
Limbic Dysregulation is Associated With Lowered
Heart Rate Variability and Increased Trait Anxiety

in Healthy Adults

Lilianne R. Mujica-Parodi,1,2* Mayuresh Korgaonkar,1 Bosky Ravindranath,1

Tsafrir Greenberg,1 Dardo Tomasi,3 Mark Wagshul,4 Babak Ardekani,5

David Guilfoyle,5 Shilpi Khan,6 Yuru Zhong,1 Ki Chon,1 and Dolores Malaspina7

1Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
2Department of Psychiatry, Stony Brook University, Stony Brook, New York

3Department of Medicine, Brookhaven National Laboratories, Brookhaven, New York
4Department of Radiology, Stony Brook University, Stony Brook, New York

5Center for Advanced Brain Imaging, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York
6Department of Medicine, Stony Brook University, Stony Brook, New York
7Department of Psychiatry, New York University, New York, New York

Abstract: Objectives: We tested whether dynamic interaction between limbic regions supports a control
systems model of excitatory and inhibitory components of a negative feedback loop, and whether dysregula-
tion of those dynamics might correlate with trait differences in anxiety and their cardiac characteristics among
healthy adults. Experimental Design: Sixty-five subjects received fMRI scans while passively viewing angry,
fearful, happy, and neutral facial stimuli. Subjects also completed a trait anxiety inventory, and were moni-
tored using ambulatory wake ECG. The ECG data were analyzed for heart rate variability, a measure of
autonomic regulation. The fMRI data were analyzed with respect to six limbic regions (bilateral amygdala,
bilateral hippocampus, Brodmann Areas 9, 45) using limbic time-series cross-correlations, maximum BOLD
amplitude, and BOLD amplitude at each point in the time-series. Principal Observations: Diminished cou-
pling between limbic time-series in response to the neutral, fearful, and happy faces was associated with
greater trait anxiety, greater sympathetic activation, and lowered heart rate variability. Individuals with
greater levels of trait anxiety showed delayed activation of Brodmann Area 45 in response to the fearful and
happy faces, and lowered Brodmann Area 45 activation with prolonged left amygdala activation in response
to the neutral faces. Conclusions: The dynamics support limbic regulation as a control system, in which dys-
regulation, as assessed by diminished coupling between limbic time-series, is associated with increased trait
anxiety and excitatory autonomic outputs. Trait-anxious individuals showed delayed inhibitory activation in
response to overt-affect stimuli and diminished inhibitory activation with delayed extinction of excitatory acti-
vation in response to ambiguous-affect stimuli.Hum Brain Mapp 30:47–58, 2009. VVC 2007Wiley-Liss, Inc.
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INTRODUCTION

Functional MRI studies have typically investigated the
amplitude of activation in regions of interest (ROI); how-
ever, increasing interest has focused on the possibility of
exploiting the dynamic components of the fMRI time-series
to explore connectivity within the brain. While neuro-
scientists often speak anecdotally about brain ‘‘circuitry,’’
there exists the exciting and largely unexplored possibility
of using fMRI BOLD activation to quantify the strength of
‘‘excitatory’’ and ‘‘inhibitory’’ pathways, treating ROI time-
series as signal inputs and outputs in a control systems
model. A control system may be defined as ‘‘a collection of
interconnected components that can be made to achieve a
desired response in the face of external disturbances’’
[Khoo, 2000]. In the case of physiology, the desired
response is not only excitatory, to address the external dis-
turbance, but also inhibitory, to maintain homeostasis by
bringing the system back to baseline. Within this context,
‘‘inhibitory’’ activation is not to be understood as ‘‘lack of
activation,’’ but rather reflects increase in BOLD signal of
those ROIs that work to suppress the excitatory compo-
nent of the circuit.
Control mechanisms are present at almost every level of

physiology. At the molecular scale, the dynamics between
potassium, chloride, and sodium ions regulate the action
potential and its return to baseline [Hodgkin and Huxley,
1952]. At the level of neurotransmitters, antagonistic
neuro-receptors provide the excitatory (glutamate) and in-
hibitory (GABA) components of a negative feedback loop
that maintain homeostasis [Calabresi et al., 1991]. Equiva-
lent regulatory mechanisms are present at other scales,
such as that of the autonomic nervous system via interac-
tions between sympathetic and parasympathetic compo-
nents [Kandel et al., 2000], of the endocrine system via
interactions between cortisol and DHEA [Charney, 2004],
of the balance of glucose and insulin [Insel et al., 1975],
and the maintenance of core body temperature via vasodi-
lation [Heldman, 2003]. In a well-regulated control system,
the excitatory and inhibitory components work closely to-

gether. Thus, in the absence of an environmental need for
an extended excitatory response, the time-series describing
the excitatory and inhibitory components should be highly
correlated with minimum lag. This tight coupling results
in dampening the impact of the chaotic external environ-
ment, or maintenance of homeostasis.
As shown by Figure 1, the excitatory and inhibitory

components of the limbic system have, by now, been rela-
tively well-mapped out in the animal literature [LeDoux,
2000; Maren, 2005], making the dynamic regulation
between these regions a plausible candidate for control
systems modeling. In spite of numerous parallel pathways
within the system, the medial central nucleus of the amyg-
dala forms the chief excitatory component of the arousal
response [Davis and Whalen, 2001], with the lateral amyg-
dala providing inhibitory modulation of the medial central
nucleus, and the basal amygdala providing either positive
modulation of the medial central nucleus (via direct path-
ways) or negative modulation of the medial central nu-
cleus (via the intercalated nuclei) [Maren, 2005]. The pri-
mary inhibitory pathways, identified primarily by intracel-
lular recording/lesion studies of fear extinction, are the

medial prefrontal cortex [Baxter et al., 2000; Blair et al.,

2005; Izquierdo and Murray, 2005; Izquierdo et al., 2005;

Phelps et al., 2004; Rosenkranz et al., 2003; Sotres-Bayon

et al., 2006] and the hippocampus—the latter hypothesized

to provide a ‘‘context’’ for potentially aversive stimuli

[Corcoran et al., 2005; Sotres-Bayon et al., 2004]. Two dis-

tinct models have been proposed for the interactions

between the amygdala, medial prefrontal cortex, and hip-

pocampus [Sotres-Bayon et al., 2004]. In the first (‘‘Model

A’’), the hippocampus and the medial prefrontal cortex are

modeled as two independent components that inhibit the

activation of amygdala. In the second (‘‘Model B’’), the hip-

pocampus is hypothesized to modulate the medial pre-

frontal cortex, which then inhibits the amygdala. For both

Models A and B, limbic outputs from the amygdala project

to the hypothalamus. The hypothalamus controls the auto-

nomic nervous system, itself another negative feedback

Figure 1.

Viewed as a control system, the limbic system acts a negative feed-

back loop, with excitatory (medial central nucleus of the amygdala)

and inhibitory (medial prefrontal cortex, hippocampus) compo-

nents that, when well-regulated, serve to respond to arousing

stimuli and then rapidly return to baseline. Outputs from the limbic

system provide inputs, via the hypothalamus, to the autonomic

nervous system, itself another negative feedback loop with excita-

tory (sympathetic) and inhibitory (parsympathetic) components.
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loop with excitatory (sympathetic) and inhibitory (parsym-

pathetic) components [Kandel et al., 1991]. This same cir-

cuitry has been identified with anxiety disorders in the

human as well [Cannistraro and Rauch, 2003].
Basic research in control systems physiology surgically

isolates the feed-forward and feedback components of the
circuit, thereby permitting separate quantification. Under
normal circumstances, this is not possible with neural
research on human subjects; therefore, one of the central
challenges in using fMRI signals for control systems analy-
sis is quantifying limbic dysregulation from a self-interact-
ing, intact circuit. This challenge, of quantifying dysregula-
tion from an intact circuit, has already been largely
addressed for the autonomic nervous system by the devel-
opment of newer methods of heart-rate variability analysis
(HRV). Thus, approaches developed for HRV analysis may
ultimately be of help in suggesting techniques for quanti-
fying limbic dysregulation using fMRI.
HRV measures variability between successive heartbeats

(R–R intervals), and is thought to reflect homeostatic regu-
lation between sympathetic and parasympathetic compo-
nents of the autonomic nervous system. Because certain
pathological conditions, such as heart disease [Goldstein
et al., 1975], hypertension [Abboud, 1982; Julius et al.,
1975] and sudden cardiac death [Schwartz and De Ferrari,
1987], are accompanied by disruptions in the balance
between these two components, HRV has received much
attention within the cardiology literature as a potentially
valuable noninvasive tool to detect and understand cardiac
illness. HRV has historically developed from two separate
and conceptually divergent approaches: the first quantifies
dysregulation indirectly by deconvolving a complex wave-
form into its excitatory and inhibitory contributions, while
the second quantifies dysregulation directly by calculation
of the amount of ‘‘complexity’’ or ‘‘chaos’’ in the system.
For both approaches, power is increased by typically col-
lecting HRV data over 24-h; however, the measurements
themselves reflect short-acting (0.04–0.50 Hz) autonomic
regulation in response to environmental fluctuations.
Original work on HRV was focused on the first approach,

via estimation of the power spectrum of instantaneous heart
rate fluctuations [Akselrod et al., 1981; Pomeranz et al.,
1985]. Using sympathetic and parasympathetic blockers, sev-
eral bandwidths were identified as being particularly physi-
ologically significant: frequencies between below 0.04 Hz
(Very Low Frequency, or VLF); 0.04–0.15 Hz (Low Fre-
quency, or LF); and 0.15–0.40 Hz (High Frequency, or HF)
[Akselrod et al., 1981]. The VLF represents hormonal and
temperature fluctuations, the LF represents both sympathetic
and parasympathetic influences, and the HF represents para-
sympathetic contributions alone [Malik and Camm, 1993].
The ratio of the LF/HF spectrum was shown to provide a
reasonable approximation of the sympathovagal balance,
with high LF/HF indicating sympathetic dominance, and
low LF/HF indicating predominantly vagal control.
In spite of the predictive value of the sympathovagal

balance in predicting disease, the power spectrum density

(PSD) method has not been widely accepted by cardiolo-
gists as a clinical instrument. This is predominantly because
of a well-known deficiency in the PSD method: the LF
bandwidth is not solely representative of the sympathetic
influence [1996]; therefore a LF/HF ratio cannot be a precise
measure of the balance between sympathetic and parasym-
pathetic components. Moreover, the PSD method may be
further compromised by the fact that the LF/HF ratio is lin-
ear, which cannot account for the significant nonlinear com-
ponents of heart rate variability [Braun et al., 1998].
The principal dynamic modes (PDM) analysis of heart

rate variability was developed to address the problem of
more precisely separating out the sympathetic and para-
sympathetic components of heart rate variability, and is
explicitly nonlinear. The PDM are calculated using Vol-
terra–Wiener kernels based on expansion of Laguerre poly-
nomials [Zhong et al., 2004]. Originally the method,
applied to physiological systems, required both input and
output signals [Marmarelis, 1997; Marmarelis et al., 1999;
Marmarelis and Orme, 1993], although later work [Zhong
et al., 2004] modified the method to include only a single
output signal. Comparisons of PDM to PSD using sympa-
thetic and parasympathetic blockers (atropine and propa-
nolol) [Chon et al., 2006; Zhong et al., 2006; Zhong et al.,
2004] have demonstrated that PDM is significantly more
accurate than PSD in separating out the sympathetic and
parasympathetic components of heart rate variability in
humans.
The ‘‘nonlinear complexity with shannon entropy’’

method of HRV represents the second approach, that of
directly quantifying dysregulation of a system by meas-
uring the degree of complexity or chaos in the system
[Kurths et al., 1995; Voss et al., 1995, 1996]. Symbolic dy-
namics is estimated by first binning R–R intervals into four
groups, represented by ‘‘symbols’’ ‘‘0,’’ ‘‘1,’’ ‘‘2,’’ and ‘‘3’’:

0: l < tn 2 tn21 � (1 1 a)*l
1: (1 1 a)*l < tn 2 tn21 � 1
2: (1 2 a)*l < tn 2 tn21 � l
3: 0 < tn 2 tn21 � (1 2 a)*l

where tn 2 tn21 5 R–R interval, l 5 mean R–R interval,
and a 5 0.1. Each ‘‘word’’ is composed of combinatorial
arrangements of the symbols, with three symbols per word.
If the probability of occurrence of a word is less than a set
threshold, in this case: 0.001, then the word is defined as a
‘‘forbidden word.’’ Increased forbidden word count there-
fore indicates both decreased chaos in the system as well as
lowered heart rate (R–R) variability. Shannon entropy, a
measure of chaos, is calculated as: Hk ¼

P
Wk

pðxÞ log2 pðxÞ
where Wk is the set of all words of length kand p(x) is the
probability of occurrence of words.
Diagnoses of regulatory diseases typically involve test-

ing by perturbing the system and then observing the dy-
namics by which the body returns to homeostasis; for
example, by ingesting a bolus of glucose to screen for dia-
betes [Graci et al. 1999; Kernohan et al., 2003; Lucas et al.,
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1986; Rolandsson et al., 2001] or a bolus of dexamethasone
to screen for Cushing’s disease [Sriussadaporn et al., 1996;
Tyrrell et al., 1986]. Other diagnostic tests avoid the use of
bolus inputs, but instead quantify dysregulation in terms
of the degree of output chaos in response to mild and cha-
otic inputs. One such method is the nonlinear complexity
with Shannon entropy method of calculating HRV [Voss
et al., 1995] described earlier, which has shown promise in
predicting risk for myocardial infarction [Bauernschmitt
et al., 2004; Huikuri and Makikallio, 2001; Huikuri et al.,
2003; Lombardi, 2002; Makikallio et al., 2002; Swynghe-
dauw et al., 1997; Vigo et al., 2004; Voss et al., 1995, 1996].
By analogy, our results suggest the potential utility of
using fMRI time-series as outputs in neural control sys-
tems, an approach that has been proven to be useful in
modeling physiology, and which may also have practical
applications in diagnosis—or even identification of vulner-
ability towards—stress-related disorders.
We hypothesized that individuals with greater trait anxi-

ety were unable to maintain homeostasis of the neural
emotional arousal response as effectively as their less-anx-
ious colleagues, shifting the emphasis from an abnormal
variable to an abnormal dynamic between the excitatory
and inhibitory influences responsible for modulating one
another. This would imply that vulnerability towards anxi-
ety would be characterized by lowered cross-correlation
between the functional activation of the excitatory and in-
hibitory limbic components of the emotional arousal
response, while inversely, resilience towards anxiety
would be characterized by heightened cross-correlation
between these same limbic components. Moreover the dy-
namics of the data might themselves be able to shed light
on the respective roles of the different limbic areas in mod-
ulating the arousal response and its effects on the excita-
tory (sympathetic) and inhibitory (parasympathetic) com-
ponents of short-term cardiovascular regulation, measured
via heart rate variability [Breiter et al., 1996]. Our long-
range goal is to characterize limbic dysregulation using
nonlinear transfer functions, the tools normally used for
control systems analyses. However, given the ambitious-
ness of applying BOLD signals to control systems, for this
preliminary study we had a more modest aim: to apply
coarse-grained statistical techniques—specifically correla-
tional analyses—to investigate whether there might be a
relationship between limbic regulation, autonomic regula-
tion, and trait anxiety. If so, then these preliminary find-
ings would provide support for a more mathematically
nuanced characterization of dysregulation, with potential
utility in developing fMRI-based diagnostic tools for
stress-related disorders.

MATERIALS AND METHODS

Participants

We recruited 65 healthy adult subjects into this study
(28 men, 37 women; mean age 5 26 year; SD 5 8; max/

min age 5 18–49). A lengthy phone screening, as well as
the scheduled clinical interview for DSM-IV [Ventura et al.,
1998], were administered to rule out subjects with current
or prior psychiatric illness. All subjects received a history
and physical; subjects were excluded if they had a history
of drug abuse, traumatic brain injury, cardiovascular illness
(including high blood pressure), regular nicotine use, or any
MRI exclusion criteria, including metal in the body, claus-
trophobia, or pregnancy/lactation. This study was
approved by the Institutional Review Board of Stony Brook
University, and all subjects provided informed consent.

Study Design, Tasks, and Stimuli

All subjects were hospitalized for 48 h at the Stony
Brook University Hospital’s General Clinical Research Cen-
ter, to provide maximum control over the testing environ-
ment. Subjects were admitted to the hospital at 8 P.M., pro-
vided informed consent, and received a physician-adminis-
tered history and physical to ensure eligibility in the
study. The morning after the first night, subjects were
asked to complete the state-trait anxiety inventory [Spiel-
berger, 1983], an instrument that provides a psycho–social
assessment of anxiety in healthy adults. Starting at 10:30
A.M., subjects then received ambulatory cardiac monitoring
for the next 24 h until 10:30 A.M. the second day. At this
point, subjects received an MRI.
While in the MRI scanner, the subjects underwent two

runs of a blocked design fMRI task. The stimuli used for
this task consisted of black and white pictures of male and
female faces depicting anger, fear, happy, and neutral
emotions [Ekman, 1993], which are known to reliably acti-
vate a limbic response [Phillips et al., 1997; Williams et al.,
2004]. Subjects passively viewed the stimuli during scan-
ning using an angled mirror mounted on the head coil
and a screen placed directly outside the magnet bore. Stim-
uli were presented using a computer running E-prime soft-
ware (version 1.0; Psychology Software Tools, Pittsburgh,
PA) and were projected on to the screen using a projector
placed outside the scanner room. The fMRI task consisted
of blocked presentations of faces alternating with a 20 s fix-
ation cross block, during which a white cross-hairs was pre-
sented on a black background (‘‘Rest’’ block). Each fMRI
run lasted for 5 min and 40 s and included two blocks of
angry, neutral, happy, and fearful faces. Each face block
consisted of nine different faces of the same emotion type,
displayed for 2.2 s each for total block duration of 20 s.

Image Acquisition and Analyses

Image acquisition

Subjects were scanned on a 1.5T Philips Intera MRI scan-
ner at the Stony Brook Hospital using a SENSE head coil.
We chose to use a lower field strength, rather than the
more standard 3T, to minimize susceptibility artifacts in
the amygdala [Krasnow et al., 2003], while permitting
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whole-brain acquisition for time-series. These were
acquired using two blocks (one for each fMRI run) of 136
T2*-weighted echoplanar single-shot images covering the
frontal and limbic areas of the brain, with TR 5 2,500 ms,
SENSE factor 5 2, TE 5 45 ms, Flip angle 5 908 Matrix 5
64 3 64, 3.9 3 3.9 3 4 mm3 voxels, and 30 contiguous
oblique coronal slices. In addition to the functional scan,
an anatomical scan to match the slice orientation of the
functional scan was obtained. The acquisition parameters
for this sequence were: TR 5 15 ms, TE 5 450 ms, Matrix
5 256 3 256, FOV 5 250 and 30 contiguous oblique coro-
nal slices with 4 mm slice thickness and no gap between
the slices. The anatomical data were used to generate a
customized EPI template to normalize our EPI scans to the
standard frame of reference. The subject’s head was
secured with tape to minimize head movements during
the scans.

Image analyses

The fMRI data analyses were performed using the Statis-
tical Parametric Mapping software (SPM99) [Friston, 1995].
The raw functional BOLD images were first realigned to
the first volume to remove movement-related artifacts
using a sinc interpolation. The motion correction algorithm
in the SPM99 software package is capable of correcting for
motion within 3 mm. Movement for 59 of the subjects was
found to be within 3 mm in each of the functional runs
and was fully corrected. The other six subjects had motion
ranging from 4–5 mm and were therefore only partially
corrected. Removing these latter subjects did not affect the
analyses, nor was motion found to be correlated with trait
anxiety; therefore results for all 65 subjects were included
in our reported results. Realigned images were then spa-
tially normalized into 3 3 3 3 3 mm3 using an affine
transformation with a set of 7 3 8 3 7. Basis functions and
a customized template that was created using the data for
the first 12 subjects; the incomplete brain coverage and
oblique nature of our slices required us to use a custom
template for normalization. For each subject, the scalp was
removed from a low-resolution EPI image, using the Brain
Extraction Tool (BET) [Smith, 2002] available in MRIcro
software, at a fractional intensity threshold of 0.5. These
skull stripped images were then registered and normalized
to each other and the average image was smoothed with a
Gaussian kernel of 8 mm full-width half maximum and
registered to the EPI template provided by SPM99 to gen-
erate the final template. The realigned and normalized
time series were then smoothed with a Gaussian kernel of
8 mm full-width half maximum.
All statistical analyses employed during image process-

ing were performed using the general linear model in
SPM99. We used a boxcar design with four conditions (an-
ger, fear, happy, and neutral) convolved with the canonical
hemodynamic response function. Contrast images for each
comparison, i.e., angry–neutral, fear–neutral, happy–neu-

tral, neutral–rest, angry–rest, fear–rest, and happy–rest,
were generated for each subject. We also generated T-sta-
tistic images for each of these contrasts. A random effects
analysis was performed using a one-sample t-test with the
fixed effects single subject level contrast images. All assess-
ments at the group level were done after applying a Bon-
ferroni correction for multiple comparisons. Only those
voxels which passed the significance level of P 5 0.05
were used to display the brain activations.
To evaluate the cross-correlation of BOLD responses in

specific brain areas, we first defined ROI. For the amyg-
dala and hippocampus, which are functionally known to
be associated with the emotional arousal response, this
was done a priori. Separate ROI masks for the left-right
amygdala and the left-right hippocampus were traced on
the standard T1 template provided with the SPM pack-
age, using established anatomical landmarks to delineate
our ROI [Hastings et al., 2004]. These masks were then
used to select the maximally-activated voxel to extract
the individual subject time-series. Although using a sin-
gle voxel may increase chances of false positives, we
found that averaging the response in the entire ROI (only
part of which may be maximally activated) distorted the
time-series. For this reason, studies using time-series nor-
mally obtain them from single voxels, rather than aver-
aged clusters [Nomura et al., 2004]. Given the lack of cer-
tainty regarding the specific functionally-relevant areas
for the prefrontal cortex, we defined these ROIs post hoc.
This was done by performing a random effects analysis
over the entire subject population. Our results of the ran-
dom effects analysis over 65 subjects showed two clus-
ters centered in Brodmann areas 45 and 9 of the prefron-
tal cortex respectively, as well as bilateral activation in
the amygdala and hippocampus (Fig. 2a–c). The maxi-
mally-activated voxel for each ROI was then selected and
used to extract each individual subject’s time-series. A
check was done to validate if the voxel selected was
within a cluster of at least three contiguous voxels. Vox-
els for 89% of all ROIs were within a cluster. Obtaining
the time-series in this manner allowed us to exploit the
advantages of both the single-voxel and cluster methods,
which were optimized for signal and reliability, respec-
tively.
We first extracted the time-course for the whole experi-

ment for each ROI. Once the study design was convolved
with the SPM hemodynamic response function, 11 signal
values over the peristimulus intervals, defined from 2.5 to
30 s from the onset of each block, were obtained for each
condition block. The signal values of all the rest condi-
tions were averaged over the peristimulus interval and
designated the baseline. We used this baseline to calcu-
late the percentage signal change value for every time-
point in the peristimulus interval for all other condition
blocks. Finally, we obtained peristimulus time-courses for
each condition by averaging the percentage signal change
over the peristimulus interval over all the blocks of that
condition.
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Twenty-Four Hour ECG Acquisition and Wake

Value Heart-Rate Variability Analyses

ECG acquisition

The subjects from whom we obtained the fMRIs were
also monitored over 24 h with ECG; however, for this
analysis we used only the wake values to avoid confounds
because of different levels of REM activity. The signal was
recorded using the Aria holter monitor (Del Mar Reynolds
Medical, Irvine, CA) with a sampling rate of 128 samples/

second. The records were then reviewed and edited using
the Impresario Holter Analysis system (Del Mar Reynolds
Medical, Irvine, CA). The ECG was manually reviewed to
check for any misclassifications or errors. Identified errone-
ous R–R intervals were either replaced with values
obtained by cubic spline interpolation or deleted depend-
ing upon the number of misclassifications. Participating
subjects were asked to keep a log of their sleep and wake
times and their 24 h data were separated according to their
wake and sleep times. For subjects who failed to keep a

Figure 2.

BOLD activation maps of the random effects analyses for 65

healthy adults for neutral–rest contrast. (a) BOLD activation of

Brodmann area 9 (245, 15, 24; t 5 7.41) and Brodmann area 45

(254, 39, 3; t 5 7.16) for neutral–rest contrast. (b) BOLD Acti-

vation of the right amygdala (27, 23, 215; t 5 5.06) for neu-

tral–rest contrast. (c) BOLD activation of the right (21, 227,

26; t 5 4.85) and left (224, 224, 29; t 5 5.34) hippocampus

for neutral–rest contrast.
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log, sleep, and wake times were approximated using their
heart rate data. Wake and sleep times were confirmed
using group mean changes in heart rate. Extracted R–R
intervals were filtered using the adaptive filtering tech-
nique described by Wessel et al. [2000] (http://tocsy.agnld.
uni-potsdam.de/ada.php) in order to remove artifacts and
misclassifications that were not identified during the man-
ual scan. The R–R intervals were converted to instantane-
ous heart rate with a sampling rate of 4 Hz [Berger et al.,
1986; Kaplan], low-pass filtered at 0.5 Hz, down sampled
to 1 Hz and zero-meaned. Fifteen of the original 65 sub-
jects, from whom we obtained MRIs, were excluded
because of either greater than 5% artifact in their ECG
data or technical problems with the ECG. This left us with
n 5 50 for whom we had both usable fMRI and ECG data.

Heart-rate variability analyses

We performed our HRV analyses for wake periods using
PDM [Chon et al., 2006] and nonlinear complexity with
Shannon entropy [Voss et al., 1995] techniques.

General Statistical Analyses

We used the 11 data point time-series for left and right
amygdala, left and right hippocampus, Brodmann Areas 9
and 45, and analyzed each of these six ROI over seven
contrasts: neutral–rest, angry–rest, fear–rest, happy–rest,
angry–neutral, fear–neutral, and happy–neutral. Given the
problem of multiple-comparisons inherent in a statistical
analysis with so many dependent variables, we employed
a hierarchical strategy. We first performed a cross-correla-
tional analysis as a gross measure of dysregulation (uncou-
pling between time-series) between all ROI pairs for all
contrasts. This analysis narrowed down the primary con-
trasts of interest. This subset of contrasts was then ana-
lyzed for within-group differences with respect to: (a)
time-series maximum values; and (b) values at each time-
point in the time-series. The purpose of the secondary
analyses was to provide an explanation for the relation-
ships seen in the first, cross-correlational, analysis.
Cross-correlation is a standard measure of similarity

between two signals, and therefore can function as a gross
measure of dysregulation, since a well-regulated system
with negative feedback should show coupled excitatory
and inhibitory responses. For this analysis, lag was set to
zero. Each subject produced 15 cross-correlation values
(one for each possible pair of ROIs).
We used bivariate Pearson correlations to investigate the

relationship between Trait Anxiety and limbic dysregula-
tion for all three types of analyses (cross-correlations, max-
imum % signal change over the entire time-series, and
maximum % signal change at each point in the time-se-
ries). Using bivariate Pearson correlations, we additionally
investigated the relationship between limbic dysregulation
(provided by the cross-correlation coefficients) and auto-
nomic dysregulation (provided by wake HRV values using

both the PDM and nonlinear complexity with Shannon en-
tropy analyses).
Both components of our approach, the cross-correlations

as well as the time-series, contributed to the large number
of comparisons. Because we explicitly set out to take a
dynamic approach, it was important to optimize temporal
resolution. At the same time, greater temporal resolution
required a greater number of comparisons, and therefore
would also come at the cost of potential Type I errors. In
awareness of this cost, we therefore performed the time-se-
ries analyses conservatively. To maintain the integrity of
the 11 time-points while also down-sampling, we used a
temporal cluster threshold, a sliding-window down-sam-
pling technique akin to the spatial cluster thresholds that
are often used to filter out single-voxel random noise in
image processing. The threshold filtered out any isolated
value, including only those that reached statistical signifi-
cance at P � 0.05 for at least two consecutive points of the
11-point time-series. In spite of our attempts to ameliorate
the problem wherever possible, the statistical problem of
multiple-comparisons remains a significant limitation to
the dynamic approach we took; therefore these results
would best be viewed as exploratory, providing an estima-
tion data set to be validated by future studies.

RESULTS

Trait Anxiety Ratings

The trait anxiety scale, like the characteristic it repre-
sents, is a continuous measure that in our sample of n 5
65, provided a normal distribution (mean trait anxiety
score 5 38; SD 5 10; max/min score 5 21–67). Trait anxi-
ety was not correlated with age, nor was it different for
males and females. Using the hierarchical approach
described in the Methods section, we compared the fMRI
and trait anxiety levels using Pearson correlations for three
types of dependent variables: (1) the cross-correlation coef-
ficients r between all ROI-pairs; (2) the BOLD amplitude
for each ROI; and (3) the BOLD time-series for each ROI.

Cross-Correlation Coefficients r Between

All ROI-Pairs

For the cross-correlations between time-series for differ-
ent ROIs, we found significant correlations for the neutral–
rest, fear–rest, and happy–rest contrasts (Table I). In all
cases, the greater the level of trait anxiety, the lower the
limbic correlation coefficients (i.e., trait anxious individuals
showed less coupling between their limbic time-series).

BOLD Amplitude for Each ROI

Correlational analyses, comparing trait anxiety and ROI
activation for each of the contrast conditions defined by
the cross-correlational analyses (neutral–rest, fear–rest, and
happy–rest), found only one relationship between anxiety
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and activation amplitude of any of the ROIs for any of the
contrast conditions. Individuals with higher trait anxiety
showed less activation in BA45 for the fear–rest contrast
(r 5 20.29, P 5 0.02).

BOLD Time-Series for Each ROI

For the sake of descriptive clarity, we will refer to the 30 s
time-series (20 s block convolved with the hemodynamic
response function) with respect to three time-periods: early
(1–10 s), middle (11–20 s), and late (21–30 s) periods. We
found significant correlations between trait anxiety and
dynamic BOLD amplitude, particularly for the left amyg-
dala and BA45 during the early and late periods. Trait
anxious individuals, for the neutral–rest contrast, showed
decreased early activation of BA45 (4–14 s; 20.26 � r �
20.34; 0.04 � P � 0.006) and increased late activation of
the left amygdala (23–27 s; 0.27 � r � 0.35; 0.03 � P �
0.005) (Fig. 3). For both fear–rest and happy–rest contrasts,
trait anxious individuals also showed decreased early acti-
vation of BA45 (fear–rest: 4–16 s; 20.25 � r � 20.32;

0.03 � P � 0.009; happy–rest: 10–14 s; 20.25 � r � 20.28;
0.04 � P � 0.02). However, unlike the neutral–rest con-
trast, in response to the fearful and happy faces, trait anx-
ious individuals showed increased late activation of BA45
(fear–rest: 23–27 s; 0.27 � r � 0.37; 0.03 � P � 0.002;
happy–rest: 25–30 s; 0.30 � r � 0.50; 0.02 � P � 0.000)
without an increase in late left amygdala activation. Post
hoc analyses, of time-periods and ROIs identified above,
confirmed a strong inverse relationship between early
BA45 activation and late activation of the left amygdala in
the neutral–rest contrast, with a peak inverse correlation at
8 s for BA45 and 26s for left amygdala (r 5 20.51, P 5
0.000) (Fig. 4); this relationship was not observed between
late BA45 activation and late activation of the left amyg-
dala. Inspection of the time-series suggested that the late
left amygdala activation was not a lag in excitatory activa-

TABLE I. Trait anxiety negatively correlated with cross-correlation coefficients r for

region-of-interest pairs, suggesting diminished coupling between limbic components

of negative feedback loops that modulate emotional regulation

Contrast Cross-correlation pairs
Cross-correlation coefficient

*trait anxiety (r) Significance (P)

Neutral–rest R Amygdala*L Amygdala 20.30 0.02
R Amygdala*BA45 20.25 0.05
L Amygdala*R Hippocampus 20.29 0.02
L Amygdala*L Hippocampus 20.36 0.004
L Amygdala*BA45 20.27 0.03
R Hippocampus*BA45 20.29 0.02

Fear–rest R Amygdala*BA45 20.29 0.02
L Amygdala*BA45 20.26 0.04
R Hippocampus*BA45 20.30 0.02
L Hippocampus*BA45 20.33 0.007

Happy–rest L Amygdala*BA45 20.27 0.03
R Hippocampus*BA45 20.28 0.02
BA45*BA9 20.28 0.02

Figure 3.

Trait anxiety is associated with suppressed early BA45 BOLD

activation and prolonged late left amygdala BOLD activation for

neutral—rest contrast.

Figure 4.

Early (8 s) BA45 BOLD activation inversely correlates with late

(26 s) left amygdala BOLD activation (r 5 20.51;P 5 0.00) for

neutral—rest contrast.
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tion, but rather prolonged activation that was already pres-
ent; in effect, a delay in the response’s extinction.

Higher fMRI Cross-Correlation Coefficients

Correspond to Increased 24-h Heart

Rate Variability

There was an inverse correlation between the cross-cor-
relation coefficients for the neutral–rest contrast and sym-
pathetic activation during the wake period; specifically:
left amygdala versus BA 45 pair (r 5 20.27, P 5 0.05, N 5
50). Supporting the above observation was the positive
correlation, also for the neutral–rest contrast, between the
cross-correlation coefficients and Shannon entropy (the
amount of ‘‘chaos’’ in the heart rate) during wake periods;
specifically: left amygdala versus BA 45 pair (r 5 0.36,
P 5 0.01), left amygdala versus BA9 pair (r 5 0.36, P 5
0.01), left amygdala versus left hippocampus pair (r 5 0
.31, P 5 0.03), left amygdala versus right amygdala pair (r
5 0.29, P 5 0.04) and left hippocampus versus BA45 pair
(r 5 0.36, P 5 0.01).
Individuals with greater trait anxiety showed lower

HRV as measured by waking nonlinear complexity with
shannon Entropy (r 5 20.39, P 5 0.005, N 5 50).

DISCUSSION

Our group analysis of 65 healthy adults confirmed the
key roles of the bilateral amygdala, bilateral hippocampus,
BA 9, and BA 45 in modulating emotional response in
healthy adults. The cross-correlational analyses suggested
that individuals with greater levels of trait anxiety show
greater uncoupling, or dysregulation, of their limbic
responses to the neutral, fearful, and happy faces. The
time-series analyses narrowed the trait anxious individu-
als’ limbic uncoupling further to a primary inverse rela-
tionship between suppressed early BA45 and heightened
prolonged left amygdala activations in response to the
affect-ambiguous (neutral) faces, and a delayed BA45
response without an increasingly prolonged left amygdala
activation in response to the affect-overt (fearful and
happy) faces.
That the affect-ambiguous, rather than the affect-overt,

stimuli provoked a delayed extinction of the left amygdala
response in trait anxious individuals, suggests that the
most prominent feature separating the high anxiety from
the low anxiety ends of the normal spectrum may not be
the manner in which the excitatory components of the lim-
bic system process threat, but rather how they process the
potential for threat. These results are consistent with a
number of patient studies [paranoid schizophrenia [Holt
et al., 2006), borderline personality disorder [Donegan
et al., 2003] showing that differences in neural activation
as compared to controls occur predominantly in response
to ambiguous, rather overtly affect-valent stimuli. Similar

results were also found for a study of state anxiety in
healthy controls [Somerville et al., 2004].
Studies that compared affect-ambiguous to affect-valent

stimuli consistently found that the ventromedial [Shin
et al., 2005; Williams et al., 2004], dorsolateral [Schienle
et al., 2005], and orbitalfrontal [Schafer et al., 2005] pre-
frontal cortex were selectively activated during tasks that
required discrimination of affect, suggesting that the pre-
frontal cortex may not only be inhibitory, but play a more
specific role in threat assessment—amplifying or suppress-
ing the arousal response depending upon whether threat
is detected.
Development of increasingly sensitive ways to measure

the dynamic interplay between BA45 and the left amyg-
dala provides one possible manner to quantify limbic dys-
regulation. This approach is similar in basic philosophy to
characterizing autonomic dysregulation via quantification
of distinct excitatory and inhibitory components, as with
the PSD and PDM methods of calculating heart rate vari-
ability. A contrasting manner of quantifying dysregulation
is exemplified by the nonlinear complexity with Shannon
entropy method of HRV analysis, which rather than refer-
encing specific components of the system, quantifies
instead a property (such as ‘‘chaos’’) of the system as a
whole. This second type of approach is of little help mech-
anistically, since it provides only a very global measure of
dysregulation, but it can be a powerful approach diagnos-
tically once normative thresholds are set [Voss et al., 1996].
Our observation that time-series across excitatory and in-
hibitory ROIs become increasingly coordinated with
increasing trait-calmness, and more and more chaotic with
trait anxiety, is of the second type, and mathematical
methods with increased sensitivity in quantifying chaos
within the system, such as entropy, Lyapunov exponent
and attractor dimension, may provide a fruitful direction
for this research.
The ECG data show that limbic regulation in response to

the affect-ambiguous stimuli, measured via cross-correla-
tion coefficients between excitatory and inhibitory path-
ways (left amygdala * BA9, BA 45, left hippocampus), is
correlated with autonomic regulation during wake periods,
measured with two independent methods of HRV. Specifi-
cally, the results show that the higher the level of limbic
dysregulation, the greater the waking sympathetic activa-
tion and the lower the waking ‘‘chaos’’ in the heart-rate.
These two results are both consistent with one another and
to be expected, since the inputs to the autonomic nervous
system (itself a negative feedback loop between excitatory
and inhibitory control) originate, via the hypothalamus,
from the limbic outputs [Davis and Whalen, 2001; Kandel,
1991]. Since the external environment is chaotic, a well-
regulated system will be able to modulate an excitatory
(sympathetic) response with an equally strong inhibitory
(parasympathetic) response at minimum lag, thereby main-
taining homeostasis. As such, a well-regulated system will
meet the demands imposed by the chaotic environment,
but then quickly return to baseline—resulting in both a
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lower average sympathetic activation during wake periods
as well as higher chaos in the heart rate [in a dysregulated
autonomic nervous system, the heart-rate shows less chaos
because, once elevated, it remains elevated [Nahshoni
et al., 2004; Poon and Merrill, 1997]. The use of a zero-lag
cross-correlation therefore provides a likely explanation for
why the coefficients obtained for the neutral, but not fear-
ful or happy stimuli, were correlated with wake HRV. We
would expect the greatest correlation between excitatory
and inhibitory components of a negative feedback loop
when the aim is for the system to respond and then
quickly return back to baseline. This is most likely to occur
in the absence of the need for sustained activation; i.e.,
stimuli that are initially ambiguous, and are then rapidly
determined (by individuals at the trait-calm end of the
normal spectrum) to be benign.
An expanding number of investigations have used fMRI

to explore the neural mechanisms regulating autonomic
arousal during cognitive, affective, and/or motor tasks
[Critchley et al., 2005]. The role of limbic regions, particu-
larly the anterior cingulate cortex (ACC), in autonomic reg-
ulation during challenging tasks has been repeatedly dem-
onstrated, including modulation of cardiac activity
[Critchley et al., 2003; Matthews et al., 2004]. Moreover, a
recent study [Neumann et al, 2006] suggests that a genetic
variation associated with both cardiac dysregulation and
depressive symptoms also relates to corticolimbic brain ac-
tivity during both cognitive/motor (‘‘go/no-go’’) and emo-
tional reactivity (face perception) tasks. The correlations
between limbic and autonomic dysregulation also found in
our study provide a possible bridge between fields in
understanding a well-established body of research linking
lowered HRV with emotional reactivity and mental illness.
These include worry [Brosschot et al., 2006], generalized
anxiety disorder [Gorman and Sloan, 2000; Wilhelm et al.,
2001], panic disorder [Yeragani et al., 1998], depression
[Davydov et al., 2006; Nahshoni et al., 2004; van der Kooy
et al., 2006; Yeragani et al., 1991], and schizophrenia
[Mujica-Parodi et al., 2005]; our results showing a correla-
tion between trait anxiety and lowered HRV may reflect
the same mechanism in a less severe form. Clearly, correla-
tions alone do not imply causation. However, the known
physiology between the limbic system and the autonomic
nervous system (Fig. 1) do suggest the possibility that the
emotional symptoms and lowered HRV seen in trait anx-
ious individuals may be due to limbic outputs as a common
cause. If so, then limbic dysregulation may be responsible
for the lowered HRV seen in mentally ill patients as well.

CONCLUSIONS

Our results provide evidence for an association of trait
anxiety with increased limbic dysregulation in response to
both affect-ambiguous (Neutral) and affect-overt (fearful,
happy) facial stimuli. Overall amplitude for the entire
time-series did not show any relationship between trait

anxiety and the excitatory components of the limbic sys-
tem, but did show suppressed inhibitory activation in
response to the fearful faces. However, analyses of ROI
amplitude for each point in the time-series revealed differ-
ent dynamics in response to affect-ambiguous and affect-
overt stimuli. For the former, early (�8 s) inhibitory BA45
activation was strongly associated with suppression of late
(�26 s) excitatory left amygdala activation; while for the
latter, early inhibitory BA45 activation was also dimin-
ished, but showed heightened activation later in the time-
series. We interpret these data as suggesting that trait anx-
ious individuals may be impaired in their modulation of
Brodmann Area 45 in detecting that a stimulus is not a
threat, and therefore suppressing left amygdala activation.
Analogously to the coarse-grained symbolic dynamic
method of quantifying autonomic dysregulation, our cross-
correlations between limbic regions suggested utility in
quantifying limbic dysregulation. The more trait anxious
the subject, the less correlated were the time-series
involved in modulating the excitatory and inhibitory com-
ponents of the emotional arousal response, a result consist-
ent with predicted outputs for a negative feedback loop
with unbalanced excitatory and inhibitory components.
The coefficients also were significantly correlated with two
different types of heart rate variability analyses, providing
evidence that the relationships defined by this type of
time-series analysis may be physiological meaningful in
understanding the interactions between the neural and au-
tonomic components of the emotional arousal response.
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