We next quantified the accuracy by using the
mean, standard deviation and interquartile range (IQR) of the error rates. The paired t-test was
performed to test the significance of the AR method and the AR model with the PF method.
A p-value < 0.01 was considered significant.

3. Results

Figure 3 shows a single realization of respiratory rate estimation by an AR model with and
without PF for different metronome breathing rates of 0.4, 0.5 and 0.6 Hz. Three minutes
of data from one subject in the upright position are shown. In all cases, the AR model
with PF resulted in more accurate estimation than the AR model without PF for the entire
PPG recordings. More specifically, based on the AR model only, some incorrect poles are
associated with the highest magnitude due to motion and noise artifact, and thus some incorrect
breathing rates are chosen. However, the PF overcomes this limitation and allows estimation
of breathing rates that are closer to the true rates.

Table 1 summarizes the entire spontaneous breathing data analysis with mean, standard
deviation and IQR of the estimated error rates from 15 subjects in both supine and upright



1770 J Lee et al

(a) (b) (c)

Figure 3. A single realization of respiratory rate estimation from PPG recording with metronome
breathing: (a) true rate of 0.4 Hz (heart rate of 1.0 Hz), (b) true rate of 0.5 Hz (heart rate of 1.1
Hz) and (c) true rate of 0.6 Hz (heart rate of 1.3 Hz). Three minutes of data from one subject in
the upright position are shown.

Table 1. Comparison of the AR model with and without PF in both supine and upright positions.
Mean, standard deviation and IQR are shown with metronome breathing rates ranging from 0.4 to
0.6 Hz.

Position Supine Upright

Methods AR only AR w/PF AR only AR w/PF

Mean ± std of ER (Hz) 17.37 ± 20.10 6.00 ± 6.34 11.21 ± 20.61 3.47 ± 3.62
IQR of ER (Hz) 28.75 6.65 10.72 3.53
Heart rate (Hz) 0.9–1.6 0.9–1.8

Table 2. Comparison of the AR model and the AR model with PF in different frequency ranges.
Mean, standard deviation and IQR are shown with spontaneous breathing rates.

Frequency range (Hz) 0.6–0.8 Hz 0.8–1.0 Hz

Methods AR only AR w/PF AR only AR w/PF

Mean ± std of ER (Hz) 19.09 ± 24.12 3.87 ± 3.54 29.27 ± 22.09 7.22 ± 8.00
IQR of ER (Hz) 28.40 3.85 42.23 5.36
Heart rate (Hz) 1.8–2.8 2.4–3.4

positions. For the mean, standard deviation and IQR of the error rates, the AR model with
PF was significantly smaller than the AR model without PF for all data sets regardless of
the body postures. In the supine position, the mean, standard deviation and IQR of the AR
model with PF were 2.90, 3.17 and 4.32 times smaller than those of the AR model without PF,
respectively. Similarly, in the upright position, the mean, standard deviation and IQR of the
AR model with PF were 3.23, 5.69 and 3.04 times smaller than those of the AR model without
PF, respectively. All of the results between the two methods are statistically significant with
p < 0.01.

Figure 4 shows a single realization of respiratory rate estimation by the AR model with and
without PF for spontaneous breathing during exercise. Similar to the metronome breathing
data, based on the AR model only, some incorrect poles are associated with the highest
magnitude due to motion and noise artifact, and thus many of the chosen breathing rates are
incorrect. By incorporating the PF, the estimated breathing rates are able to track the true
respiratory patterns throughout the entire ECG recording.

Table 2 summarizes the entire spontaneous breathing data analysis with mean, standard
deviation and IQR of the estimated error rates from 11 subjects in different frequency ranges:
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(a)

(b)

Figure 4. A single realization of respiratory rate estimation from ECG recording with spontaneous
breathing (heart rate of 1.9 Hz): (a) AR model without PF-based breathing rate estimation and (b)
AR model with PF-based breathing rate estimation.

0.6 to 0.8 Hz and 0.8 to 1.0 Hz. For the mean, standard deviation and IQR of the error
rates, the AR model with PF was significantly smaller than the AR model without PF for all
data sets regardless of frequency ranges. In the frequency range between 0.6 and 0.8 Hz, the
mean, standard deviation and IQR of the AR model with PF were 4.93, 6.81 and 7.38 times
smaller than those of the AR model without PF, respectively. Similarly, in the frequency range
between 0.8 and 1.0 Hz, the mean, standard deviation and IQR of the AR model with PF were
4.05, 2.77 and 7.88 times smaller than those of the AR model without PF, respectively. All of
the results between the two methods are statistically significant with p < 0.01.

For all experimental conditions, the AR model with PF resulted in better accuracy in
the respiratory rate estimation than the AR model without PF. We also determined the
computational time of the AR model with PF to determine if the real-time realization of
the algorithm is possible. It was found that the computational time to extract respiratory rates
on 1 min data segments averaged only 0.01 s (Matlab R2009b). Thus, real-time update of
respiratory rates is certainly feasible.

4. Discussion

We demonstrated a robust time-varying and nonlinear PF approach to accurately extract
respiratory rates directly from PPG and ECG signals under both conditions of metronome
and spontaneous breathing. The PF technique has been widely adopted in many estimation
problems, especially for nonlinear and time-varying conditions (Arulampalam et al 2002).
Estimation of respiratory rate works by the use of a standard AR method followed by
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factorization of the estimated AR parameters via the PF into multiple pole terms. The pole
with the highest magnitude is chosen to represent a respiratory rate (Lee and Chon 2010a).
However, the performances of PF methods are affected by the initial set of particles chosen.
In this paper, the initial set of particles was chosen based on the pole angle with the highest
magnitude as determined by the OPS. The accuracy of the PF method will certainly benefit
and converge faster to a true solution if the initially chosen set of particles is closest to the
true respiratory rate. This is the primary reason why we have combined the OPS with PF to
obtain near-optimal solutions. For more accurate results than those presented in this work, a
method which provides the optimal initial set of particles will need to be investigated. Since
the initial setting is one of the PF inherent limitations, a reasonable initial set of particles
should be examined. Certainly, one approach that can be used to resolve this problem is to
utilize a time-variant AR estimator.

5. Conclusion

We presented an algorithm for the respiratory rate extraction using a particle filter (PF)
approach, which is applicable to both photoplethysmogram (PPG) and electrocardiogram
(ECG) signals. In addition, we have demonstrated the robustness of the proposed algorithm
under both metronome and spontaneous breathing conditions. Our PF method is real-time
realizable by the fact that the computational time on 1 min ECG data takes only 10 ms in a
2.66 GHz Intel Core2 microprocessor. This is an attractive feature since current technologies
require attaching multiple sensors for obtaining vital signs as well as ECG electrodes, which
can all consume several minutes. All that is required for our approach to be commercially
viable is to embed the algorithm into a microprocessor of existing ECG devices or pulse
oximeters.
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