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Abstract—We propose a method to extend to time-varying (TV)
systems the procedure for generating typical surrogate time series,
in order to test the presence of nonlinear dynamics in potentially
nonstationary signals. The method is based on fitting a TV au-
toregressive (AR) model to the original series and then regress-
ing the model coefficients with random replacements of the model
residuals to generate TV AR surrogate series. The proposed sur-
rogate series were used in combination with a TV sample entropy
(SE) discriminating statistic to assess nonlinearity in both simu-
lated and experimental time series, in comparison with traditional
time-invariant (TIV) surrogates combined with the TIV SE dis-
criminating statistic. Analysis of simulated time series showed that
using TIV surrogates, linear nonstationary time series may be er-
roneously regarded as nonlinear and weak TV nonlinearities may
remain unrevealed, while the use of TV AR surrogates markedly
increases the probability of a correct interpretation. Application to
short (500 beats) heart rate variability (HRV) time series recorded
at rest (R), after head-up tilt (T), and during paced breathing (PB)
showed: 1) modifications of the SE statistic that were well inter-
pretable with the known cardiovascular physiology; 2) significant
contribution of nonlinear dynamics to HRV in all conditions, with
significant increase during PB at 0.2 Hz respiration rate; and 3)
a disagreement between TV AR surrogates and TIV surrogates
in about a quarter of the series, suggesting that nonstationarity
may affect HRV recordings and bias the outcome of the traditional
surrogate-based nonlinearity test.

Index Terms—Complexity, heart rate variability (HRV), nonlin-
ear dynamics, nonstationarity, surrogate data, time-varying (TV)
autoregressive (AR) models.

I. INTRODUCTION

THE METHOD of surrogate data belongs to the family of
statistical tests known as hypothesis testing, which nowa-

days is the most popular test used in nonlinear time series anal-
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ysis to investigate the existence of nonlinear dynamics underly-
ing experimental data. Since its original formulation by Theiler
et al. [1], this method has received great attention by researchers
involved in the field of heart rate variability (HRV) analysis. It
is indeed acknowledged that nonlinear dynamics are involved
in the genesis of HRV, as a result of the interactions among
hemodynamic, electrophysiological, and humoral variables as
well as by autonomic and central regulations [2]. As a conse-
quence, a large number of nonlinear analysis techniques have
been proposed as tools for HRV assessment, and the method of
surrogate was widely exploited for assessing the capability of
nonlinear indexes to test the presence of nonlinearity in HRV
series [3]–[7].

The method of surrogate data applied on a single time series
is based on: 1) establishing a statistical hypothesis (the null hy-
pothesis) against which observations are tested; 2) generating
a set of time series (the surrogate series) that, in accordance
with the null hypothesis, shares given properties of the original
series but lacks the property that is under investigation; 3) cal-
culating a certain index (the discriminating statistic) from the
original series and from each surrogate series; and 4) perform-
ing a statistical test that, if the discriminating statistic computed
for the original series results significantly different from the val-
ues obtained for the surrogate set, allows to reject—with some
predetermined confidence level—the null hypothesis. Different
types of surrogate data can be generated in accordance with
different null hypotheses, and different discriminating statistics
can be used (for recent reviews, see [8] and [9]). When the
method is used for testing nonlinearity, a nonlinear index is
used as discriminating statistic, and the null hypothesis of linear
stochastic process is assumed for the investigated time series.
Two main approaches have been identified to generate surrogate
series according to this null hypothesis [10]: one is to fit a linear
model to the original series and then feed the estimated model
by independent noise realizations, generating “typical realiza-
tions” of the linear stochastic process; the second is to take a
Fourier transform (FT) of the data, randomize the phases, and
then invert the FT to generate “constrained realizations” of the
process. Both these approaches generate surrogate series that
have the same linear correlation function of the original series,
but are otherwise random as specified by the null hypothesis.

In its classical formulation, the method of surrogate data in-
vestigates the presence of nonlinear dynamics assuming that
the observed time series is stationary [1]. Due to this assump-
tion, the surrogate series generated by the method is time-
invariant (TIV), i.e., has statistical properties that are invariant to
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translation of the time origin. However, it is well known that
nonstationarity may affect cardiovascular variability [11], and
stationary HRV sequences to be analyzed are often impossible
to find even in short-term recordings and during well-controlled
experimental settings [12], [13]. In fact, stationarity is not usu-
ally checked in a systematic way before performing HRV analy-
sis, and HRV series are commonly regarded as stationary on the
basis of simple but imprecise visual inspection criteria. These
considerations evidence the need for evaluating to what extent
the presence of nonstationarities affects the application of time
series analysis methods to HRV recordings. With regard to the
method of surrogate data, ambiguities between nonstationarity
and nonlinearity might arise when the null hypothesis of having
a TIV linear process is rejected by using a nonlinear discrimi-
nating statistic.

In this study, we propose a method for generating time-
varying (TV) surrogate data in order to test the presence of non-
linear dynamics in potentially nonstationary time series, accord-
ing to the null hypothesis of TV linear stochastic process. The
method is based on fitting a TV autoregressive (AR) model to
the original series and then regressing the estimated model coef-
ficients with random replacements of the model residuals to gen-
erate the TV surrogate series. Model identification is performed
by expansion of the TV model coefficients onto a set of prede-
fined basis functions, while a classical nonlinear index (i.e., the
sample entropy (SE) [14]) is used as a discriminating statistic. To
provide a comparison with traditional approaches, we consider
traditional TIV surrogates generated either as typical realiza-
tions through the residual-based AR bootstrap [15], [16], and as
constrained realizations through the phase-randomization pro-
cedure [1], [17]. The comparison is first performed on simula-
tions reproducing both linear and nonlinear processes, in which
TIV and TV features are imposed. The performance of TIV
and TV surrogates is then assessed on real HRV data measured
during common experimental protocols, in order to address the
influence of possible nonstationarities on the detection of non-
linear dynamics in standard short-term HRV recordings.

II. METHODS

A. TIV AR Surrogates

Given the time series x(n), n = 1, . . . , N , TIV AR surrogates
were generated by performing AR prediction of the series

x(n) = a(0) +
P∑

i=1

a(i)x(n − i) + e(n) (1)

where e(n) is the prediction error and the coefficients a(0) and
a(1), . . . , a(P ) describe, respectively, constant and linear con-
tributions to the dynamics of x. The AR model of (1) was
identified by the least squares method, yielding estimates of the
model coefficients, â(0), â(1), . . . , â(P ), and of the residuals
ê(1), . . . , ê(N) as well. A surrogate of the series x was then
generated according to the typical residual-based bootstrap ap-
proach [15], i.e., by resampling the residuals and feeding them

into the estimated AR model

xsTIV(n) = â(0) +
P∑

i=1

â(i)xsTIV (n − i) + ê(rnd(N)),

n = 1, . . . , N (2)

where rnd(N ) is a random number drawn from the discrete
uniform distribution with maximum equal to N . The model
order P was selected using the Akaike criterion [18].

B. TV AR Surrogates

TV AR surrogates of the series x were generated through a
TV AR prediction model

x(n) = a(0, n) +
P∑

i=1

a(i, n)x(n − i) + e(n) (3)

where the TV coefficients a(i, n), i = 0, . . . , P , are functions
of time. To identify the TV AR model (3), the TV coefficients
were expanded onto a set of basis functions πm (n) [19]

a(i, n) =
M∑

m=0

α(i,m)πm (n) (4)

where α(i,m) represent the expansion parameters with M + 1
as the maximum number of basis sequences. Substituting (4)
into (3), we have

x(n) =
M∑

m=0

α(0,m)πm (n)

+
P∑

i=1

M∑
m=0

α(i,m)πm (n)x(n − i) + e(n). (5)

The linear system (5) is now TIV, since the (P + 1)(M + 1)
coefficients α(i,m) are not functions of time. Hence, it can be
solved by least squares optimization, yielding estimates of the
expansion parameters α̂(i,m), i = 0, . . . , P,m = 0, . . . , M ,
and of the model residuals ê(1), . . . , ê(N). The estimated pa-
rameters were then regressed with the resampled residuals to
yield the TV surrogate of the series x

xsTV(n) =
M∑

m=0

α̂(0,m)πm (n)

+
P∑

i=1

M∑
m=0

α̂(i,m)πm (n)xsTV(n − i)

+ ê(rnd(N)). (6)

To perform model order selection for the TV case, we ex-
ploited the fact that expansion onto the basis functions led to a
TIV system. Hence, we used a modified version of the Akaike
information criterion accounting for the increased number of
TIV coefficients for the system (5). Specifically, the parameters
P and M in (5) were optimized by letting them vary within
a prescribed range and selecting the values that minimized the
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figure of merit

AIC(P,M) = N log σ̂2
e + 2 [P (M + 1)] . (7)

This modified criterion allowed us not only to select the opti-
mal model order, but also to choose the proper number of basis
functions onto which the TV AR coefficients are expanded.

The selection of the basis functions that characterize the time
variation of the model coefficients is crucial to obtain a proper
description of the TV dynamics under analysis. The first basis
function is the unitary constant function [π0(n) = 1], represent-
ing the stationary portion of the model. The TV features are
described by the basis functions πm (n), with m > 0. Different
types of basis functions, each showing its own unique tractabil-
ity and accuracy, can be chosen to describe TV dynamics. In
this study, we implemented as basis functions both Legendre
polynomials, which are appropriate for smoothly changing dy-
namics, and Walsh functions, which behave well for dynamics
exhibiting fast transients and/or burst-like behavior [19].

C. Nonparametric Surrogates

Contrary to AR surrogates, nonparametric surrogates do not
assume a linear model to reproduce the linear autocorrelation
present in the original series, but operate in the frequency do-
main according to a constrained realization approach. In this
study, we considered the two types of constrained surrogates
used in HRV studies [5]: 1) the Fourier transform (FT) sur-
rogates [1], generated by computing the FT of the series x,
substituting the Fourier phases with random numbers uniformly
distributed between 0 and 2π, and finally, performing the inverse
FT; 2) the iteratively refined amplitude-adjusted FT (IAAFT)
surrogates [17], generated with an iterative procedure that alter-
natively constrains the surrogate series to have the same power
spectrum (by replacing the squared Fourier amplitudes of the
candidate surrogate series with those of the original series) and
to have the same amplitude distribution (by a rank ordering
procedure) of the original series.

D. Testing for Nonlinearity

The existence of nonlinear dynamics in the considered time
series was investigated in accordance with the well-known
method of surrogate data [1]. This approach is based on a null
hypothesis to be rejected, a surrogate dataset constructed in
accordance with the null hypothesis, a discriminating statistic
that has to be calculated on original and surrogate series, and
a statistical test allowing it to reject (if it is the case) the null
hypothesis.

The general null hypothesis assumed in nonlinearity tests
is that the investigated time series is a realization of a linear
stochastic process. However, a more specific null hypothesis is
often required to be set, depending on the ability of the surro-
gates to preserve the statistical properties of the original series.
Being conceived to test for nonlinearity, all the four algorithms
considered here preserve, though with a different degree of ap-
proximation [16], the linear autocorrelation of the original se-
ries. Whereas FT surrogates have a Gaussian distribution by con-
struction, IAAFT surrogates preserve the marginal distribution

of the original series, regardless of whether it is Gaussian or not.
Typical realizations, generated either by the TIV AR or the TV
AR approach, do not preserve closely the original marginal dis-
tribution, but do assume Gaussianity of such a distribution. The
three TIV algorithms (i.e., FT, IAAFT, and TIV AR) generate
stationary surrogate series, while the TV AR method attempts to
reproduce nonstationary behaviors of the original series. In view
of these considerations, FT, IAAFT, TIV AR, and TV AR sur-
rogates were used to test the null hypotheses of a TIV Gaussian
linear process, a TIV linear process, a TIV linear AR process,
and a TV linear AR process, respectively.

As a discriminating nonlinear statistic, we utilized the SE
[14], a measure based on comparing patterns within a time se-
ries to estimate its complexity through estimation of entropy
rates. The SE has been originally devised to overcome some
known shortcomings associated to the most common nonlinear
measure of complexity used in cardiovascular variability anal-
ysis, i.e., approximate entropy (ApEn) [20]. It has been fully
characterized in the context of physiological time series analysis
and has been successfully used as complexity measure in short-
term HRV studies [21]–[24]. Moreover, the evaluation of SE
over multiple time scales, performed by the multiscale entropy
method, has been proposed as a diagnostic tool to detect HRV
complexity in conditions of normal and impaired cardiac effi-
ciency [25]. For SE calculation, the series x was first partitioned
in patterns of length L, obtained as sequences of L consecutive
samples, i.e., xL (i) = [x(i), x(i + 1), . . . , x(i + L − 1)]. The
SE statistic was then computed as

SE (L, r) = − log
∑N −L

i=1 Ni (L + 1, r)∑N −L
i=1 Ni (L, r)

(8)

where Ni(L, r) is the number of patterns of length L found
at a distance smaller than the threshold r from xL (i) and
Ni(L + 1, r) is the number of patterns of length L + 1 found at
a distance smaller than r from xL+1(i). The sums in (8) were
extended to all the patterns of length L + 1, and the distance was
evaluated by the Euclidean norm. Since the SampEn requires
stationary data segments to be calculated, its TIV version of (8)
was used as discriminating statistic only in nonlinearity tests in-
cluding stationarity into the null hypothesis, i.e., those using the
FT, IAAFT, and TIV AR algorithms for surrogate generation.
Differently, as the proposed TV AR surrogates inherently allow
nonstationarity, we used them in conjunction with a TV ver-
sion of the SampEn (TV-SampEn). TV-SampEn was computed
adaptively, segmenting the time series of N samples in Q sub-
windows of W samples, with a partial overlap, and calculating
within each subwindow the TIV SampEn of (8).

As a statistical test, we performed a nonparametric test based
on percentiles. The test compared the SampEn statistic calcu-
lated for the original series (SEO ) with a threshold for signifi-
cance (SETH ) given by the 100 × αth percentile of the empirical
SampEn distribution estimated from 100 surrogate series. If
SEO < SETH , the null hypothesis was rejected and nonlinear
dynamics was detected. If, on the contrary, SEO ≥ SETH ,
surrogates were interpreted as consistent with their correspond-
ing null hypotheses. While for TIV nonlinearity tests, a single
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Fig. 1. Example of nonlinearity test performed on simulated signals. (a) Stationary AR2 process. (b) Nonstationary AR2 process with amplitude modulations.
(c) Stationary AR5 process. (d) Nonstationary AR5 process with frequency drifts. (e) Stationary non-Gaussian AR2 process. (f) Stationary noisy Tent map.
(g) Nonstationary noisy Tent map with varying control parameter. (h) Nonstationary noisy Tent map with varying additive noise variance. Middle panels depict
the SampEn statistic calculated for the original series (SEO , empty circles) along with its distributions (5th, 50th (filled circles), and 95th percentiles) over 100
surrogate series generated using FT, IAAFT, and TIV AR approaches (from left to right); the lower 5th percentile is the threshold for significance SETH of each
TIV nonlinearity test. Right panels depict the TV-SampEn calculated for the original series (SEO (i), empty circles) along with the threshold for significance of
the TV nonlinearity test (SETH (i), dots) derived from 100 TV AR surrogate series; values are calculated over subwindows of 100 samples, overlapped by half.

comparison with nominal significance level α was performed,
in the TV test involving the proposed TV AR surrogates, a
multiple testing strategy was implemented [26]. Specifically,
SEO (i) and SETH(i) were calculated, respectively, as the
SampEn of the original series and the (100 × α(i))th percentile
of the SampEn surrogate distribution within each subwindow
selected for TV-SampEn analysis, i = 1, . . . , Q; then, the over-
all null hypothesis was rejected if rejection was achieved in at
least one subwindow, i.e., SEO (i) < SETH(i) for at least one i.
In multiple testing procedures, a Bonferroni correction reducing
the significance level of the single tests [i.e., imposing α(i) <
α] is required to achieve an overall nominal significance level
equal to α [26]. In this study, we adopted the improved Bonfer-
roni method introduced in [27], which is based on sorting the
Q subwindows according to an ascending order of the p-values
of the corresponding single hypothesis test, and then assigning
to the ith sorted subwindow a significance level α(i) = iα/Q.
With respect to the classical Bonferroni correction that sets
constant significance levels α(i) = a/Q, this approach is less
conservative in the presence of dependent comparisons (as is
our case in which the subwindows overlap) and is associated
with an increased power of the statistical test [27].

III. SIMULATIONS

To evaluate the ability of the proposed TV AR surrogates
to detect nonlinearity in comparison with the traditional TIV
surrogates during different conditions, we simulated time series

containing linear and nonlinear dynamics, reproducing in both
cases either stationary behaviors or nonstationary behaviors with
different types of nonstationarity. As linear time series, we con-
sidered: 1) second-order AR (AR2) processes given by

x(n) = 2ρ cos (2πf(n)) x(n − 1) − ρ2x(n − 2) + w(n)
(9)

where ρ and 2πf are the modulus and phase of the complex
conjugate poles of the process and w is a Gaussian white noise
with zero mean and unit variance; 2) fifth-order AR processes
(AR5) generated by adding the series yielded by (9) with dif-
ferent pole modulus ρ and phase 2πf , with parameters set to
render the power spectrum of the AR5 process similar to that
of the short-term HRV series (i.e., with peaks in low frequency
(LF ∼ 0.1 Hz) and high frequency (HF ∼ 0.25 Hz) bands, su-
perimposed to very slow fluctuations at about 0 Hz [11]). As a
nonlinear time series, we considered the Tent map with control
parameter k, defined as

x(n + 1) =
{

2k(n)x(n), if 0 < x(n) ≤ 0.5
2k(n)(1 − x(n)), if 0.5 < x(n) ≤ 1.

(10)

We considered eight different processes for which realiza-
tion examples are shown in Fig. 1: a) a stationary AR2 process
with ρ = 0.8 and f = 0.06; b) a nonstationary AR2 process
in which nonstationarity was obtained imposing three steps
in the values over time of the pole modulus [ρ(n) = 1 for
3N /15 ≤ n < 4N/15, 7N/15 ≤ n < 8N/15, and 11N/15 ≤
n < 12N/15; ρ(n) = 0.8 elsewhere] with constant f = 0.06;



FAES et al.: TIME-VARYING SURROGATE DATA TO ASSESS NONLINEARITY IN NONSTATIONARY TIME SERIES 689

c) a stationary AR5 process with one real pole (ρ0 = 0.7,
f0̃ = 0), and two pairs of complex conjugate poles corre-
sponding to LF (ρ1 = 0.84, f1 = 0.1) and HF (ρ2 = 0.98,
f2 = 0.25) oscillations; d) a nonstationary AR5 process with
the same stationary parameters of (c) (ρ0 = 0.7, f0 = 0; ρ1 =
0.84, f1 = 0.1; ρ2 = 0.98) except for the HF oscillation that
was linearly increased in frequency from 0.15 to 0.4 Hz:
f2(n) = 0.15 + 0.25(n − 1)/(N − 1); e) a stationary AR2 pro-
cess with ρ = 0.8 and f = 0.06, amplitude-transformed (by a
rank-order procedure) according to a chi-squared distribution
with 4 DOF in order to distort from Gaussianity its marginal
distribution; f) a stationary noisy Tent map with k = 0.9, gener-
ated rescaling (10) to zero mean and then adding zero-mean
Gaussian white noise with 5% variance; g) a nonstationary
noisy Tent map, generated as in (f) but with control parame-
ter linearly increasing from 0.7 to 0.9 in the first half of the
series [k(n) = 0.7 + 0.2(n − 1)/(N/2 − 1), n = 1, . . . , N/2]
and then decreasing back to 0.7 in the second half [k(n) =
0.9 − 0.2(n − N/2 − 1)/(N/2 − 1), n =N/2 + 1, . . . , N ]; (h)
a nonstationary noisy Tent map, generated as in (f) (k = 0.9)
but with a step in the variance of the additive noise (variance =
5% for 2N/5 ≤ n < 3N/5, variance = 150% elsewhere).

In all cases, 100 different realizations of the simulated series,
each lasting N = 500 points, were considered for the analysis.
The maximum model order investigated by the Akaike criteria
for the generation of parametric surrogates was Pmax = 20, and
the maximum number of basis functions used for generating TV
AR surrogates was Mmax = 20. As basis functions, we used
Legendre polynomials for the simulations (a), (d), (f), and (g),
and Walsh functions for the simulations (b), (c), (e), and (h).
Before SampEn calculation, the series were rescaled to have
zero mean and unit variance. SampEn and TV-SampEn were
calculated setting L = 2 and r = 0.2 in (8). TV-SampEn was
computed on windows of W = 100 samples, with 50% overlap.
The length W = 100 was chosen to satisfy the recommended
minimum sample size for reliably calculating SampEn [14],
[20]. The overall nominal significance level associated to the
hypothesis tests was α = 0.05.

IV. APPLICATION TO HRV

A. Experimental Protocols

In the two considered experimental protocols, the surface
ECG (lead II) was acquired in young healthy subjects during the
morning in quiet ambience conditions. In the type-1 protocol, 18
subjects (25 ± 2.7 years old) underwent recordings during the
resting supine position and during the 60◦ upright position. The
transition from supine to upright position was achieved by the
passive head-up tilt manoeuver through the progressive sloping
of a motorized tilt table. In each body position, subjects were
given 10 min of acclimatizing before data were collected. In
the type-2 protocol, 16 subjects (26 ± 2.4 years old) underwent
recordings in the resisting supine position, during spontaneous
breathing, paced breathing (PB) with frequency of 0.2 Hz, and
PB with frequency of 0.3 Hz. To achieve controlled respiration,
subjects were instructed to inhale and exhale in time with a
metronome acting at 12 and 18 cycles/min.

In both experimental protocols, the recorded ECG was digi-
tized with 1 kHz sampling rate and 12-bit precision. After that,
the QRS peaks were detected by threshold crossing of the first
derivative of the signal and the R peaks were located by us-
ing a parabolic interpolation. The RR interval series was then
measured as the sequence of the temporal distances occurring
between each pair of consecutive R peaks. In each experimental
condition (i.e., supine position (Su) and upright position (Up)
for the type-1 protocol; spontaneous breathing (Sp), paced res-
piration at 0.2 Hz (R1) and 0.3 Hz (R2) for the type-2 protocol),
a time window consisting of 500 heartbeats was selected from
the RR interval series. The only manipulation of the measured
RR series was the removal, when necessary, of cardiac artifacts.
Attention was paid that the selected sequence was stationary
and free from measurement artifacts. Stationarity was checked
according to common visual inspection criteria.

B. Data Analysis

AR TIV surrogates were generated with Pmax = 20 as max-
imum model order for the Akaike criterion. AR TV surrogates
were generated with Pmax = 20 and Mmax = 20 as maximum
model order and number of basis functions to include in the
modified Akaike criterion of (7). As in real data applications,
the behavior of possible TV dynamics is not known a priori, so
we combined together both Legendre and Walsh basis functions
for the generation of AR TV surrogates according to the method
described in [28]. This method provides a set of orthogonal basis
functions from multiple sets of original basis functions, using
the Gram–Schmidt orthogonalization procedure to eliminate the
possible linear dependence between the original functions. The
advantage of the approach is that, without scarifying accuracy,
the criticality of choosing a suitable type function is minimized
even without any prior knowledge of the characteristics of the
nonstationary system under analysis.

The SampEn statistic was calculated with the typical pat-
tern length and threshold distance suggested for short data se-
quences, i.e., L = 2 and r = 20% of the standard deviation of
the considered RR interval series [14], [22]. As for simulations,
nine subwindows of W = 100 samples, with 50% overlap, were
set to compute TV-SampEn, and the nominal significance level
of the hypothesis tests was α = 0.05. The Student’s t-test for
paired data was used to test the statistical significance of the
difference between the SampEn distributions evaluated in the
different experimental conditions. A p < 0.05 was considered
statistically significant.

V. RESULTS

A. Simulation Results

Fig. 1 reports an example of the nonlinearity test performed
by the three TIV approaches using FT, IAAFT, and TIV AR
surrogates, and by the proposed approach using TV AR surro-
gates, on a single realization of the eight simulated processes
described in Section III. In the presence of stationary linear
dynamics generated by the AR2 and AR5 processes with con-
stant parameters [Fig. 1(a) and (c)], the TIV approaches and
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Fig. 2. Percentage of rejections of the null hypothesis (R%) revealed by the
considered surrogate data methods (FT, IAAFT, TIV AR, and TV AR) on 100
realizations of the eight simulated processes described in Fig. 1.

the TV AR approach did not reject the null hypothesis, as the
SampEn and TV-SampEn statistics calculated for the original
series were above their corresponding threshold for signifi-
cance (SEO > SETH ). When the AR2 series was amplitude-
transformed to have a skewed marginal distribution, a rejection
of the null hypothesis (SEO < SETH ) was observed using the
FT approach [Fig. 1(e)]. In the presence of the linear nonsta-
tionary behaviors due to pole modulus variations of the AR2
process [Fig. 1(b)] and frequency drifts in the AR5 process
[Fig. 1(d)], TIV and TV nonlinearity tests gave opposite results,
as SEO < SETH for TIV surrogates [except for IAAFT sur-
rogates in Fig. 1(b)] and SEO ≥ SETH in all subwindows for
TIV AR surrogates. For the stationary Tent map [Fig. 1(f)] and
the Tent map with nonstationary control parameter [Fig. 1(g)],
rejection of the nonlinearity test was achieved for all surrogate
methods. Finally, the weak nonlinearity obtained blurring 80%
of the samples of a Tent map with high variance noise [Fig. 1(h)]
was detected only by combining TV AR surrogates with the
TV-SampEn statistic [SEO (5) < SETH(5)], while the TIV ap-
proaches did not reject the null hypothesis (SEO > SETH ).

Fig. 2 summarizes the results of the nonlinearity test extended
to the 100 realizations generated for each system, expressed in
terms of percentage of rejection of the null hypothesis. During
stationary conditions imposed in linear dynamics [Fig. 2(a), (c),
and (e)], the four approaches to surrogate data generation per-
formed comparably, returning a very low rejection rate and thus
correctly detecting the dynamics as linear; the only exception

was the considerable number of false rejections obtained using
FT surrogates in the analysis of the non-Gaussian process mod-
eled by skewing the marginal distribution of the AR2 process
[Fig. 2(e)]. In case of nonstationary linear dynamics produced
by amplitude modulations in the AR2 process [Fig. 2(b)], the
percentages of erroneous rejections were very high (>80%) for
FT and TIV AR surrogates and very low (<7%) for IAAFT and
TV AR surrogates. The TV AR method performed better than
TIV approaches in the presence of nonstationarities also due to
frequency drifts, as documented in Fig. 2(d), where the rejec-
tion rate was about 50% for FT, IAAFT, and TIV AR surrogates,
and was very low for TV AR surrogates. Stationary nonlinear
dynamics generated by the Tent map [Fig. 2(f)] as well as non-
stationary nonlinear dynamics generated by the Tent map with
variable control parameter [Fig. 2(g)] were correctly addressed
as nonlinear by all methods. When nonstationarity was due to
modulation of the quantity of the additive noise used to blur the
tent map [Fig. 2(h)], the three TIV approaches were unable to
detect the weak nonlinearity, and thus returned a low rejection
rate, while the TV nonlinearity test returned a higher percentage
of rejections.

B. Real Data Results

Fig. 3 reports an example of application of the nonlinearity
test on the RR interval series measured during type-1 protocol
for a representative subject. In the supine position, all the consid-
ered approaches detected the presence of nonlinear dynamics,
since SEO < SETH for the three TIV methods [Fig. 3(b)] and
SEO (i) < SETH(i) for i = 7 for the TV method [Fig. 3(c)]. In
the upright position, where modulations over time in the ampli-
tude of the RR series are evident [Fig. 3(d)], FT, IAAFT, and AR
TIV surrogates indicated the series as nonlinear [SEO < SETH ,
Fig. 3(e)], while TV AR surrogates gave the opposite result
as SEO (i) > SETH(i) for each i = 1, . . . , 9 [Fig. 3(f)]. Fig. 4
shows the application on RR interval series measured for a
subject enrolled in the type-2 protocol. During spontaneous
breathing, an increase of the respiratory frequency with time
seems to occur [Fig. 4(a)]. In correspondence, FT, IAAFT, and
TIV AR surrogates found nonlinear dynamics [SEO < SETH ,
Fig. 4(b)], while TV AR surrogates did not detect any nonlinear-
ity [SEO (i) > SETH(i) for each i = 1, . . . , 9, Fig. 4(c)]. On the
contrary, the three TIV methods and the TV AR method were in
agreement during 0.2 Hz paced respiration, where the null hy-
pothesis was rejected and nonlinearity was detected [Fig. 4(e)
and (f)], and during 0.3 Hz paced respiration, where the RR
series was found consistent with the null hypothesis [Fig. 4(h)
and (i)].

Fig. 5 summarizes the results obtained during the two pro-
tocols, in terms of complexity values, either measured by the
SampEn statistic or by the average over successive subwindows
of the TV-SampEn statistic, and of percentage of nonlinear dy-
namics detected by the four considered surrogate approaches.
During type-1 protocol, SampEn and mean TV-SampEn de-
creased significantly moving from the supine to the upright
position [Fig. 5(a)]. During type-2 protocol, SampEn and mean
TV-SampEn decreased significantly with PB at 0.2 Hz, and



FAES et al.: TIME-VARYING SURROGATE DATA TO ASSESS NONLINEARITY IN NONSTATIONARY TIME SERIES 691

Fig. 3. RR interval variability series measured for a healthy subject in (a) the
resting supine position, and in (d) the upright position during head-up tilt.
(b) and (e) Corresponding SampEn statistic calculated for the original series
(SEO , empty circles) along with its distributions (5th, 50th (filled circles)
and 95th percentiles) over 100 surrogate series generated using FT, IAAFT,
and TIV AR approaches (from left to right); the lower 5th percentile is the
threshold for significance SETH of each TIV nonlinearity test. (c) and (f) TV-
SampEn calculated for the original series (SEO (i), empty circles) along with the
threshold for significance of the TV nonlinearity test (SETH (i), dots) derived
from 100 TV AR surrogate series; values are calculated over subwindows of
100 samples, overlapped by half.

increased significantly with PB at 0.3 Hz, returning to aver-
age values comparable to those measured during spontaneous
breathing. As shown in Fig. 5(b)–(e), regardless of the method
used to generate surrogate data, the percentage of rejection of
the null hypothesis increased from the supine to the upright
position during type-1 protocol and from spontaneous respira-
tion to paced respiration at 0.2 Hz breathing rate during the
type-2 protocol; the number of rejections decreased when the
rhythm of the paced respiration was increased to 0.3 Hz . Using
TV AR surrogates, a lower percentage of nonlinear dynamics
was detected in all conditions [Fig. 5(e)]; with this approach,
the increase in the percentage of nonlinear dynamics was slight
with assumption of the upright position, and was considerable
moving from spontaneous to 0.2 Hz paced respiration.

Besides detection of nonlinear dynamics, complementary
information can be deduced from the analysis of the agree-
ment/disagreement among the four surrogate data approaches
regarding the outcome of the nonlinearity test. Table I lists the
different combinations of the test outcomes (rejection or not
rejection of the null hypothesis) encountered in HRV analysis
during the two protocols. Of the 84 analyzed RR interval series,
in 51 cases (60.7%, patterns a and b in Table I), there was com-
plete agreement among the four surrogate types in rejecting or

Fig. 4. RR interval variability series measured for a healthy subject in the
supine position during (a) spontaneous breathing and during (d) PB at 0.2 Hz
and (g) at 0.3 Hz. Panels (b), (e), and (h) and panels (c), (f), and (i) depict the
results of TIV and TV nonlinearity tests, respectively; symbols are as in Fig. 3.

not rejecting the null hypothesis. A disagreement between TIV
and TV AR surrogates (patterns c, d, and e) was revealed in
22 cases (26.2%). According to simulation results, patterns of
types c and d (22.6%) might indicate false rejections of the null
hypothesis using TIV surrogates induced by nonstationarities,
while patterns of type e (3.6%) might reflect weak nonlineari-
ties detected by the TV approach but not TIV approaches. The
disagreement between TIV and TV AR surrogates was larger
during spontaneous breathing in supine or upright positions (16
out of 22 cases) than during 0.2 or 0.3 Hz PB (6 cases). Patterns
of type f (7.1%) may indicate the presence of non-Gaussianity
in the marginal distribution of HRV, leading FT surrogates to
false rejections of the null hypothesis. Finally, patterns of type g
(6%) evidenced a disagreement between constrained and typical
surrogate realizations.
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Fig. 5. (a) Mean + SD over subjects of the SampEn (black bars) and the
average TV-SampEn (gray bars) calculated during type-1 protocol (Su: supine
position; Up: upright position) and type-2 protocol (Sp: spontaneous respiration;
R1: paced respiration at 0.2 Hz; R2: paced respiration at 0.3 Hz); ∗p < 0.05,
Sp versus R1; ∗∗p < 0.005, Su versus Up and R1 versus R2 (paired Student
t-test). (b)–(e) Percentage of rejections of the null hypothesis (R%) revealed in
RR interval series by the considered surrogate data methods (FT, IAAFT, TIV
AR, and TV AR) over subjects during the five conditions.

TABLE I
PATTERNS OF COMBINED OUTCOME OF NONLINEARITY TEST PERFORMED

WITH CONSIDERED SURROGATE DATA APPROACHES ON HRV TIME SERIES

VI. DISCUSSION

While in its traditional formulation [1] the method of surro-
gate data is applicable only under the assumption of stationarity,
most biological signals are not stationary due to the inherent
TV characteristics of the biological systems that produce them.
As a consequence, the null hypothesis commonly set by the
surrogate-based test for nonlinearity, i.e., that the investigated
time series is a realization of a TIV linear process [1], should
be relaxed in order to account for possible TV behaviors. To
agree with a more general null hypothesis, surrogate series that
mimic the possible nonstationary behaviors present in the orig-
inal series have to be generated. In this study, we addressed
this issue by extending the “typical realizations” approach to
the generation of surrogate data, originally designed for testing

nonlinearity in TIV processes, to be applicable to TV systems.
Typical realizations of the TV surrogates were obtained using a
TV AR model, instead of a TIV model, to fit the original time
series. Hence, contributions to the complexity of the original
series due to nonstationary behaviors that could be modeled by
the TV AR approach were also present in the surrogate series.
This led us to rule out nonstationarity as a possible explanation
for the rejection of the null hypothesis, thus making more robust
the detection of nonlinearity.

It should be remarked that the proposed procedure depends
on the capability of the method to track linear TV behaviors
present in the analyzed time series. We dealt with this problem
by using basis functions to model the TV AR coefficients, an ap-
proach that ensures an efficient identification of various types of
nonstationary processes [19]. In particular, the use of a multiple
set of basis functions [28] made our method able to simultane-
ously capture different TV behaviors (including together both
slowly changing dynamics and fast transients), without the need
of having any prior knowledge about the kind of nonstationarity
that may be present in real data applications.

A. Comparison Among Different Approaches for Surrogate
Data Generation

We compared, on both simulations and real HRV data, the
novel approach to generate TV surrogate data based on TV AR
model identification with the main TIV approaches proposed to
test for nonlinearity in time series, i.e., the AR method [10], the
FT method [1], and the IAAFT method [17]. Consistency in the
outcome of the nonlinearity test among the four methods was in-
terpreted as an indication of the linearity of the investigated time
series, when all approaches did not reject the null hypothesis,
or as a marker of the presence of nonlinear dynamics, when all
approaches rejected the null hypothesis. These situations were
successfully reproduced by the simulations [see Figs. 1(a), (c),
(f), (g) and 2(a), (c), (f), (g)], and were encountered in a consid-
erable part of the experimental data (∼60%).

On the other side, different outcomes of the nonlinearity test
observed using the different surrogate approaches may give im-
portant information about the nature of the investigated time se-
ries. In particular, a disagreement between the TIV approaches
on one side, and the TV AR approach on the other, may suggest
a role of nonstationarity on the detection of nonlinear dynamics.
Our simulations showed that, in the presence of nonstationary
behaviors like amplitude modulations or frequency drifts im-
posed on linear time series, TIV surrogates tend to reject the
null hypothesis, thus erroneously indicating nonlinearity, while
TV AR surrogates are correctly consistent with the null hypoth-
esis [see Figs. 1(b), (d) and 2(b), (d)]. Moreover, in the presence
of weak nonlinearities confined to a short epoch, TIV surrogates
tend to accept the null hypothesis, while only TV AR surrogates
show a high rejection rate [see Figs. 1(h) and 2(h)]. Our experi-
mental results suggest that these situations are quite common in
HRV analysis, especially during spontaneous breathing either
in the supine or in the upright position. We ascribe the possi-
ble presence of nonstationarities during spontaneous breathing
to important modulations of the LF rhythm of HRV, which is
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predominant over other rhythms especially after head-up tilt [2]
and to spontaneous variations of the respiratory frequency. On
the contrary, the enhancement of the respiratory-related HF os-
cillation that occurs in PB protocols, as well as its entrainment
on a stable frequency, are likely to favor the establishment of
stationary conditions.

Two other situations of disagreement in the outcome of the
nonlinearity test were those evidencing a difference between FT
surrogates and other surrogate types, and a difference between
“constrained” (FT and IAAFT) and “typical” (TIV AR and TV
AR) surrogate realizations (patterns f and g in Table I). The first
situation might reflect the fact that FT surrogates are forced to
have Gaussian marginal distribution, and thus departures from
Gaussianity of the distribution of the observed time series may
induce false rejections when FT surrogates are used [see also
Figs. 1(e) and 2(e)]. The second situation might be due to the
strict adherence of the power spectrum of constrained surrogates
to the spectrum of the original series, which can favor false re-
jections [9], [29], combined with the larger variance in power
spectrum replication obtained by typical surrogates, which can
lead to a misleading consistency with the null hypothesis. More
generally, it is worth remarking that discrepancies among the
outcomes of the nonlinearity test performed with the various
surrogate approaches could be caused by subtle differences
between the distribution (and/or the linear correlation) of the
original series and of the surrogate series. Indeed, FT, IAAFT,
AR TIV, and AR TV surrogates all have different distributions,
which, in turn, differ from that of the original series. Hence,
some care has to be taken in interpreting differences in the
detection of nonlinear dynamics among the various surrogate
approaches.

B. Nonlinearity in Short-Term HRV

A major result of this study is that even when the approach set-
ting the most general null hypothesis (i.e., the TV AR method)
was used to test for nonlinearity in HRV series, nonlinear dy-
namics were detected in a significant number of subjects in all
experimental conditions. Previous studies revealed the existence
of nonlinear dynamics underlying HRV signals [3], [6], [7], [30].
Such nonlinearities may be the result of the activity of several
nonlinear physiological mechanisms, like nonlinear interactions
between sympathetic and parasympathetic branches of the au-
tonomic nervous system, respiratory modulations, saturation of
receptors, and others [2], [31].

The nonlinearity test detected the largest number of sub-
jects exhibiting nonlinear HRV dynamics during PB at 0.2 Hz
(about 70% of the subjects using TV AR surrogates). This
result confirms previous findings, suggesting that a voluntary
periodic forced input like paced respiration, mainly at slow
breathing rates, enhances nonlinear dynamics in the RR in-
terval [4], [5], [32]. The nature of these nonlinear dynamics
has been explained in terms of possible nonlinear interactions
between the external forcing input given by voluntary periodic
respiration and endogenous oscillators determining spontaneous
HRV [5]. Results of the TV nonlinearity test suggest that head-
up tilt is less effective than periodic breathing at low breathing

rates in increasing the percentage of nonlinearities in RR inter-
val series. Thus, it seems that the activation of the sympathetic
nervous system occurring after transition to the upright position
does not favor the rise of nonlinear HRV dynamics. This find-
ing is in agreement with previous studies [5], [32], showing that
head-up tilt as well as other experimental conditions shifting the
sympatho-vagal balance toward a sympathetic predominance do
not evoke nonlinear dynamics in HRV time series.

C. Complexity in Short-Term HRV

Besides evaluating the presence of nonlinear dynamics in
HRV by means of the surrogate data, we also quantified, through
the absolute values of the SampEn statistic or the values of the
TV-SampEn statistic averaged over successive epochs, the com-
plexity of the RR interval series in the different experimental
conditions. In general, indexes of complexity and nonlinearity
are not redundant, as high complexity does not necessarily in-
dicate the presence of important nonlinear dynamics (or vice
versa). This is, for example, the case of our simulated series,
where linear stochastic processes were found in some cases to
exhibit higher SampEn than nonlinear Tent maps [e.g., compare
Fig. 1(c) and (d) with Fig. 1(f) and (g)], and of the considered
real HRV data, where the transition from the supine to the up-
right position was associated with a decrease in the SampEn
measure and an increase of the percentage of nonlinear dynam-
ics (Fig. 5).

Overall, we found that the SampEn values: 1) decreased sig-
nificantly moving from the supine to the upright position; 2) de-
creased significantly moving from spontaneous breathing to PB
at 0.2 Hz; and 3) were substantially unchanged during 0.3 Hz PB
compared to spontaneous breathing. These results agree com-
pletely with those previously obtained in the same experimental
conditions using complexity measures based on conditional en-
tropy [22], [33] and nonlinear predictability [5], [32], [34]. The
decreased complexity of RR interval series in the upright po-
sition is explained by the sympathetic activation induced by
head-up tilt, which causes the rise of LF oscillations and the
drop of HF oscillations, ultimately simplifying the dynamics
of HRV [35]. During paced respiration at low breathing rates,
the decrease of complexity can be related to limited LF oscil-
lations and the presence of strong HF oscillations associated to
an important respiratory sinus arrhythmia [36]. On the contrary,
the RR interval complexity is not reduced during paced respi-
ration at 0.3 Hz, since higher breathing rates are less effective
in strengthening HF oscillations and inhibiting LF oscillations
of heart rate due to mechanical effects related to a reduced tidal
volume [36].

Our findings about HRV complexity and nonlinearity ob-
served during the PB protocol may be discussed also in terms
of cardiorespiratory synchronization (CRS). CRS is a phe-
nomenon that manifests itself through the entrainment between
the cardiac and the respiratory oscillatory systems [37] and has
been revealed either during spontaneous breathing [37], [38]
or during PB [39]. We suggest that CRS is more likely to oc-
cur in correspondence of instances of high complexity of the
HRV signal and that its appearance might mask nonlinear HRV
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dynamics. For instance, 0.2 Hz PB induces a respiratory sinus
arrhythmia [36] that is associated in this study to a decrease
of SampEn and an increase of nonlinear dynamics in the HRV
series (Fig. 5); previous studies showed that respiratory sinus
arrhythmia and CRS are competing phenomena, with weakened
CRS corresponding to important sinus arrhythmia [37], [38].
Moreover, increasing the frequency of the PB from 0.2 to 0.3 Hz
led to HRV dynamics with higher SampEn and reduced nonlin-
earity; rapid paced respiration (frequency > 0.3 Hz) was also
associated to more prolonged and effective CRS regimes [39].

VII. CONCLUSION

The approach proposed in this study is able to provide, thanks
to the use of an efficient procedure to identify TV linear mod-
els [19], [28], TV surrogate data that mimic possible changes
through time in the properties of a given time series. This ap-
proach permits application of the surrogate-based test for non-
linearity to a wider class of null hypotheses, including nonsta-
tionary behaviors. While we improved the parametric approach
for the generation of typical surrogate realizations, recent stud-
ies [40], [41] proposed wavelet-based methods to generate con-
strained surrogate series preserving the average local properties
of the original data, and are thus also suitable to track time-
dependent signal features. A comparative analysis of these two
approaches regarding nonlinearity tests in time series with TV
features could constitute an interesting extension of this study.

Utilization of TV surrogates extends the applicability of the
nonlinearity test to biological systems from which stationary
signals cannot be extracted. This situation is likely to occur
in spontaneous HRV analysis, where stationarity may be diffi-
cult to attain even in short epochs and during well-controlled
experimental settings. This is the case, according to our re-
sults, of widely studied protocols such as supine resting and
passive head-up tilt. Hence, we suggest the utilization of TV
approaches in the generation of surrogate data to investigate the
existence of nonlinear dynamics underlying experimental time
series. The optimization of the method of surrogate data seems
to be of particular importance in short-term cardiovascular vari-
ability analysis, as our results confirm that nonlinear dynamics
are significantly involved in the genesis of spontaneous HRV
during different experimental conditions.
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