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Abstract—Correct labeling of breath phases is useful in the
automatic analysis of respiratory sounds, where airflow or
volume signals are commonly used as temporal reference.
However, such signals are not always available. The devel-
opment of a smartphone-based respiratory sound analysis
system has received increased attention. In this study, we
propose an optical approach that takes advantage of a
smartphone’s camera and provides a chest movement signal
useful for classification of the breath phases when simulta-
neously recording tracheal sounds. Spirometer and smart-
phone-based signals were acquired from N = 13 healthy
volunteers breathing at different frequencies, airflow and
volume levels. We found that the smartphone-acquired chest
movement signal was highly correlated with reference volume
(q = 0.960 ± 0.025, mean ± SD). A simple linear regression
on the chest signal was used to label the breath phases
according to the slope between consecutive onsets. 100%
accuracy was found for the classification of the analyzed
breath phases. We found that the proposed classification
scheme can be used to correctly classify breath phases in
more challenging breathing patterns, such as those that
include non-breath events like swallowing, talking, and
coughing, and alternating or irregular breathing. These
results show the feasibility of developing a portable and
inexpensive phonopneumogram for the analysis of respira-
tory sounds based on smartphones.

Keywords—Breath-phase classification, Respiration, Smart-

phone, Smartphone video camera, Tracheal sounds, Chest
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INTRODUCTION

Computerized Respiratory Sound Analysis (COR-
SA) has overcome some limitations of the mechanical
stethoscope and accelerated the interest in respiratory
sound analysis over the last decades.40 For example,
employment of CORSA systems allows quantification
of changes in respiratory sound characteristics, corre-
lation of these sounds to other physiological signals,
and generation of data representations useful in the
diagnosis and treatment of patients with pulmonary
diseases.7 Even with these advantages, pulmonary
auscultation with the stethoscope still guides in diag-
nosis when other tests are not available.28 Ubiquity,
low-cost, mobility, ease-of-use, and non-invasiveness
are some characteristics that made the stethoscope the
most widely used instrument in clinical practice. Such
characteristics should remain when aiming for the
development of a CORSA system.

The advanced state-of-the-art of smartphones and
their near-ubiquity make them an attractive option for
developing a CORSA system that provides more useful
information than the stethoscope. Employment of
smartphones has advantages over other architectures
in terms of implementation and integration with other
health monitoring technologies given their hardware
and software capabilities. Nowadays, smartphone vital
sign applications have been found to be accurate and
robust in areas such as cardiac and respiratory moni-
toring.17,23

Automatic classification of breath phases, i.e.,
automatic labeling of a breath phase as inspiration or
expiration, attracts particular interest in applications
requiring the timing of breath phases, e.g., when
studying the breathing modulation of flow in the
heart,45 or during acoustical airflow46 and volume
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estimation33 to correctly assign the polarity of the
estimated signals.

In the field of respiratory sounds, discriminating
between inspiratory and expiratory phases is also
important when analyzing breathing (base) sounds as
well as adventitious sounds. The timing of crackle
sounds—short duration (discontinuous) with an
explosive character39—must be characterized and it
has been found to differ between different pulmonary
disorders, reflecting different pathophysiology.30 For
example, late inspiratory crackles have been associated
with restrictive pulmonary diseases while early inspi-
ratory crackles with severe airway obstruction24; early
timing of crackles in COPD was found not to overlap
with late inspiratory crackles in fibrosing alveolitis.31

Expiratory crackles can be found in many respiratory
diseases,30 e.g., low-frequency expiratory crackles oc-
cur especially in chronic airway obstruction, but in
general they are less frequent than inspiratory crack-
les.44 Similarly, the relationship of continuous adven-
titious sounds such as wheezes—long duration sounds
with a musical character39—to the breath phase is
useful for their characterization.20 The severity of
bronchial obstruction has been found to be less in
asthmatic patients with only expiratory wheezes than
in patients with both inspiratory and expiratory
wheezes.37 Inspiratory short duration wheezes
(squawks) are commonly heard in pulmonary fibrosing
diseases and pneumonia.8,27 Regarding base lung
sounds, statistically-significant differences were found
between healthy and extrinsic allergic alveolitis
patients,5 where the differences were more consistent
during the expiratory phase presumably due to the
more central source of the expiratory sounds that
could carry out more information. Classically, by using
phonopneumography—simultaneous presentation of
respiratory sound and airflow or volume signals—the
timing or volume level of occurrences of adventitious
sounds and breath phases can be performed accu-
rately.30 However, outside clinical and research set-
tings these airflow or volume signals cannot always be
taken for granted.

The idea of developing a portable system for respi-
ratory sound analysis is not new,10,14 nor is the idea of
using smartphones for such purposes.25 Recently, our
research group also proposed a smartphone-based
system for tracheal sound acquisition purposes.35 That
study was intended to show that smartphones allow
acquisition of tracheal sounds that resemble the main
characteristics reported in the classical litera-
ture,3,15,19,29,38 such as temporal intensity variation
that correlates with airflow, similar frequency content
of breath phases at similar airflow peaks, and their use
for breath-phase onset detection and respiratory rate
estimation. We analyzed the acquired sounds

employing a Shannon entropy (SE) estimator together
with a joint time–frequency technique in order to ob-
tain time-varying respiration rate estimates, which
were found to correlate well when compared to refer-
ence values from spirometer-acquired signals.35 The
breath-phase onset estimates based on smartphone-
acquired tracheal sounds were found to be around
52 ± 51 ms (mean ± SD), which are adequate for
research involving heart function coupled to respira-
tion.45 Automatic breath-phase classification was not
performed in that pervious study.

Use of tracheal sound measurements for estimating
ventilation parameters is of particular interest in the
CORSA field, e.g., phonospirometry provides fairly
accurate estimates of airflow46 and tidal volume.33

Recently, our research group applied a fractal analysis
approach for tidal volume estimation from smart-
phone-acquired tracheal sounds, and it was found that
reasonable estimates could be obtained even for mea-
surements 5 days after calibration using a simple bag
at a known volume.34 Besides the promising results in
phonospirometry using tracheal sounds, airflow and
volume estimators share a necessary step involving the
correct classification of the inspiratory and expiratory
phases which is usually performed via an additional
signal, e.g., airflow from a spirometer.

Previous studies using a multichannel CORSA sys-
tem addressed the classification of breath phases using
only respiratory sounds. By employing tracheal sounds
for breath-phase onset detection and lung sounds for
breath-phase classification, via the inspiratory/expira-
tory power difference, even 100% accuracy was
achieved.21 However, the recording of an additional
channel was required in order to achieve this. Hence,
this former approach is not feasible in a single channel
scenario. Its implementation in a smartphone-based
CORSA system would require additional hardware to
simultaneously acquire two sound channels if intended
for tracheal sound analysis. On the other hand, the use
of only tracheal sounds for both breath-phase onset
detection and breath-phase classification has also been
attempted.1,2,13,15 By taking advantage of fast changes
in tracheal sound intensity, classification has been
performed in prior studies using both time and fre-
quency analyses.13 Unfortunately, the accuracy was
not reported in the latter case. More recent studies on
this classification task have also reported the use of
only tracheal sounds, recorded either over the trachea
or close to the nostrils or mouth in agreement with
current definitions.39 By applying a ratio of frequency
magnitudes at high and low frequency bands to dis-
criminate between inspiratory and expiratory phases,
97% of 436 phases were correctly classified when
compared to respiratory inductance plethysmogra-
phy.2 An accuracy of 95.6% was obtained by extract-
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ing features from the logarithm of the variance and
comparing the current phase to the prior and post
phases, with the results being independent of the air-
flow levels.15 A 90% accuracy for inhalation and
exhalation classification was achieved by applying a
threshold level to Mel-frequency cepstral coefficients
extracted from tracheal sounds.1 As was pointed out
by other authors, breath-phase detection is a relatively
easy task if lung sounds are used; however, as can be
noticed from the reported accuracy results, ranging
from 90 to 97%, it is still a topic of ongoing research
exploration when employing only tracheal sound
recordings. Certainly, there are applications when only
recording a single respiratory signal is desirable, and
classification of breath phases only from tracheal
sounds is advantageous; however, more often other
physiological signals are simultaneously recorded in
order not only to enhance the performance of the
monitoring system but also to gain a deeper knowledge
of the phenomena under analysis.

This study is intended as a step forward towards the
development of a mobile CORSA system that takes
advantage of smartphone capabilities. Given that
smartphones now have a broad collection of sensors, it
is natural to question if the employment of additional
smartphone-acquired respiratory signals would be
helpful when developing a mobile CORSA system.
Therefore, as an alternative to the approach of classi-
fying breath phases using only tracheal sounds we
propose to acquire an additional respiratory-related
signal that can be used as a temporal reference, as it is
done in classic phonopneumography, without the need
to plug additional hardware into the smartphone. In
particular, we propose using a smartphone-acquired
optical signal that tracks chest movements from which
the correct detection of the inspiratory and expiratory
phases could be achieved by a simple processing
technique directly on the smartphone.

Optical approaches have been used for monitoring
cardiac and respiratory parameters.4,32,42 Recently, a
breathing pattern tracking algorithm was implemented
on a personal computer by detecting shoulder dis-
placements via webcam and image processing tech-
niques.36 In contrast to this study, our research group
implemented an application directly on an Android
smartphone that recorded chest movements for aver-
age respiratory rate estimation.22 Similar to the study
by Shao et al.,36 we noticed that smartphone-based
optical signals resemble the spirometry-based volume
with the uphill and downhill segments corresponding
to the inspiratory and expiratory phases. The proposed
smartphone application was previously developed by
our research group for non-contact respiratory rate
estimation,22 and this study is an extension to that
work which now intends to perform automatic breath-

phase classification for respiratory sound analysis.
Here, as a reference to compare the classification re-
sults, spirometer-based airflow and volume signals
were simultaneously collected with the chest movement
signal recorded remotely from the smartphone’s cam-
era. Tracheal sounds were also simultaneously
acquired via smartphone as proposed in our previous
study35 during noise-free recordings and also while the
subjects made non-breath noise (swallow, cough, and
talk) and performed both regular (alternate phases)
and irregular breathing patterns to analyze the per-
formance of the proposed classification method in such
scenarios.

MATERIALS AND METHODS

Subjects

Thirteen (N = 13) healthy and non-smoker volun-
teers (twelve males), ages ranging from 19 to 52 years
(27.77 ± 9.41, mean ± SD), weights 70.77 ± 8.39 kg,
and heights 175.31 ± 6.28 cm, were recruited for this
study. Students and staff members from the University
of Connecticut (UConn), USA, constituted the group
of volunteers. Subjects with previous pneumothorax,
with chronic respiratory illnesses such as asthma, and
anyone who was currently ill (e.g., common cold or
upper respiratory infection) were excluded from par-
ticipation. The Institutional Review Board of UConn
approved the study protocol which was provided to
each volunteer for his/her agreement and signature.

Respiration Signals Acquisition

Equipment and Chest Movement Algorithm

Three types of signals were recorded during the
breathing maneuvers of each volunteer: airflow and
volume signals via a spirometer, chest movement sig-
nals via a smartphone video camera, and tracheal
sounds via an acoustical sensor plugged into a smart-
phone audio input. The spirometer system used for
recording the respiratory airflow, and corresponding
volume via integration over time, consisted of a res-
piration flow head connected to a differential pressure
transducer (MLT1000L, FE141 Spirometer, ADIn-
struments, Inc., Dunedin, New Zealand). A 16-bit A/D
converter (PowerLab/4SP, ADInstruments, Inc.) was
used to sample the analog airflow and volume signals
at 1 kHz. Each volunteer received a new disposable
filter, reusable mouthpiece, and disposable nose clip
compatible with the spirometer system (MLA304,
MLA1026, MLA1008, ADInstruments, Inc.). Prior to
each volunteer’s experiment, the spirometer system
was calibrated using a 3.0 liter calibration syringe
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(Hans Rudolph, Inc., KS, USA), following instruc-
tions in the manufacturer’s manual. The digitized
volume signal was regarded as a reference for breath-
phase classification.

At the same time that the airflow and volume signals
were being recorded, each volunteer’s chest movement
signal was also recorded, using the frontal camera of
an HTC One M8 smartphone (HTC Corporation,
Taiwan), which consisted of a 5 MP camera with 1080p
full HD video recording at 30 frames-per-second (fps)
and wide-angle lens. An algorithm was implemented in
the smartphone by our research group using the Java
programming language (Oracle Corporation, CA,
USA). The implemented algorithm recorded the chest
wall motions at a sampling frequency of 25 Hz during
the volunteer’s maneuvers.22

It has been shown that during breathing, as in all
mechanical systems involving volume displacement,
a relationship between volume displacement and
linear motion exists, where the rib cage and abdo-
men compartments of the chest wall are the major
contributors.16 Chest wall movements in the
anteroposterior direction are greater than those in
the vertical or transverse directions, with an in-
crease of around 3 cm in the anteroposterior
diameter over the vital capacity range.16 In non-
contact optical monitoring of breathing, a video
camera captures the changes in the intensity of re-
flected light caused by these chest wall movements
as they modify the path length of the illumination
light.47 Note that in this respiratory monitoring
approach, volume changes are not directly mea-
sured but a surrogate signal is obtained from
analysis of the variations in the reflected light due
to chest wall movements captured by the system’s
camera while breathing. In particular, the algorithm
implemented on the smartphone analyzes the aver-
age intensities of the red, green and blue (RGB)
channels of the video signal within a rectangular
region of interest (ROI) at each time instant t as
follows:

I tð Þ¼ 1

3D

� �

�
X

fm;ng2ROI

iR m;n; tð Þþ
X

fm;ng2ROI

iG m;n; tð Þþ
X

fm;ng2ROI

iB m;n; tð Þ

0
@

1
A

ð1Þ

where D refers to the number of pixels in the ROI, and
ix(m,n,t) refers to the intensity value of the pixel at the
m-th row and n-th column of the ROI for the corre-
sponding RGB channel. The ROI was focused on the
rib cage area of the subject and consisted of 49 9 90
pixels selected, i.e., D = 4410 pixels, in a resolution of
320 9 240 pixels. The native resolution and image size

of the smartphone’s camera is too large for real-time
processing and displaying of the data due to the high
computational burden. Hence, the Android Camera
API (Application Programming Interface) was used to
reduce the resolution and size of the ROI. With the
settings mentioned above, the frame rate dropped to
around 25 fps. In order to obtain the chest movement
signal I(t), the video data was first converted in the
smartphone from YUV420SP format to RGB using
the Open Source Computer Vision library.26 The
implemented app saved the recorded chest movement
signal I(t) and time vector of the maneuvers in a text
file for further analysis in Matlab (R2012a, The
Mathworks, Inc., MA, USA).

A Galaxy S4 smartphone (Samsung Electronics Co.,
Seoul, South Korea) was employed to acquire tracheal
sounds via a cabled acoustical sensor composed of a
subminiature electret microphone BT-21759-000
(Knowles Electronics, IL, USA) encased in a plastic
bell. A double-sided adhesive ring (BIOPAC Systems,
CA, USA) was used to affix the acoustical sensor to the
volunteers’ necks, at the level of the anterior cervical
triangle. The Galaxy S4, as well as the HTC One, was
running on Android v4.4.2 (KitKat) operating system.
The acoustical sensor used in this study was developed
by our colleagues at the Metropolitan Autonomous
University at Mexico City, and has been successfully
used in respiratory sound analysis.5 The minimum
requirements recommended by the European Respi-
ratory Society Task Force Report7 are satisfied by the
Galaxy S4 high-fidelity audio system, and we found
that the characteristics and information that can be
extracted from this kind of smartphone-acquired
sound signal are in agreement with those using regular
CORSA systems.35 After smartphone acquisition of
the tracheal sounds at 44.1 kHz and 16-bit per sample,
the recorded audio files were transferred to a personal
computer for further processing in Matlab.

Maneuver

Each volunteer was asked to breathe through the
spirometer system at airflow levels ranging from
around 0.5 to 2 L/s, first increasing their volumetric
flow rates with each breath for around 1 min, and
then decreasing volumetric flow rates with each
breath for another minute. These airflow levels cover
similar ranges as the ones used in other studies when
acquiring tracheal sounds at ‘low’, ‘medium’, and
‘high’ airflows.15,21,33 Precise minimum and maximum
peak airflows varied between volunteers depending on
their own manageable levels. For alignment purposes
between the different types of recordings, volunteers
were asked to perform initial inspiratory and final
expiratory apneas of approximately 5 s each and to
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take a forced respiratory cycle after initial apnea be-
fore performing the described maneuver. The airflow
signal from the spirometer was displayed on a 40¢¢
monitor placed in front of the volunteers to provide
them with visual feedback. During the maneuver,
volunteers were in standing still posture and wore
nose clips to clamp their nostrils. In order to record
the chest movement signal, the smartphone was held
in a 3-pronged clamp placed in front of the volunteers
at approximately 60 cm from their thorax level so
that the central portion of their rib cage areas was
captured by the rectangular ROI of 49 9 90 pixels
defined in the smartphone application. In a real-world
application, the distance from the camera to the
subject’s thorax would be affected by their body
proportions, so it would be necessary to ensure that
the ROI’s vertical borders do not exceed the anterior
axillary line. We have found that a reliable chest
movement signal could be obtained even when the
ROI captures a smaller area than that defined by the
midclavicular lines. Experiments were performed in a
regular dry laboratory, not an anechoic chamber,
illuminated with ordinary fluorescent ceiling lights.
The laboratory was held quiet during each volunteer’s
maneuvers. Volunteers were asked not to wear loose
clothes but they were free to wear any pattern, e.g.,
plain or stripes, and any color of clothing during the
maneuvers. Figure 1 shows an example of the setup
during a maneuver acquisition.

Data Preprocessing

Airflow and volume signals from the spirometer
were down-sampled to 25 Hz, and then lowpass fil-
tered at 2 Hz with a 4th-order Butterworth filter
applied in a forward and backward scheme to produce
zero-phase distortion and minimize start and end
transients. Due to fluctuations around the sampling
frequency encountered during data acquisition, the
chest movement signal was interpolated at 25 Hz via a
cubic spline algorithm to obtain a fixed sampling rate.
The same lowpass filter at 2 Hz applied to spirometer
signals was applied to the chest movement signal to
minimize high frequency components not related to the
respiratory maneuver. Acquired tracheal sounds were
down-sampled to 6300 Hz. To minimize heart sounds
and muscle interference, the down-sampled tracheal
sounds were filtered using a 4th-order Butterworth
bandpass filter between 100 and 3000 Hz and applied
in a forward and backward scheme.

Due to differences in starting times and delays
between the spirometer system and the smartphones,
alignment of smartphone-acquired signals was per-
formed with respect to spirometry. For the chest
movement signal, a segment of 20 s duration was ex-
tracted from each recording at the central portion of
the maneuver. The cross-correlation sequence between
volume and chest movement segments was computed
and the sample lag for which the cross-correlation

FIGURE 1. Recording of breathing signals during the maneuver. A smartphone was placed in front of the volunteer at his/her
thorax level in order to record the chest movements directly on this device. Tracheal sounds were acquired with an acoustical
sensor plugged into the smartphone. Two separate devices were employed to acquire tracheal sounds and chest movement
signals in the first stage of the study. Acquisition of both signals was performed with a single smartphone in the second stage.
Airflow and volume signals were also acquired via a spirometer system and regarded as temporal reference. Actual breath-phases
of the maneuver were obtained from volume signal.
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value resulted in a maximum was used to shift the
smartphone-acquired signal accordingly. For the
alignment of tracheal sounds, the SE signal was em-
ployed as it resembles a rectified version of the airflow
signal,46 with the breath-phase onsets being indicated
by its minima. SE was computed in a moving window
scheme via the Parzen’s density estimation method
with a Gaussian kernel6 using the parameters detailed
in our previous study.35 Then, the tracheal sound was
shifted in time so that its initial breath-phase onset
after apnea, computed from SE, matched the corre-
sponding onset from the reference volume signal.

Although the manufacturer’s instructions were fol-
lowed, we found a drift in the spirometer-based volume
signals. A drift was also found in the smartphone-ac-
quired chest movement signals. Hence, a detrending
step based on the empirical mode decomposition
(EMD) was applied to both types of signals in order to
facilitate their further analysis.9,12 EMD employs a
sifting process that decomposes the original signal in
terms of its intrinsic oscillatory modes (IMFs), based
only on the original signal, by analyzing the different
time scales presented in it. After the sifting process, the
original signal s(t) can be represented as

s tð Þ ¼
XK
k¼1

IMFk tð Þ þ rKðtÞ ð2Þ

where K is the total number of IMFs, and rK(t) is the
residual signal. The EMD sifting process is intended to
obtain IMFs without riding waveforms and to produce
close to zero mean value as defined by their upper and
lower envelope signals.12 As a result of the sifting pro-

cess, the first IMFs contain the higher frequency com-
ponents (lower scales), and hence the trend is contained
in the last IMFs. Figure 2 shows an example of raw
signals acquired using smartphone and spirometer sys-
tems during the breathing maneuver of a volunteer. It is
worth mentioning that the initial baseline level in the
smartphone-based optical reflectance signal was not set
for each patient as it depended on the particular varia-
tions of their clothing and illumination background
during the recording. Observe that even with the base-
line drift found for each subject, the inspiratory/expi-
ratory phases can be noticed as the local increasing/
decreasing segments in both the chest movement and
reference volume signals. However, signal detrending
with EMD, or with a more conventional high-pass dig-
ital filter, simplifies further processing including the
automatic breath-phase onset detection. An example of
the detrended results is shown in Fig. 3.

Breath Phase Classification Using Smartphone Camera
Signals

As a reference to test the performance of the pro-
posed breath-phase classification, the spirometer’s
volume signal was used to obtain the actual breath
phases during the maneuver. First, the corresponding
breath-phase onsets were found via its local maxima
and minima. Then, the breath phase between two
consecutive onsets was labeled as inspiration or expi-
ration in accordance to the sign of a linear least-
squares model18 fitted on the volume data in that
segment (positive: inspiratory phase, negative: expira-
tory phase).

FIGURE 2. Example of acquired signals during the respiration maneuver of a volunteer. Top: spirometer-acquired airflow (or-
ange) and volume (blue) signals. Middle: smartphone-acquired tracheal sounds. Bottom: smartphone-acquired chest movement
signal. Observe that despite of the baseline drift and different starting times, the breath-phase onsets are noticeable in both
reference volume from spirometer and chest movement signal from smartphone’s camera.
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For the automatic classification of the breath phases
using the smartphone-acquired chest movement signal,
we propose to take advantage of the linear correlation
between the detrended chest movement and the
spirometer-based volume signals. As the basis of the
proposed method is that the chest movement signal
from a smartphone’s camera and the spirometer-based
volume signal are highly correlated, we quantify this
linear correlation during the breathing maneuver by
computing the cross-correlation index q, defined as:

q ¼
PP

i¼1 chestsmartphone ið Þ � volumespirometer ið ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPP
i¼1 chestsmartphone ið Þ
� �2�PP

i¼1 volumespirometer ið Þ
� �2q

ð3Þ

where chestsmartphone denotes the smartphone-acquired
chest movement signal, volumespirometer the spirometer-
acquired volume signal, and P is the total number of
samples of the analyzed signals. If both signals were
the same, q would equal unity. Hence, values close to 1
indicate high correlation between the signals under
analysis. Note that if a high linear correlation between
smartphone-acquired chest movement and the refer-
ence volume signal is found, it would imply that we
could easily obtain accurate breath-phase labels from
only the chest movement signal. To this end, the chest
movement signal was processed in the same way as the
volume signal, i.e., the breath-phase onsets were
automatically found in the chest movement signal,
then each segment between two consecutive onsets was
labeled as inspiration if the sign of the linear least-
squares model fitted on the chest movement signal was

positive, or as expiration if the corresponding sign was
negative, i.e.,

Breath phase ¼ Inspiration, if sign bf g>0
Expiration, if sign bf g<0

�
ð4Þ

where sign �f g refers to the sign function, and b corre-
sponds to the slope of the regression line for the cor-
responding segment of smartphone data under
analysis. For simplicity of notation, let us consider that
for every two consecutive breath-phase onsets we have
a set of M pairs of smartphone data points denoted by
tm; ymð Þf gm¼1;...;M, where ymf gm¼1;...;M refers to the

chest movement data from a smartphone, and
tmf gm¼1;...;M refers to their corresponding time loca-

tions at a uniform sampling rate fs, hence the best
linear fit in the least-squares sense has the form
y = bt + a, where the slope b is given by18

b ¼
PM

m¼1 tm � ymð Þ � 1
M

PM
m¼1 tm

� 	
�
PM

m¼1 ym

� 	
PM

m¼1 t2m
� �

� 1
M

PM
m¼1 tm

� 	2 ð5Þ

Without loss of generality, the relationship between
the equidistant time points and the sampling frequency

can be used, i.e., tm ¼ m � 1fs for m ¼ 1; . . . ;M sample

indexes, to rewrite the slope of the linear fit as

b ¼
1
fs

PM
m¼1 m � ymð Þ � 1

Mfs

PM
m¼1 m

� 	
�
PM

m¼1 ym

� 	

1
f2s

PM
m¼1 m

2 � 1
Mf2s

PM
m¼1 m

� 	2
ð6Þ

FIGURE 3. Example of preprocessed signals during the breathing maneuver of a volunteer. Top: spirometer-acquired airflow
signal (orange) and volume signal (blue) after detrending. Middle: smartphone-acquired tracheal sounds. Bottom: smartphone-
acquired chest movement signal with the baseline drift removed after detrend. Gray and black bars displayed on top of spirometer
signals indicate the inspiratory and expiratory phases, respectively. Both types of smartphone-acquired signals were aligned in
time with respect to reference volume from spirometer.
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Either Eq. (5) or (6) could be used for breath-phase
classification purposes. However, as our interest is only
in the sign of the slope it would be more convenient to
reduce computational burden when implemented on
the smartphone. Using the closed forms of the finite
summations given by

PM
m¼1

m ¼ M Mþ1ð Þ
2

PM
m¼1

m2 ¼ M Mþ1ð Þ 2Mþ1ð Þ
6

ð7Þ

the Equation of the slope b could be simplified as
follows

b ¼ 6fs

M M� 1ð Þ

� �
2

Mþ 1

� �XM
m¼1

m � ymð Þ �
XM
m¼1

ym

 !

ð8Þ

In turn, by recognizing that in our case the first term
in Eq. (8) is always positive, the sign of the slope b can
be easily computed by

sign bf g ¼ sign
2
PM

m¼1 m � ymð Þ
Mþ 1

�
XM
m¼1

ym

( )
ð9Þ

Finally, the results of the proposed classification
scheme using the smartphone-acquired signal can be
expressed in terms of the confusion matrix, where the
columns are the actual breath-phases as obtained from
spirometry, and the rows are the labeled breath-phases
from the chest movement signal from smartphone’s
camera. The accuracy was obtained from the confusion
matrix as

Accuracy ¼ TPþ TN

PþN
ð10Þ

where TP refers to the number of actual inspirations
correctly labeled as inspirations, TN to the number of
actual expirations correctly labeled as expirations, and
P and N to the total number of actual inspirations and
expirations, respectively.

RESULTS

Table 1 contains statistics about breath-phase
duration, peak airflow, and tidal volume for the
breathing maneuvers performed by N = 13 volunteers,
as measured from spirometer-based airflow and vol-
ume signals. The analyzed database was composed of
n1 = 419 inspirations and n2 = 430 expirations.

The smartphone-acquired chest movement signal
follows the temporal variations of the spirometer-
based volume signal during the breathing maneuvers,
as shown from the raw data in Fig. 2 and more clearly
in Fig. 3 after alignment and detrending. We found a
high linear relationship between both detrended signals
for all volunteers as measured by the cross-correlation
index, q = 0.960 ± 0.025. Figure 4 shows an example
of the proposed method for automatic breath-phase
classification using the smartphone-acquired chest
movement signal. Table 2 presents the classification
results of the breath phases, as a confusion matrix, for
all breathing phases performed by volunteers, where
the actual breath phases were obtain from spirometer-
acquired volume signals. 100% classification accuracy
was achieved as can be seen from the confusion matrix
shown in Table 2.

In addition to the previous breathing maneuvers, a
couple of volunteers were asked to perform additional
breathing patterns according to different scenarios
plausible to occur during respiratory recordings, as has
been pointed out.15 Additional recordings included the
following scenarios: non-breath noise immersed in
regular or irregular breathing, and successive inhala-
tions or exhalations. The scenario with alternating
breathing phases with different durations (inspiration–
expiration–inspiration–expiration) was not explicitly
performed at this time because it was already achieved
during the main breathing maneuvers performed by all
volunteers. At this stage of the study, the chest
movement algorithm was already implemented on the
Samsung S4 smartphone so that only this device was
employed for both tracheal sounds and chest move-
ments recording. The Samsung S4 frontal camera—2

TABLE 1. Distribution of breath phases’ duration, tidal volume, and peak airflow obtained from spirometer during breathing
maneuvers (N 5 13 subjects. Number of expirations 5 430. Number of inspirations 5 419).

Parameter Minimum Maximum Mean Median

Phase duration (s) 0.739 ± 0.317 3.211 ± 1.160 1.749 ± 0.586 1.720 ± 0.670

Inspiration

Peak airflow (L/s) 0.478 ± 0.176 2.232 ± 1.127 1.107 ± 0.286 1.022 ± 0.263

Tidal volume (L) 0.268 ± 0.131 2.986 ± 0.651 1.292 ± 0.222 1.090 ± 0.215

Expiration

Peak airflow (L/s) 20.426 ± 0.203 22.144 ± 0.875 21.064 ± 0.361 20.976 ± 0.346

Tidal volume (L) 22.972 ± 0.683 20.236 ± 0.114 21.261 ± 0.213 21.062 ± 0.225

Values are presented as mean ± standard deviation.
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MP, 1080p video recording @ 30 fps—was employed
for chest movement recording. As before, the native
resolution of the Samsung S4 device was not used due
to computational burden; its resolution was reduced to
320 9 240 pixels and the ROI was set to 49 9 90 pixels
to match those parameters used in the HTC One
smartphone. Examples of recorded signals from two
volunteers performing different breathing scenarios
with non-breathing noises are shown in Figs. 5 and 6.
Examples of signals acquired while the volunteers
breathed in successive phases are presented in Fig. 7.
In Figs. 5, 6 and 7, airflow and volume signals are
displayed for temporal reference; gray and black bars
displayed on top indicate the inspiratory and expira-
tory phases, respectively. Fitted lines are superimposed
on chest movement signals from the smartphone to
show the phase labeling outside the noise event as
determined by the corresponding slopes. In Figs. 5 and
6, the noise events are indicated by a red bar. These
events were labeled by examining the sound replay and

waveform display of the tracheal sounds simultane-
ously with the chest movement signal from the
smartphone, similar to the common practice in respi-
ratory sound analysis, e.g., when labeling adventitious
sound events using phonopneumography. Observe that
in these cases, the classification of the breath phases is
concerned with the phases surrounding the noise
events. In Fig. 7, the occurrence of successive inspira-
tions and expirations are also indicated by a red bar,
where classification of these breath phases is of con-
cern. By employing the slope of the smartphone signal,
these successive phases will be correctly classified with
the same phase label given the monotonically increas-
ing (or decreasing) chest movement waveform in such
segments.

DISCUSSION

In this paper we propose the automatic classification
of inspiratory and expiratory phases from a smart-
phone-acquired optical recording as an extension to
the acquisition of tracheal sounds via smartphones.
The app we developed allowed real time recording of
chest movements during breathing maneuvers directly
on the smartphone. For this study, the app was
implemented on two Android smartphones, the HTC
One M8 and the Samsung Galaxy S4. During the ini-
tial stage of the study, recordings of chest movements
and tracheal sounds were obtained on two separate
smartphones, i.e., the HTC One recorded chest

TABLE 2. Breath-phase classification results using smart-
phone-acquired chest movement signal (N 5 13 subjects.
Number of actual expirations 5 430. Number of actual inspi-

rations 5 419).

Actual breath phase

(spirometer)

Expiration Inspiration

Classified breath

phase (smartphone)

Expiration 430 0

Inspiration 0 419

FIGURE 4. Example of automatic breath-phase classification using the smartphone-acquired chest movement signal. Top:
smartphone-acquired tracheal sound signal. Gray and black bars displayed on top indicate the inspiratory and expiratory phases,
respectively, as measured from reference volume signal from spirometry. Bottom: smartphone-acquired chest movement signal.
Superimposed dashed green lines indicate the fitted lines computed via least-squares method. Positive and negative slopes of
fitted lines were used to label the segment as inspiration and expiration, respectively.
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movements and the Galaxy S4 recorded tracheal
sounds, as each corresponding smartphone was pro-
posed for that particular use in our previous stud-
ies.22,35 In the second stage of this study, both types of
recordings were performed on the same smartphone,
i.e., the Galaxy S4 simultaneously recorded chest
movements and tracheal sounds.

Previously we studied the employment of smart-
phones for developing a CORSA system.35 Results
found in that study motivated us to keep working to-
ward the development of a low-cost, easy-to-upgrade,
and reliable portable CORSA system. In a subsequent
study, our research group aimed for tidal volume
estimation using smartphone-acquired tracheal sounds
together with novel signal processing techniques and a
simple calibration method that does not involve
expensive or specialized devices such as spirometers.34

Although the results are promising, the proposed
methods require the correct identification of the
inspiratory and expiratory phases.

Phonopneumography has been useful in the field of
respiratory sound analysis. When available, it is used
as temporal reference for detection and classification of
breath phases as well as diverse time events occurring
during the breathing maneuver. Accordingly, the cor-

rect classification of breath phases proves to be rele-
vant when performing automatic analysis of
respiratory sounds containing adventitious sounds,20,30

as well as for applications involving airflow or volume
estimation from tracheal sounds.33,45,46 Given the
promising estimation of ventilation parameters, the use
of only tracheal sounds has been proposed to address
the automatic classification of breath phases.1,2,13,15

Although this approach has advantages, e.g., greater
user acceptance of the acoustical sensors in compar-
ison to nasal cannulas or facemasks used to measure
airflow, its accuracy results for breath-phase classifi-
cation have not matched those found when using an
additional lung sound channel.

Given the importance of the correct breath-phase
classification in the CORSA field, and as a more-ac-
curate alternative to using only tracheal sounds, we
studied the employment of an additional respiration-
related signal that could easily upgrade a mobile
smartphone-based system. In this paper, instead of
attempting the classification of breath phases from
tracheal sounds, we employed an optical approach to
perform this task. Previously, our research group
implemented an algorithm that allows the estimation
of average respiratory rate from a smartphone-ac-

FIGURE 5. Example of smartphone-acquired signals during different scenarios of breathing patterns. For each of the four panels,
the upper graph displays the airflow (orange), volume (blue), and tracheal sound (dark green) signals, while the bottom graph
displays the chest movement signal (red) and the fitted lines computed via least-squares (dashed green lines). Gray/black bars
displayed on top indicate the actual inspiratory/expiratory phases measured from spirometry, while the red bar indicates the
location of the non-breath noise event. Top left panel: non-breath noise event (swallow) immersed in regular breathing patterns.
Top right panel: non-breath noise event (swallow) immersed in irregular breathing. Bottom left panel: non-breath event noise
(cough) immersed in regular breathing. Bottom right panel: non-breath noise event (talk) immersed in irregular breathing.
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quired chest movement signal,22 and we noticed that
this signal resembles the spirometer-acquired volume
signal. To investigate our previous visual observations,
in this study were compared the spirometer-based
volume and the smartphone-based chest movement
signal using the cross-correlation index. The chest
movements and tracheal sounds were recorded on

separate smartphones at the initial stage of the study
because the optical algorithm had been only imple-
mented on a different smartphone from the one used to
record tracheal sounds in our previous studies. We
found that both types of signals were highly correlated
(q = 0.960 ± 0.025, mean ± SD), corroborating our
initial observations. These results indicate that our

FIGURE 7. Example of acquired respiratory signals while a couple of volunteers were taking successive breaths. For each of the
two panels, the upper graph displays the airflow (orange), volume (blue), and tracheal sound (dark green) signals, while the bottom
graph displays the chest movement signal (red) and the fitted lines computed via least-squares (dashed green lines). Gray/black
bars displayed on top indicate the actual inspiratory/expiratory phases measured from spirometry, while the red bar indicates the
location of the successive breaths event. Left panel: consecutive exhalations. Right panel: consecutive inhalations.

FIGURE 6. Example of smartphone-acquired signals during different scenarios of breathing patterns of a second volunteer. For
each of the four panels, the upper graph displays the airflow (orange), volume (blue), and tracheal sound (dark green) signals,
while the bottom graph displays the chest movement signal (red) and the fitted lines computed via least-squares (dashed green
lines). Gray/black bars displayed on top indicate the actual inspiratory/expiratory phases measured from spirometry, while the red
bar indicates the location of the non-breath noise event. Top left panel: non-breath noise event (swallow) immersed in regular
breathing patterns. Top right panel: non-breath noise event (swallow) immersed in irregular breathing. Bottom left panel: non-
breath noise event (cough) immersed in regular breathing. Bottom right panel: non-breath noise event (talk) immersed in irregular
breathing.
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smartphone-based monitor is able to capture the
intensity changes in the reflected light caused by the
chest motion, linearly related to volume, while
breathing. According to Konno and Mead,16 this
motion-volume linear relationship is attributable to the
relative smaller diameter changes while breathing in
comparison to the absolute diameter of the chest wall,
and to the larger contribution of the anteroposterior
diameter changes compared to the vertical or
transversal. This linearity appears to hold in the
recorded optical chest movement signal from a
smartphone’s camera. Hence, the volume signal was
employed to label the phases of the respiratory
maneuvers, while the chest movement signal was pro-
cessed using a simple linear regression to label the
uphill segments as inspirations and downhill segments
as expirations based on the slope of the computed
model. We found 100% accuracy for the task of
breath-phase classification, i.e., all inspiratory phases
(n1 = 419) were detected as inspirations and all expi-
ratory phases (n2 = 430) were detected as expirations,
for the maneuvers performed by the volunteers in
standing still posture, while breathing at different cycle
durations ranging from 700 ms to 3 s, and different
airflow levels with peaks ranging from 0.5 to 2.0 L/s.

The second stage of the studywas intended to analyze
the performance of the chest movement signal for the
automatic classification of breath phases during differ-
ent scenarios of breathing patterns that included non-
alternate inspiratory and expiratory phases, as well as
non-breathing related noises like swallowing, talking
and coughing. At this point, the optical algorithm was
already implemented on the same smartphone tested for
tracheal sound acquisition, so that in this stage only a
single smartphone was employed. As stated by other
authors, these different breathing patterns are the most
challenging in respiratory phase detection.15 We found
that the proposed classification scheme can be used to
correctly classify the breath phases in such scenarios.
For the non-breath events immersed in typical alternate
breathing (e.g., inspiration-noise-expiration) or in
irregular breathing (e.g., expiration-noise-expiration),
the algorithm was able to classify the breath phases
surrounding these noise events as indicated by the cor-
responding slopes of the chestmovement signal from the
smartphone.During the scenarios involving consecutive
inspirations or consecutive expirations, the tracheal
sounds involved were correctly classified as the same
phase given the fitted slope for the chest movement sig-
nal in that time interval.

Besides the above-mentioned results, we recognize
limitations of this study. First, subjects were instructed
to stand still while performing the breathing maneu-
vers, and hence, the performance deterioration due to
body motion artifacts, not related to the breathing

maneuver, was not explored. Incorporation of body
tracking and artifact removal algorithms similar to
those proposed in the literature to reduce such motion
effects—for example in36,41—is a topic of further
exploration towards the development of our mobile
system. Second, we only explored recordings with the
subjects in standing posture. Recordings in supine
posture were not performed. We foresee that the pro-
posed scheme would bring similar classification results
to the ones reported here when the visual field of the
smartphone’s camera is focused on the area with the
most dominant contribution to volume while breath-
ing, e.g., the abdominal compartment in supine pos-
ture.16 Third, recordings were performed in a regular
indoor laboratory, and hence further experiments are
required to analyze the usability of the proposed
portable system in different outdoor environments to
fully take advantage of its mobility.

This study represents a step forward in the devel-
opment of a mobile system for the analysis of respi-
ratory sounds that takes advantage of additional
sensors already existing in smartphones. The obtained
results show that simultaneous recordings of tracheal
sounds and chest movements are useful for both
automatic classification of the breath phases and cor-
rect timing of events such as the ones shown in this
paper. An interesting alternative to our proposed
approach and a topic for future exploration involves
the use of accelerometers for respiratory sound
recording11,43 with the potential benefit that informa-
tion regarding the breath phase could be extracted,
especially for lung sound recordings, in addition to the
respiratory sound itself. Currently, motivated by the
high linear correlation obtained between the chest
movement signal from the smartphone’s camera and
the reference volume from spirometry, we are working
on a study involving the feasibility of estimating tidal
volume via the smartphone-acquired chest movement
signal so that estimation of this parameter could be
easily performed outside research and clinical settings.
Finally, we consider that the smartphone approach
proposed in this study, as well as similar ones for
respiratory monitoring, has the potential to be readily
accepted by users due to its simplicity and comfort as
well as potential to reach populations and geographic
areas where it is difficult to study respiratory sounds
with current computerized methods.
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