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Time-Varying Autoregressive Model-Based Multiple
Modes Particle Filtering Algorithm for Respiratory

Rate Extraction From Pulse Oximeter
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Abstract—We present a particle filtering algorithm, which com-
bines both time-invariant (TIV) and time-varying autoregressive
(TVAR) models for accurate extraction of breathing frequencies
(BFs) that vary either slowly or suddenly. The algorithm sustains
its robustness for up to 90 breaths/min (b/m) as well. The pro-
posed algorithm automatically detects stationary and nonstation-
ary breathing dynamics in order to use the appropriate TIV or
TVAR algorithm and then uses a particle filter to extract accurate
respiratory rates from as low as 6 b/m to as high as 90 b/m. The re-
sults were verified on 18 healthy human subjects (16 for metronome
and 2 for spontaneous measurements), and the algorithm remained
accurate even when the respiratory rate suddenly changed by
24 b/m (either increased or decreased by this amount). Further-
more, simulation examples show that the proposed algorithm re-
mains accurate for SNR ratios as low as −20 dB. We are not
aware of any other algorithms that are able to provide accurate
TV BF over a wide range of respiratory rates directly from pulse
oximeters.

Index Terms—Autoregressive (AR) model, chronic heart failure
(CHF), chronic obstructive pulmonary disease, optimal parame-
ter search (OPS), particle filter, pulse oximeters, remote health
monitoring, respiratory rate extraction, sleep apnea, sudden in-
fant death syndrome, vital signs.

I. INTRODUCTION

M EASUREMENTS of respiratory rate or breathing fre-
quency (BF) have been clinically performed by moni-

toring transthoracic impedance or CO2 levels through a capno-
graph, but these approaches are all labor intensive and expensive
[1]. Respiratory rate is important for many clinical uses, includ-
ing detecting sleep apnea [2], sudden infant death syndrome [3],
chronic heart failure (CHF) [4], and chronic obstructive pul-
monary disease [5], and measurements of BF are needed in
many intensive care and operative settings. Recently, the use
of pulse oximeter for BF extraction has gained significant in-
terests due to its simplicity and noninvasive measurement ca-
pability [6], [7]. Acquiring accurate BF from a pulse oximeter
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is important, because this information allows to characterize
whether a low oxygen saturation reading is due to low breathing
rates or is the result of other dangerous physiological conditions.
The patient’s comfort is also improved greatly by obtaining this
additional information from the pulse oximeter without having
to wear a separate device for respiratory rate measurement.

In the past, a simple fast Fourier transform was used to extract
BF directly from the photoplethysmogram (PPG) waveforms,
but it has not attracted much attention due to its inaccuracy.
Recently, concomitant with increased interest in extracting BF
directly from the PPG waveforms, several accurate nonpara-
metric (e.g., time-frequency spectral methods) [6], [7] and para-
metric [e.g., autoregressive (AR) model-based approaches] [8]
methods have been introduced.

One recent promising parametric method is the combination
of AR modeling and a single-mode particle-filtering approach,
which is capable of obtaining BF as high as 90 breaths/min (b/m)
directly from the PPG waveforms [9]. Certainly, the results ob-
tained are a significant improvement since no other methods are
able to extract such high breathing rates from the PPG. However,
these results are based on constant breathing rates, which is un-
realistic in most normal and abnormal conditions. For example,
in Cheyne–Stokes respiration especially prevalent in subjects
with CHF, the breathing patterns change abruptly [10]. Our
technique, which combines an AR model with a particle filter,
is designed mainly for constant breathing without any sudden
changes in BF. To overcome this limitation of our previous
work, we propose, in this study, a novel approach that uses
both time-invariant (TIV) and time-varying optimal parameter
search (TVOPS) methods combined with a multiple modes par-
ticle filter approach to handle both constant and sudden changes
in breathing rates, all directly from PPG signals. Specifically,
our algorithm first employs the TVOPS to look for varying BFs
with an assumption that within a 1 min data segment there can
be no more than two different breathing rates. If we do find
two different BF, then we use the multiple modes particle filter
approach to further increase the accuracy of the initially esti-
mated two BFs via TVOPS. If we find only one BF, then we
use TIVOPS followed by a single-mode particle filter to further
increase the accuracy of the initially estimated BF. The nov-
elty of this approach is that we automatically appropriate the
proper TIV or TV tool of the method as dictated by the dy-
namics of the data, which ultimately results in more accurate
estimation of BF. Henceforth, we term our proposed method
the combined TV and TIVOPS-based multiple modes particle
filter (COPS-MPF). We compare the efficacy of COPS-MPF to
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Fig. 1. Summary of the proposed algorithm, COPS-MPF.

both TIVOPS and TIVOPS-PF approaches using pulse oxime-
ter data that were collected from 18 healthy subjects with both
metronome and spontaneous breathing rates ranging from 0.2
to 0.6 Hz. Furthermore, we use simulation examples to compare
the performance between TIVOPS-PF and COPS-MPF when
BF undergoes gradual and sudden changes. The advantage of
our approach is that it is real-time realizable, and the algorithm
can be embedded in the microprocessor of most existing pulse
oximeter devices to provide BFs along with the HR and SpO2
(pulse oximeter oxygen saturation) readings in real time.

II. METHOD

A. Respiratory Rate Extraction With AR Model

Our approach to extract BF from the PPG is to use the COPS-
MPF algorithm. A detailed summary of the proposed algorithm
is provided in Fig. 1, where a TVAR and a TIVAR model are
incorporated with multiple-mode particle-filtering algorithm. In
general, the COPS-MPF starts with a TVAR model to estimate
BFs. The assumption of the TVAR model is that within an
analyzed data segment, there can be no more than two different
BFs. If two BFs are found, then we use the multiple modes
particle filtering approach. Based on the TVAR, if only one BF
is found, then we use the TIVAR model to find an initial estimate
of BF, and then we use a single-mode particle filter to further
enhance the accuracy of breathing rate estimation.

The first phase of the COPS-MPF algorithm involves formu-
lating BF as a TVAR model:

x(n) = −
K∑

k=1

an,kx(n − k) + e(n) (1)

where K is the model order, an,k are the unknown TVAR coeffi-
cients and e(n) is the prediction error. We have previously shown
that by expanding the TVAR coefficients onto a set of basis func-
tions, these coefficients can be accurately estimated using the
least squares method [11]. While either Legendre polynomials
or Walsh basis functions can be used, we used the latter since
we are interested in also optimal model order for any signal,
thus, can be tuned to each signal detecting sudden and gradual
changes in BF [12]. Given an initial model order K, the opti-
mal order Kops can be obtained by using our previously devel-

oped OPS criterion, which has been shown to be more accurate
than either the Akaike or the minimum description length crite-
ria [13], [14]. The OPS can be designed to automatically select
the optimal model order without any human subjectivity [14].
Once the unknown TVAR parameters an,k are estimated, they
are formulated as the TV transfer function H(n, z), as shown in
the following:

H(n, z) =
1∑K o p s (n )

k=1 an,k z−k

=
ZK o p s (n )

(z − z1)(z − z2) · · · (z − zK o p s (n ) )
, (2)

where the TVAR coefficients are factorized into Kops(n) pole
terms between samples n − nsam and n, where nsam is the
segment length considered, and Kops(n) ≤ K. The real and
complex conjugate poles define the power spectral peaks with
the larger magnitude poles corresponding to the greater magni-
tudes [8]. The resonant frequency of each spectral peak is given
by the phase angle of the corresponding pole; the phase angle θ
of a pole at frequency f is defined as 2πfΔt, where Δt is the
sampling interval. Among the poles, we set the region of inter-
est for respiratory rates between flow and fhigh (e.g., 0.15 and
0.9 Hz). Let us denote the number of the pole angles within the
region of interest by Kroi . If Kroi ≥ 2, the pole with the high-
est magnitude is chosen to be representative of the respiratory
rate.

B. COPS-MPF Algorithm

The first step to particle generation is to represent a prior
probability density function p(R(n)|P (1:n − nsam)) by a set
of particles. Given the PPG waveform segment Sn−n s a m :n (sam-
ples between n − nsam and n), let us denote the TVOPS-
based estimated rates by Rtv (n − nsam :n), which is an ar-
ray with two values (transitional change values) expressed
as Rtv (n − nsam :n) = [R1

tv (n − nsam :n) R2
tv (n − nsam :n)].

When R1
tv (n − nsam :n) ≈ R2

tv (n − nsam :n), we consider the
TIVOPS-PF algorithm only, and thus, new particles are gener-
ated as

Ri(n) = R
i
(n − nsam) + Qi(n) (3)

where Ri(n) are the ith generated particles, i = {1, 2, . . . , l}
for the number of particles I,Qi(n) is Gaussian noise with

N
(
0, σ2

gen
)
, and R

i
(n:nsam) represents resampled particles

obtained at time n − nsam . On the other hand, when R1
tv (n −

nsam :n) �= R2
tv (n − nsam :n), new particles are generated

with multiple modes as

Ri,j (n) = Rj
tv (n − nsam :n) + Qi(n) for j = 0, 1, and 2

(4)
where Ri,j (n) are the ith generated particles with Rj

tv (n −
nsam :n), i = {1, 2, . . . , l} for the number of particles I. Note j
= 1 and 2 corresponds to the models from TVOPS, and j = 0 is
for resampled particles obtained at time n − nsam .

After the new particles that correspond to the prior probability
density function p(R(n)|P (1:n − nsam)) are generated, each
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particle weight is evaluated based on the measurement vector
P (n):

P (n) = [pa
1 pa

2 · · · pa
k · · · pa

K r o i
pm

1 pm
2 · · · pm

k · · · pm
K r o i

]T

(5)
where Pa

k and pm
k represent kth pole angle and magnitude, re-

spectively. The weighted particles represent the posterior prob-
ability density function of p(R(n)|P (1:n)). For the particle
weight evaluation, we use weighted nearest neighbor likelihood
particle filter (WNN-PF), which was reported as the best likeli-
hood function [9]. After the weight evaluation, we normalize the
particle weight and calculate the mean of the particles’ posterior
probability density for the BF extraction. Once the mean of the
particles’ posterior probability density has been calculated, we
resample the particles for the new particle generation at the next
time instant n + nsam .

C. Single-Mode Particle Filtering Algorithm

The single-mode particle filter algorithm is similar to the
multiple mode particle filter as described earlier, and detailed
implementations have been provided in our recent publication
[9]. Using this approach, we have found that BF ranging from
12–90 b/m can be accurately extracted from the pulse oximeter
recordings [9]. While this approach provides estimation of a
wide breathing range, its main disadvantage is that it cannot
handle sudden BF transition.

D. PPG Data Collection From Human Subjects

For the PPGwaveform acquisition, we used an MP506 pulse
oximeter (Nellcor Oximax, Boulder, CO) with reusable sen-
sor (Durasensor DS-100 A), which incorporates a conditioning
circuit and has an analog output of 4.864 kHz. The PPG wave-
forms were collected on 16 healthy subjects. Each subject was
instructed to breathe at four different abrupt changes (ACs): 0.2
to 0.6 Hz for AC of 0.4 Hz; 0.2 to 0.5 Hz and 0.3 to 0.6 Hz for
AC of 0.3 Hz; 0.2 to 0.4 Hz, 0.3 to 0.5 Hz, and 0.4 to 0.5 Hz
for AC of 0.2 Hz; 0.2 to 0.3 Hz, 0.3 to 0.4 Hz, 0.4 to 0.5 Hz,
0.5 to 0.6 Hz for AC of 0.1 Hz. To aid subjects in maintaining
the instructed breathing rates, each subject inhaled and exhaled
when a timed beeping sound was heard (i.e., 0.2 Hz for the first
150 s and 0.4 Hz for the last 150 s). Among the 16 healthy
subjects, 8 females and 8 males of age 21.0 ± 1.2 years were
involved. None of the subjects had cardiorespiratory or related
pathologies.

The PPG data were collected in the supine and upright posi-
tions. The pulse oximeter sensor was attached to the subjects’
left index or middle finger. We also simultaneously measured
respiration signals using the Respitrace system, which uses in-
ductive plethysmography to provide calibrated voltage outputs
corresponding to rib cage and abdominal compartment volume
changes. From the Respitrace system, true BFs were evaluated
by counting the number of peaks in a given minute. For all
signals, consisting of PPG and respiration signals, we used the
PowerLab/4sp (ADInstrument, Inc.) for data acquisition with
a sampling rate of 200 Hz and low-pass filtered to 10 Hz. We

Fig. 2. Estimated BF with ACs in BF from pulse oximeter recording. (a) AC
of 0.1 Hz (0.5 to 0.6 Hz); (b) AC of 0.4 Hz (0.4 to 0.6 Hz); (c) AC of 0.3 Hz
(0.3 to 0.6 Hz); (d) AC of 0.4 Hz (0.3 to 0.6 Hz).

performed the respiratory rate estimation on 60 s segments. All
data segments were shifted by 10 s for the entire PPG recording.
We set the initial model order to 30 for the OPS. The breathing
rate of interest was set to flow = 0.15Hz and fhigh = 0.9Hz.
The PF parameters were set to σ2

gen = 0.01, σ2
gau = 0.0001,

and σ2
w = 0.0025 [9].

III. RESULTS

We compare the performance of the COPS-MPF against
TIVOPS (without particle filter) and TIVOPS-PF. Fig. 2 shows
the results of BF estimation by TIVOPS, TIVOPS-PF, and
COPS-MPF at ACs in BF for the following four BF jumps:
0.5 to 0.6 Hz, 0.4 to 0.6 Hz, 0.3 to 0.6 Hz, and 0.2 to 0.6 Hz.
For all cases, TIVOPS-PF resulted in accurate estimation for the
first 150 s, but it performed poorly when confronted with a sud-
den change in BF. The TIVOPS, which does not use a particle
filter algorithm, also suffers in accuracy. Only the COPS-MPF
algorithm shows high accuracy throughout both constant BF
and the sudden change in BF.

Fig. 3 shows the root mean square error (RMSE) for each AC
of 0.1, 0.2, 0.3, and 0.4 Hz across all 16 subjects. The circles
above and below represent the 95th and the 5th percentiles of
all estimation results for every subject, respectively. Whiskers
above and below represent the 90th and the 10th percentiles,
respectively. The bars above, middle, and below represent the
75th, the 50th, and the 25th percentiles, respectively. Asterisk
indicates the significant difference between each method. As
shown in Fig. 3, the mean values and variances of RMSE were
the lowest for COPS-MPF followed by TIVOPS and TIVOPS-
PF in all cases. Thus, the COPS-MPF is the most accurate
method. These results were statistically significant with p <
0.01 among all methods.

To examine the effect of a gradual BF transition, simulations
using the test signal as described in (6) were performed with
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Fig. 3. RMSE distribution according to AC. (a) AC of 0.1 Hz; (b) AC of
0.2 Hz; (c) AC of 0.3 Hz; and (d) AC of 0.4 Hz. Asterisks indicate p < 0.05
between each method.

Fig. 4. Comparison with gradual rate change between TIVOPS-PF and COPS-
MPF using mean and mean plus standard deviation of RMSEs according to ACs
from 0.005 to 0.040 Hz and SNRs of 0 and −20 dB.

additive GWN so that SNR were 0 and −20 dB:

y(n) = Ah cos
(

2πfh(n)
n

fs
+ φh

)

+ Ab cos
(

2πfb(n)
n

fs
+ φb

)
+ Na (6)

where fh (n) and fb (n) are the heart rate and respiratory rate, re-
spectively. φh and φb are phases associated to the heart rate and
respiratory rates, respectively, and fs is the sampling rate. We
generated 11 min of data with 66 000 samples with a sampling
rate of 100 Hz. The rate fb(n) was set to 0.2 Hz for the first
1 min, and incremented by 0.005, 0.010, 0.015, 0.020, 0.025,
0.030, 0.035, and 0.040, respectively, every minute. Fig. 4 sum-
marizes the accuracy with mean and standard deviation (SD) of
RMSEs based on 100 realizations for TIVOPS-PF and COPS-
MPF. For the mean and SD of RMSEs, COPS-MPF was lower
than TIVOPS-PF for gradual changes in BF from 0.005 to 0.040,
and we observed statistical differences (p < 0.01) when the BF
changes were equal to or larger than 0.025 Hz for SNR of 0 dB
and 0.030 Hz for SNR of −20 dB, respectively.

The performance of TIVOPS-PF and COPS-MPF had no dif-
ference when respiratory rates were kept steady via metronome
or gradually changed. On the other hand, COPS-MPF was more
suitable when BFs were continued with a sudden change. Thus,
COPS-MPF is able to handle both gradual and sudden change
in BF.

As a pilot demonstration of the robustness of COPS-MPF, we
collected PPG data during spontaneous breathing from two male
subjects with AC of 0.12 Hz. We performed the respiratory rate
estimation on 60 s segments for the entire 5 min data. The data
segments were shifted by 10 s for the entire PPG recording,
and the true respiratory rates were evaluated by counting the
number of peaks measured from the Respitrace system. For the
TIVOPS-PF, the mean and variance of RMSEs were 0.0468 and
0.0059, respectively, whereas they were 0.0319 and 0.0022 for
COPS-MPF

IV. CONCLUSION AND DISCUSSION

For point-of-care or remote diagnostic health monitoring sys-
tems to be effective and widely accepted by end users, their vital
sign sensor needs to be multifunctional, inexpensive, and accu-
rate. One sensor that fits these criteria is the pulse oximeter,
given its ubiquity and simplicity, and the fact that it is already
an accepted device that provides heart rate and oxygen satu-
ration information. Extraction of BF from pulse oximeter data
fulfills additional vital sign needs and obviates the need for
a separate sensor for measuring breathing rates. Toward this
goal, we presented an algorithm, the COPS-MPF, and examined
its robustness by comparing it with the methods TIVOPS-PF
and TIVOPS. Data were evaluated from 18 healthy subjects
whose PPG waveforms were recorded with different abrupt BF
change from 0.1 to 0.4 Hz. We found that the COPS-MPF pro-
vided better accuracy than did TIVOPS-PF and TIVOPS for
all BF changes considered. The robustness of the COPS-MPF
was observed whether the respiratory rates changed gradually or
abruptly. This suggests that our proposed algorithm is applicable
for all BF, whether gated by metronome, or subjected to grad-
ual or sudden changes. In our previous work, TIVOPS-PF was
able to provide accurate BFs for a wide range of breathing rates
(12–90 b/m). Thus, our COPS-MPF has the same capability to
provide this wide range of BF due to the use of the particle filter-
ing approach. The main advantage of the COPS-MPF is that it
can handle both slow and sudden breathing transitions because
it is designed to automatically appropriate a proper TIV or TV
algorithm as dictated by the dynamics of the data.

Sophisticated sensor technology requires a new paradigm that
it can be applied to a patient with minimal effort and time, since
every precious second saved means a better chance of survival
for the patient. Current technology requires attaching multiple
sensors for obtaining vital signs as well as ECG electrodes,
which can all consume several minutes. Our current work sug-
gests that it is possible to provide reliable respiratory rates,
heart rates, and SpO2 measurements, in real-time (computa-
tional time is 50 ms in 2.66 GHz Intel Core2 processor), all from
a pulse oximeter device. All that is required for our approach
to be commercially viable is to embed the algorithm into the
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microprocessor of an existing pulse oximeter device. We be-
lieve this is an emerging technology that can have a signifi-
cant impact, especially in emergency medicine and critical care
settings.
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