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Abstract
A method for deriving respiratory rate from smartphone-camera-acquired 
pulse photoplethysmographic (SCPPG) signal is presented. Our method 
exploits respiratory information by examining the pulse wave velocity and 
dispersion from the SCPPG waveform and we term these indices as the pulse 
width variability (PWV). A method to combine information from several 
derived respiration signals is also presented and it is used to combine PWV 
information with other methods such as pulse amplitude variability (PAV), 
pulse rate variability (PRV), and respiration-induced amplitude and frequency 
modulations (AM and FM) in SCPPG signals.

Evaluation is performed on a database containing SCPPG signals recorded 
from 30 subjects during controlled respiration experiments at rates from 0.2 to 
0.6 Hz with an increment of 0.1 Hz, using three different devices: iPhone 4S, 
iPod 5, and HTC One M8. Results suggest that spontaneous respiratory rates 
(0.2–0.4 Hz) can be estimated from SCPPG signals by the PWV- and PRV-
based methods with low relative error (median of order 0.5% and interquartile 
range of order 2.5%). The accuracy can be improved by combining PWV and 
PRV with other methods such as PAV, AM and/or FM methods. Combination 
of these methods yielded low relative error for normal respiratory rates, and 
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maintained good performance at higher rates (0.5–0.6 Hz) when using the 
iPhone 4S or iPod 5 devices.

Keywords: respiration, photoplethysmography, PPG, pulse width variability, 
PWV

(Some figures may appear in colour only in the online journal)

1. Introduction

Monitoring of respiration is usually performed by techniques such as spirometry, pneumogra-
phy, and plethysmography. These techniques require cumbersome devices which are imprac-
tical in certain situations such as stress test or sleep studies (Bailón et al 2006b), and which 
may interfere with natural breathing. Thus, obtaining accurate respiratory information from 
comfortable non-invasive devices is a task of interest.

This paper is focused on deriving respiratory rate by using smartphone devices. This can-
not fully replace spirometry which offers also information about respiratory-volume-related 
parameters. However, respiratory rate by itself is useful in several situations, e.g. it remains 
a sensitive clinical parameter in many pulmonary diseases (Krieger et al 1986) such as acute 
respiratory dysfunction (Gravelyn and Weg 1980). Impedance-pneumography-based tech-
niques can be used when respiratory rate is the only respiratory information required since it 
is not designed to obtain other physiological parameters. These techniques are non-invasive 
and comfortable as they use only a pair of electrodes to measure the impedance changes in 
the chest. However, they often lead to unusable signals due to low signal-to-noise ratio and 
motion artifacts (Larsen et al 1984).

Many algorithms for deriving respiratory rate from comfortable non-invasive devices have 
been presented. Most of them use the electrocardiogram (ECG), exploiting variations of beat 
morphology and/or occurrence (Mason and Tarassenko 2001, Bailón et al 2006a, 2006b, 
Lázaro et al 2014a). There are methods based on other biomedical signals such as blood 
pressure (De Meersman et al 1996), photoplethysmographic (PPG) signals (Chon et al 2009, 
Lázaro et al 2013), and pulse transit time (Chua and Heneghan 2005), which require both 
ECG and PPG signals to derive respiratory rate.

The PPG signal is usually provided by a biomedical sensor called a pulse oximeter. It is 
composed of a light source which illuminates tissue (usually fingers, earlobes, or forehead) 
and a light detector which measures the reflected or transmitted light depending on its posi-
tion, leading to a signal which is proportional to the blood volume. Deriving respiratory infor-
mation from a PPG signal is particularly interesting, because pulse oximeters are very simple, 
economical, and comfortable to use. Furthermore, the pulse oximeter is widely adopted to 
monitor the peripheral oxygen saturation, which constitutes a very relevant parameter in the 
study of respiration. Thus, the pulse oximeter is a very valuable device in clinical settings.

Known methods for deriving respiratory rate from the PPG signal exploit variations on 
pulse morphology and/or occurrence. It is well known that respiration modulates heart rate 
(Hirsch and Bishop 1981) leading to a respiratory component in heart rate variability (Task 
Force 1996), which is also seen in pulse rate variability (PRV) since they are highly correlated 
(Gil et al 2010). Respiration also modulates the morphology of the PPG signal. Inspiration 
can lead to a reduction in tissue blood volume, and this lowers the amplitude of the PPG 
signal. This reduction in tissue blood volume is generated by two different mechanisms:  
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a reduction of cardiac output, and a reduction of intra-thoracic pressure (Meredith et al 2012). 
Variations in amplitude of the PPG signal have been used to obtain respiratory information 
(Johansson and Oberg 1999), and both heart and respiratory rates were extracted by meth-
ods based on empirical mode decomposition (Garde et al 2013), and based on correntropy 
spectral density (Garde et al 2014). There have been proposed other methods for obtaining 
respiratory rate based on the respiration-related amplitude and frequency modulations (AM 
and FM, respectively) in PPG signal (Chon et al 2009). Also, pulse width variability (PWV) 
have been proposed for deriving respiratory rate, either alone or in combination with other 
methods such as pulse amplitude variability (PAV) and PRV (Lázaro et al 2013). A time-
frequency-coherence-based combination of PWV, PAV and PRV have been also proposed 
(Peláez-Coca et al 2013).

Smartphone devices can record PPG signals based on light emitted by flash and received 
by a camera (Jonathan and Leahy 2010, Grimaldi et al 2011). Smartphones are interest-
ing devices in ambulatory scenarios due to significant advancements in the computational 
power which enables complex signal processing algorithms to be performed in real time. 
Certainly, built-in wireless communications feature of the smartphones facilitates ease 
of data transfer. These features make smartphones very valuable as ‘take-anywhere’ and 
easy-to-use physiological monitors (Scully et al 2012). Obtaining respiratory rates from 
smartphone devices would represent a simple and automated way for assisting hospital 
clinical staff who are currently trained to measure it by counting the number of breaths 
in a 15 or 30 s window (Pimentel et al 2014), making the process cumbersome and user-
dependent. Other potential applications may include anxiety, fatigue or stress monitoring 
at home as respiratory rate is known to change in different anxiety/fatigue/stress situa-
tions (Marcora et al 2008, Niccolai et al 2009, Lackner et al 2011, Martinez et al 2015), 
especially if respiratory rate information is combined with other physiological information 
accessible in the PPG signal, such as pulse rate and its variability (Gil et al 2010) or blood 
pressure (Shaltis et al 2006).

It should be noted that, however, smartphone-camera-acquired-PPG (SCPPG) signal is 
more vulnerable to ambient-light interferences and variations in finger pressure over the sen-
sor, making them in general noisier than the standard pulse oximeter sensor. Furthermore, 
their sampling rate is lower. Thus, deriving physiological information from SCPPG signals 
remains a more challenging situation than deriving it from conventional PPG signals, and the 
performance of known methods which have been tested with conventional PPG signals must 
be tested also with SCPPG signals.

In this paper, some PPG-based methods for deriving respiratory rate are studied with 
SCPPG signals. Concretely, the methods based on PRV, PAV, and PWV presented in (Lázaro 
et al 2013) are adapted to SCPPG signals. Furthermore, these methods are also combined 
with the AM- and FM-based methods presented in (Chon et al 2009). To the best of our 
knowledge, the PRV, PAV, and PWV-based methods have never been applied to SCPPG sig-
nals. In contrast, the AM- and FM-based methods have been tested with SCPPG signals in 
previous works (Scully et al 2012, Nam et al 2014). However, AM- and FM-based methods 
were neither combined with each other, nor with other methods. Note that a preliminary 
stage of the study described in this paper has been previously presented as a short confer-
ence paper (Lázaro et al 2014c). The present study is more comprehensive and new data 
are presented in this paper, including the study of several smartphone models with differ-
ent hardware and form factor, which is relevant from the point of view of SCPPG signal 
acquisition.
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2. Materials and methods

2.1. Data and signal preprocessing

We collected SCPPG data from 30 healthy subjects (22 men and eight women, between 20 and 
26 years old) during controlled respiration experiments. Subjects were instructed to breathe 
at a constant rate according to a timed beeping sound, while sitting on a chair and placing the 
right index finger on the camera lens of the analyzed device. The data were collected for respi-
ratory rates ranging from 0.2 to 0.6 Hz at an increment of 0.1 Hz, recording a total of 2 min of 
SCPPG signal for each subject, respiratory rate and device.

The SCPPG signals were recorded with 3 different smartphone devices: iPhone 4S, iPod 5,  
and HTC One M8. The signals were extracted from average of 50  ×  50 pixel region of the 
green video signal at each frame. The reason for using only the green band is that there is high 
absorption by hemoglobin in the green range, and it has been demonstrated to give a stronger 
cardiac pulse signal than the red or blue bands during remote PPG imaging (Verkruysse et al 
2008, Maeda et al 2011, Scully et al 2012, Matsumura et al 2014).

The sampling rate of SCPPG signals is variable due to internal processing load (Lee et al 
2012), and it depends on the measuring device. The SCPPG signals were interpolated to a 
constant sampling rate of fS  =100 Hz by using cubic splines. Furthermore, SCPPG signals 
are obtained as inverted PPG signals (Grimaldi et al 2011). Thus, the signals were inverted by 
multiplying by  −1 to be used for further processing.

Next, the data were divided into 60 s-length data segments that were shifted every 10 s.  
A length of 60 s ensure at least 9 breaths of the lowest frequency eligible as respiratory rate 
in this work, which is 0.15 Hz. The baseline contamination was removed with a high-pass 
filter with a cutoff frequency of 0.3 Hz, and high frequency noise was considerably attenuated 
by a low-pass filter with a cutoff frequency of 35 Hz. Subsequently, the artifacts were auto-
matically detected and removed by an algorithm based on Hjorth parameters described in (Gil  
et al 2008). Segments with 30% or more of the time containing artifactual signal were discarded.

2.2. Pulse-to-pulse methods

2.2.1. Significant points detection. SCPPG pulses apex points nAi were detected by an auto-
matic PPG pulse detector based on a low-pass-differentiator filter and a time-varying thresh-
old (Lázaro et al 2014b). Then, baseline point of the ith SCPPG pulse nBi was defined as the 
minimum previous to nAi:

{ ( )} [   ]= ∈ −n x n n n f nargmin ,      0.3 , ,
n

B A S Ai i i (1)

where x(n) denotes the SCPPG signal.
Another significant point of SCPPG pulses is the middle point nMi. It is defined as the point 

where x(n) has reached half of the maximum pulse amplitude, as shown in equation (2). These 
nMi were taken as fiducial points for deriving the pulse rate, because they are located at the 
upslopes of the SCPPG pulses which represent a very abrupt zone of x(n), so their location is 
robust against noise (Lázaro et al 2014b).

( )
( ) ( )

[   ]= −
+

∈
⎧
⎨
⎩

⎫
⎬
⎭

n x n
x n x n

n n nargmin
2

,      , .
n

M
A B

B Ai
i i

i i (2)

The SCPPG pulses width was measured by adapting the algorithm presented in (Lázaro et al 
2013) for conventional PPG signals, based on pulse boundaries detection. Each pulse has two 
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boundaries: the onset nOi  and the end nEi. They are detected by using a low-pass filtered first 
derivative of x(n):

( ) ( ) ( )= − −′x n x n x n 1 ,LP LP (3)

where ( )x nLP  is the low-pass filtered version of x(n), using a cutoff frequency of f c which was 
set to 2 Hz as shown in section 3.1.

The maximum upslope point nUi is defined as:

{ ( )} [   ]= ∈ −′n x n n n f nargmax ,    0.4 , .
n

U A S Ai i i (4)

Note that the interval for searching nUi is larger than in (Lázaro et al 2013), where its length 
was 300 ms. This is done because SCPPG signals are reflected-light-based signals so their 
pulses are smoother and larger than those in transmitted-light-based PPG signals. Similarly, 
the interval in which the search for pulse wave onset nOi is also larger:

{ }( ) ( ) [ ]η= − ∈ = −′ ′n x n x n n n f nargmin ,   Ω 0.4 ,   ,
n

O U O A S Ui i i i i (5)

where ( )η ′x nUi  represents a pulse-to-pulse varying threshold dependent on maximum upslope 
value of each pulse wave. The value of parameter η was set to 0.5 as shown in section 3.1.

Detection of pulse waves ends nEi was performed in a similar way as nOi but using maxi-
mum downslope nDi instead of nUi and [ ]= +n n f Ω ,   0.4E D A Si i i  instead of  ΩOi.

2.2.2. Derived respiration signals. Three derived respiration (DR) signals were calculated by 
using pulse-to-pulse methods: PRV, PAV, and PWV. The DR signal based on PRV is obtained 
through the inverse interval function (Sörnmo and Laguna 2005):

( ) ( )∑ δ=
−

−
−

d n f
n n

n n
1

,u

i
PRV S

N N
A

i i

i

1

 (6)

where superscript ‘u’ denotes that the signal is unevenly sampled, and nNi are the arrival times 
of normal sinus pulses, which are determined from nMi after removing ectopic and miss-
detected pulses using the method proposed in (Mateo and Laguna 2003).

On the other hand, the PAV- and PWV-based DR signals are defined as:

( ) [ ( ) ( )] ( )∑ δ= − −d n x n x n n nu

i
PAV A B Ai i i (7)

( ) [ ] ( )∑ δ= − −d n
f

n n n n
1

.u

i
PWV

S
E O Ai i i (8)

A median absolute deviation (MAD)-based outlier rejection rule described in (Bailón et al 
2006a), and a 4 Hz evenly sampled version of each DR signal by cubic spline interpola-
tion were applied. Then, these evenly sampled signals were filtered with a band-pass filter 
(0.15–0.7 Hz). The resulting signals are denoted without the superscript ‘u’, e.g. ( )d nPWV  is 
the outlier-rejected, evenly sampled, band-pass filtered version of ( )d nu

PWV .
Figure 1 illustrates these pulse-to-pulse derived respiration signals.

2.3. Non-pulse-to-pulse methods

Amplitude and frequency modulation sequences, ( )d nAM  and ( )d nFM  respectively, were 
extracted from SCPPG signal as described in (Chon et al 2009). The amplitude and frequency 
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modulation sequences are extracted from a time-frequency (TF) spectrum obtained by the 
variable frequency complex demodulation (VFCDM) method (Wang et al 2006). The method 
for obtaining the VFCDM-based time-frequency spectrum can be divided into 2 steps: esti-
mation of the dominant frequencies by fixed frequency complex demodulation (FFCDM), 
and subsequently applying VFCDM selecting only those dominant frequencies in order to 
improve the time-frequency resolution.

2.3.1. Fixed frequency complex demodulation. Let x(t) be a narrow-band oscillation:

( ) ( ) ( ) ( ( ))π φ= + +x t x t A t f t tcos 2 ,DC 0 (9)

where f0 is the center frequency, A(t) is the instantaneous amplitude, φ(t) is the phase and 
( )x tDC  is the dc component.
A(t) and φ(t) can be extracted for a given f0 from x(t) by shifting f0 to zero frequency mul-

tiplying it by π−e j f t2 0 :

( ) ( ) ( ) ( )( ) ( ( ))= + +π φ π φ− − − +z t x t
A t A t

e
2

e
2

e .j f t j t j f t t
DC

2 40 0 (10)

Then, the middle term of (10) can be obtained from z(t), by applying a low-pass filter with a 
cutoff-frequency lower than f0:

( ) ( ) ( )= φ−z t
A t

2
e ,j t

LP (11)

from which A(t) and φ(t) can be obtained as:

( ) ( )=A t z t2 LP (12)

( ) ( ( ))
( ( ))

φ = −
⎛
⎝
⎜

⎞
⎠
⎟t

z t

z t
tan

Im

Re
.1 LP

LP
 (13)

2.3.2. Variable frequency complex demodulation. Consider now that the modulating fre-
quency varies as a function of time, ( )f t0 . equation (9) can be rewritten as:

( ) ( ) ( ) ( ) ( )∫ π τ τ φ= + +⎜ ⎟
⎛
⎝

⎞
⎠x t x t A t f tcos 2 d

t

DC
0

0 (14)

The frequency shift in (10) can be performed this time by multiplying x(t) by ( )∫ π τ τ−e j f2 d
t

0 0  
obtaining:

Figure 1. Pulse-to-pulse based derived respiration signals.
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( ) ( ) ( ) ( )( ) ( ) ( ) ( )∫ ∫= + +π τ τ φ π τ τ φ− − − +⎜ ⎟
⎛
⎝

⎞
⎠z t x t

A t A t
e

2
e

2
e ,j f j t j f t

DC
2 d 4 d

t t

0
0 0

0 (15)

from which the middle term can be obtained similarly to the FFCDM case, i.e. by using a low-
pass filter with a cut-off frequency lower than ( )f t0 . Note that the expression of this term is the 
same than in the FFCDM case in (11) and thus, A(t) and φ(t) can be obtained in the same way 
(see equations (12) and (13)). Then, the instantaneous frequency can be obtained as:

( ) ( ) ( )
π
φ

= +f t f t
t

t

1

2

d

d
.0 (16)

In this way, a time-frequency spectrum can be obtained by first applying FFCDM using a set 
of frequencies:

( )( )= − =ω
ω

⎛

⎝
⎜

⎞

⎠
⎟f k f k

f

f
1 2 ,            1, 2, int

2
.0

max
k (17)

where ωf2  is the bandwidth between successive center frequencies and fmax denotes the highest 
signal frequency.

The dominating frequencies ( )f tk  can be obtained from (16), and ( )A tk  can be obtained 
from (12). Subsequently, ( )f tk  were used as central frequencies for applying VFCDM refining 
the time-frequency resolution.

Parameter ωf  was set to 0.6 Hz. Further details are given in (Chon et al 2009).

2.3.3. Derived respiration signals. Once the VFCDM-based TF spectrum ( )S n f,VFCDM  is 
computed, ( )d nFM  is determined by extracting the frequency component that has the largest 
amplitude for each time point at the heart rate frequency band, since heart rate is considered 
the carrier wave:

( ) { ( )}=
∈Ω

d n S n fargmax , ,
f

FM VFCDM
HR

 (18)

where ΩHR denotes the frequency band in which heart rate is expected. This band is defined by 
using the spectrum of the SCPPG signal S fSCPPG( ):

= ∈f S f fargmax ,       0.5Hz,  2Hz
f

HR SCPPG{ ( )} [ ] (19)

= − +f fΩ 0.2Hz,   0.3Hz .HR HR HR[ ] (20)

A similar procedure is used for extracting the amplitude modulation:

( ) { ( )}= ∈Ωd n S n f fmax , ,     .
f

AM VFCDM HR (21)

The values for parameters in these non-pulse-to-pulse methods were studied in previous 
works (Chon et al 2009, Scully et al 2012). The same processing applied to pulse-to-pulse-
methods-based DR signals (section 2.2.2) was applied also to ( )d nFM  and ( )d nAM , i.e. a 4 Hz 
cubic spline interpolation followed by a band-pass filter (0.15–0.7 Hz). Figure 2 shows an 
example of DR signals studied in this paper.

2.4. Respiratory rate estimation

The respiratory rate is estimated from DR signals by an adaptation of the algorithm presented 
in (Lázaro et al 2013). It can combine information from several DR signals increasing the 
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robustness of the estimation. The algorithm can be divided in two phases: power spectrum 
density (PSD) estimation, and respiratory rate estimation.

First, the PSD of the jth DR signal ( )S fj  was estimated by applying a modified periodogram 
using a Hamming window. Then, the respiratory rate �f  is the frequency at where the absolute 
maximum of the PSD is located, within the studied band [0.15, 0.7 Hz]. Figure 3 shows an 
example of normalized PSDs of DR signals studied in this paper.

Because �f  is being estimated from more than one DR signals, their PSDs are ‘peaked-
condition averaged’; only those S fj( ) which are sufficiently peaked take part in the averaging. 

Figure 2. Example of derived respiration (DR) signals studied in this paper: ( )d nPRV  
(a), ( )d nPAV  (b), ( )d nPWV  (c), ( )d nFM  (d), and ( )d nAM  (e). In this example, the subject was 
asked to maintain a respiratory rate of 0.4 Hz.
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signals studied in this paper: ( )d nPRV , ( )d nPAV  and ( )d nPWV  (a), and ( )d nFM  and ( )d nAM  
(b). In this example, the subject was asked to maintain a respiratory rate of 0.4 Hz.
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In this paper, ‘peaked’ denotes that a certain percentage (ξ) of PSD must be contained in an 
interval around its highest peak. In mathematical terms, ‘peakness’ of a PSD is defined as:

( )

( )

( )

( )

∫

∫
=

−

+

P

S f f

S f f

d

d

,j
f j

f j

j

j

0.05Hz

0.05Hz

0.15Hz

0.7Hz
p

p

 (22)

where f jp ( ) denotes the highest peak within the studied band [0.15, 0.7 Hz] in the PSD of the 
jth DR signal.

In order to select those spectra that are sufficiently ‘peaked’, two different criteria were 
established: χA and χB. On the one hand, χA lets those spectra whose ‘peakness’ is greater 
than a fixed value take part in the average as shown in equation (14). On the other hand, χB 
compares the spectra of different DR signals, letting those spectra more peaked take part in the 
average, although all of them have passed the χB criterion as shown in equation (15).

⎧
⎨
⎩

χ
ξ

=
P1,   

0,   otherwisej
jA ⩾

 (23)

⎪

⎪
⎧
⎨
⎩

χ
λ

=
−P P1,    max

0,   otherwise
.j

j
j

jB
⩾ { }

 (24)

Then, the ‘peak-conditioned’ average is computed as:

( ) ( )∑ χ χ=S f S f .
j

j j j
A B

 (25)

Finally, �f  is estimated as the frequency at which the absolute maximum of ( )S f  is located 
within the studied band [0.15, 0.7 Hz]:

{ ( )}
[ ]

� =
∈

f S fargmax .
f 0.15, 0.7

 (26)

Respiratory rate was estimated from each one of the five DR signals separately, and from two 
combinations:

 • CPRV,PAV,PWV: ( )d nPRV , ( )d nPAV  and ( )d nPWV

 • CALL: ( )d nPRV , ( )d nPAV , ( )d nPWV , ( )d nAM  and ( )d nFM

3. Results

3.1. Pulse width parameters optimization

Optimal values for f c and η parameters of pulse width measurement algorithm were obtained 
using a similar procedure to that used in (Lázaro et al 2013). Respiratory rate estimates from 

( )d nPWV  were computed for all the 323 possible combinations corresponding to η  ∈  [0, 0.8] 
with a step of 0.05, and f c  ∈  [1, 10] Hz with a step of 0.5 Hz. The relative error of estimated 
respiratory rate was obtained as:

�
=

−
×e

f f

f
100,R

R

R

 (27)
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where fR denotes the rate at which subject is requested to breathe.
Then, the values that minimized the mean of absolute value of eR were obtained and chosen 

as optimal. These values were the same for the 3 studied devices: η  =  0.5 and f c  =  2 Hz.

3.2. Respiratory rate estimation

The percentage of 60 s-length fragments excluded by the artifact criterion described in sec-
tion 2.1 is shown in table 1. Note that aliasing problems may affect pulse-to-pulse methods, 
since respiratory information is obtained only at pulse occurrence. For this reason, fragments 
associated to a respiratory rate higher than the half mean pulse rate were excluded from the 
study. The percentage of fragments excluded by this criterion is also shown in table 1.

Relative error eR was obtained for each studied DR signal and combination as defined in 
equation (27). Medians and interquartile ranges (IQR) obtained for eR from different DR sig-
nals and combinations, for each fR and device, are shown in table 2, and figure 4 shows them 
in a boxplot for a graphical visualization.

Furthermore, Kruskal-Wallis and the Bonferroni t test were used for analysis of differences 
of eR for the different methods. The non-parametric Kruskal-Wallis statistical test was cho-
sen because it was observed that eR is not normal distributed, and the Bonferroni correction 
was applied in order to control the familywise error rate because multiple comparisons were 
performed. Table 3 shows those methods for which significant differences ( p-value  <  0.05) 
were observed.

4. Discussion

In this paper, two methods for deriving respiratory rate from SCPPG signals are presented. 
One of them combines information from pulse-to-pulse methods PRV, PAV and PWV, which 
were previously studied with conventional pulse oximeter PPG signals (Lázaro et al 2013). 
The other method presented in this paper uses the pulse-to-pulse methods in combination with 
non-pulse-to-pulse methods presented in (Chon et al 2009).

Deriving information from SCPPG signals is one challenging issue, since their low sam-
pling rate and the ambient-light noise considerably affect their quality. In order to deal with 
this issue, an artifact detector (Gil et al 2008) was used to automatically exclude the artifactual 
fragments, which represents up to a 22.13% of the total fragments (HTC at fR  =  0.5 Hz).

The metronome frequency was used as reference for respiratory rate because a respiratory 
signal was not available when data were collected for the iPod 5 and HTC One M8 experi-
ments. However, a respiratory signal from a respiration belt was available for 10 subjects in 
the iPhone 4S experiments and according to it, subjects breathed at the metronome respiratory 

Table 1. Percentage of fragments excluded from the study due to the artifact and 
aliasing criteria.

fR (Hz)

iPhone 4S iPod 5 HTC One M8

Artifact Aliasing Artifact Aliasing Artifact Aliasing

0.2 15.38% 0.00% 8.47% 0.00% 20.98% 0.00%
0.3 17.51% 0.00% 9.63% 0.00% 19.52% 0.00%
0.4 16.36% 0.00% 6.95% 0.00% 18.10% 0.00%
0.5 14.03% 1.36% 4.79% 6.38% 22.13% 0.00%
0.6 14.09% 24.55% 7.53% 35.48% 8.57% 15.71%
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rate with an error of 0.12/1.01 mHz (median/interquartile range) which is accurate enough to 
consider the metronome frequency as a reference.

A high-pass filter with a cut-off frequency of 0.3 Hz was applied to SCPPG signals in order 
to significantly attenuate the baseline. Although in some situations respiration is below 0.3 
Hz, this filter does not attenuate the respiration-induced variations in the amplitude of SCPPG 
signal exploited by some of the studied methods (PAV and AM). On one hand, PAV is based 
on pulse amplitude with respect to the baseline (see equation (7)). In this way, the information 

Table 2. Obtained medians and interquartile ranges (IQR) for eR from different derived 
respiration signals and combinations, for each fR and device.

fR
(Hz) DR Signal/Combination

iPhone 4S iPod 5 HTC One M8

Median IQR Median IQR Median IQR

0.2 dFM(n) 0.10% 2.44% 0.10% 0.00% 0.10% 2.44%
dAM(n) 0.10% 2.44% 0.10% 4.88% 0.10% 4.88%
dPRV(n) 0.10% 1.95% 0.10% 1.46% 0.10% 0.98%
dPAV(n) 0.10% 2.93% 0.10% 3.05% 1.07% 15.87%
dPWV(n) 0.10% 1.46% 0.10% 1.46% 0.10% 1.46%
CPRV.PAV.PWV −0.39% 1.46% −0.39% 0.98% −0.39% 0.98%
CALL −0.39% 1.10% −0.39% 0.98% −0.39% 0.98%

0.3 dFM(n) 0.91% 1.63% −0.72% 1.63% 0.91% 18.31%
dAM(n) −0.72% 3.66% −0.72% 2.03% −0.72% 3.26%
dPRV(n) −0.07% 0.98% −0.07% 1.06% −0.07% 1.38%
dPAV(n) −0.07% 1.95% −0.39% 1.38% −0.39% 2.36%
dPWV(n) 0.10% 0.98% −0.07% 0.65% −0.39% 1.63%
CPRV,PAV,PWV 0.91% 0.65% −0.07% 0.98% −0.07% 0.73%
CALL −0.07% 0.65% −0.07% 0.98% −0.07% 0.98%

0.4 dFM(n) 0.10% 4.88% 0.10% 1.22% 0.10% 10.99%
dAM(n) −2.34% 41.50% −1.12% 36.62% −1.12% 34.18%
dPRV(n) −0.15% 1.22% −0.15% 1.22% 0.10% 2.20%
dPAV(n) −0.15% 3.17% −0.39% 24.66% −0.63% 15.38%
dPWV(n) −0.15% 1.46% −0.15% 1.22% −0.15% 2.69%
CPRV.PAV.PWV −0.15% 0.49% −0.15% 0.73% −0.15% 1.22%
CALL −0.15% 0.73% −0.15% 0.73% −0.15% 0.98%

0.5 dFM(n) −0.39% 3.17% −0.39% 1.95% −0.39% 11.72%
dAM(n) −39.94% 55.91% −39.45% 59.57% −25.78% 56.64%
dPRV(n) −0.20% 4.64% −0.20% 1.17% −0.20% 11.91%
dPAV(n) −0.59% 44.14% −0.39% 45.90% −0.20% 26.56%
dPWV(n) −0.20% 2.29% 0.00% 1.95% −1.37% 39.06%
CPRV.PAV.PWV −0.20% 0.78% 0.00% 0.78% −0.20% 1.17%
CALL 0.00% 0.98% 0.00% 0.78% −0.20% 4.69%

0.6 dFM(n) −0.72% 50.05% 0.10% 46.39% −3.97% 44.76%
dAM(n) −49.95% 65.10% −57.28% 66.73% −37.74% 59.41%
dPRV(n) −0.47% 36.42% −0.23% 4.11% −13.90% 56.32%
dPAV(n) −2.99% 59.57% −51.66% 69.42% −31.64% 54.32%
dPWV(n) −0.39% 32.63% −0.07% 8.63% −14.71% 48.50%
CPRV,PAV,PWV −0.23% 2.40% −0.07% 3.01% −13.49% 54.57%
CALL −0.23% 2.12% −0.07% 1.99% −2.51% 37.64%
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Figure 4. Boxplots of relative error eR for the different methods, devices, and 
respiratory rates fR.

iPhone 4S iPod 5 HTC

e R
[%

]
e R

[%
]

e R
[%

]
e R

[%
]

e R
[%

]

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

−50

−50

−50

−50

−50

−50

−50

−50

−50

−50

−50

−50

−50

−50

−50f R
=

0:
2H

z
f R

=
0:

3H
z

f R
=

0:
4H

z
f R

=
0:

5H
z

f R
=

0:
6H

z

d FM
(n

)

d FM
(n

)

d FM
(n

)

dA
M
(n

)

dA
M
(n

)

dA
M
(n

)

d PR
V
(n

)

d PR
V
(n

)

d PR
V
(n

)

d PA
V
(n

)

d PA
V
(n

)

d PA
V
(n

)

d PW
V
(n

)

d PW
V
(n

)

d PW
V
(n

)

C PR
V
,P
AV

,P
W

V

C PR
V
,P
AV

,P
W

V

C PR
V
,P
AV

,P
W

V

CA
LL

CA
LL

CA
LL

Table 3. Pairs of methods for which significant differences were found in obtained eR 
for different studied devices. Obtained eR for normal range of spontaneous respiratory 
rate (0.2, 0.3 and 0.4 Hz) and for higher respiratory rates (0.5 and 0.6 Hz) were studied 
separately.

∈fR  {0.2, 0.3, 0.4} Hz ∈fR {0.5, 0.6}Hz

iPhone 4S {FM, AM}, {FM, PRV}, {FM, PAV}, 
{FM, PWV}, {FM. CPRV,PAV,PWV}, 
{FM, CALL}, {AM, PWV}

{FM, AM}, {FM, PRV}, {AM, 
PRV}, {AM, PAV}, {AM, PWV}, 
{AM, CPRV,PAV,PWV}, {AM, CALL}, 
{PRV, PAV}, {PAV, PWV}, {PAV, 
CPRV,PAV,PWV}, {PAV, CALL}

iPod 5 {FM, AM}, {FM, PAV}, {AM, 
PRV}, {AM, PAV}, {AM, PWV}, 
{AM, CPRV,PAV,PWV}, {AM. CALL}, 
{PRV, PAV}, {PAV, PWV}, {PAV, 
CPRV,PAV,PWV}, {PAV, CALL}

{FM, AM}, {FM, PAV}, {AM, 
PRV}, {AM, PAV}, {AM, PWV}, 
{AM, CPRV,PAV,PWV}, {AM, CALL} 
{PRV, PAV}, {PAV, PWV}, {PAV, 
CPRV,PAV,PWV}. {PAV, CALL}

HTC {FM, AM}, {FM, PRV}, {FM, PAV}, 
{FM, PWV}, {FM, CPRV,PAV,PWV}, 
{FM, CALL}

{FM, AM}, {FM, PAV}, {FM, 
PWV}, {AM, PRV}, {AM, 
CPRV,PAV,PWV}, {AM-CALL}
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exploited by the PAV-based method is in the upwards slope of the pulses which correspond to 
a higher frequency. On the other hand, the AM method performs an amplitude demodulation 
considering the pulse rate to be the hypothetical carrier. Thus, the lower frequency exploited 
by the AM-based method is the pulse rate minus the respiratory rate, which is over 0.3 Hz.

In general, all studied methods obtained low median (of order 0.5%) and low IQR (of order 
2.5%) of eR until reaching a given respiratory rate, which depends on the method and on the 
device, e.g. ( )d nPWV  maintain good performance in eR terms up to 0.5 Hz when using the 
iPhone 4S, and up to 0.4 Hz when using the HTC One M8. Similarly, in mathematical terms, 
no method was especially disadvantaged at higher respiratory rates. A possible reason for this 
observation is that the respiration-induced modulations on which DR signals are based (rate, 
amplitude and width) may have a less strong effect at higher respiratory rates. In the case of 
pulse rate, it is known that respiratory sinus arrhythmia (which modulates the heart rate and 
therefore the pulse rate) is reduced at high respiratory rates.

Results obtained for ( )d nPWV  were comparable to those obtained for ( )d nPRV  and better than 
for the other DR signals in general, obtaining low medians and IQR for eR with fR up to 0.4 
Hz and even 0.5 Hz when using the iPhone 4S and iPod 5 devices. Occasionally, ( )d nPWV  and 

( )d nPRV  obtained worse results (higher median/IQR for eR) than another DR signal, such as 
( )d nFM  when using the iPod 5 device with fR  =  0.2 Hz (0.10/0.00% versus  −0.10/1.46%), or 

when using the HTC One M8 device with fR  =  0.4 Hz (−0.39/11.72% versus  −0.20/11.91% 
and  −1.37/39.06%).

Both combinations CPRV,PAV,PWV and CALL obtained low median (less than 0.5%) and IQRs 
(less than 2.5%) for eR, in every case where at least one of the DR signals included in the 
combinations obtained low median and IQR for eR, and even in some cases where none of the 
DR signals obtained low median and IQR for eR. For instance, in the case of the iPhone 4S at 
fR  =  0.6 Hz, combinations obtained low median and IQR for eR although DR signals obtained 
very high IQRs for eR (up to 65.10%). Similarly, at fR  =  0.5 Hz, both combinations still 
obtained low median and IQR for eR, even though in this case ( )d nAM  and ( )d nPAV  obtained 
high IQR (55.91% and 44.14%, respectively). These observations demonstrate the advantages 
of combining information.

CALL obtained similar results to CPRV,PAV,PWV in eR terms, and significant statistical differ-
ences were not found between their associated eR, for all devices either at normal ranges of 
spontaneous respiratory rate (0.2–0.4 Hz) or higher ones (0.5–0.6 Hz). These results suggest 
that CALL offers no advantages over CPRV,PAV,PWV. A possible reason for this may be that res-
piratory information in ( )d nAM  and ( )d nFM  is mainly redundant with respiratory information 
in ( )d nPAV , ( )d nPRV  and/or ( )d nPWV . It is reasonable to believe that respiratory information in 

( )d nAM  and ( )d nPAV  is redundant to a large extent, because they are based on similar effects: 
respiration-induced amplitude modulations, of the SCPPG signal in one case, and of pulses of 
SCPPG in the other one. A similar case occurs with ( )d nFM  and ( )d nPRV . Note that statistical 
differences were found in some cases between ( )d nAM  and ( )d nPAV  (iPhone 4S at 0.5–0.6 Hz 
and iPod 5 at both 0.2–0.4 Hz and 0.5–0.6 Hz) and between ( )d nFM  and ( )d nPRV  (iPhone 4S at 
both 0.2–0.4 Hz and 0.5–0.6 Hz, and HTC One M8 at 0.2–0.4 Hz). However before interpret-
ing this observation it must be kept in mind that when a method fails in tracking respiration, 
the obtained eR, especially when errors are big, has clear tendencies, see figure 4, so statistical 
differences in eR should not be considered as an indicator of differences in the physiological 
origin of those respiratory-related modulations. When the statistical tests is repeated taking 
only those eR between  −15 and 15% (excluding outliers), no statistical differences are found 
between these methods in any device/respiratory rate condition, so corroborating results inde-
pendence with the used methodology in respiratory frequency derivation when the methods 
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are able to catch the respiration. The differences are then in the different ability to provide 
meaningful estimation.

PPG-amplitude- and rate-based derived respiration signals present low frequency modula-
tions below 0.15 Hz due to the Mayer wave related to sympathetic activity, which can be con-
sidered as noise from the point of view of deriving respiratory information. The power of these 
modulations is usually comparable or even higher than the respiration-related modulations, 
and this may confound respiratory rate estimation. Regarding the methods studied in this 
work, the low-frequency modulation affect to the AM and FM methods (Chon et al 2009) and 
to the PAV and PRV methods, but not to the PWV method according to (Lázaro et al 2013). 
For this reason, results for respiratory rates below 0.15 Hz are not provided in this work,  
in order to study if respiration-related modulations already studied in conventional PPG sig-
nals are also present in SCPPG signals, with independence of this kind of noise.

Those fragments associated with a fR higher than half mean pulse rate were excluded, 
because the pulse-to-pulse methods would track an alias in such situations. This problem 
affects high fR (0.5 and 0.6 Hz); e.g. for tracking a fR  =  0.6 Hz using pulse-to-pulse methods, 
it would be necessary to have a mean pulse rate of 1.2 Hz, i.e. 72 beats per min. However, 
a high fR with a low pulse rate does not represent a realistic physiological situation. In such 
situations when the autonomic nervous system requires a high respiratory rate, it also requires 
a high heart rate which leads to a high pulse rate, e.g. during exercise. Nevertheless, some 
medications affect autonomic nervous system and may lead to non-physiological situations 
with a high fR with a low pulse rate, e.g. beta-blockers. Furthermore, the physiological source 
of the respiration-related modulations in SCPPG signal exploited by the presented methods 
is the autonomic control over the cardiovascular system. In addition, PPG pulses morphology 
is affected by age, due to arterial stiffness. So age, arterial or autonomic nervous system dis-
eases or medications interactions could affect results. This remains one limitation of this study 
because the methods have been evaluated only with recordings from healthy young people. 
Further studies must be elaborated to assess the performance of the presented methods over 
this kind of patients.

Another limitation of this study is that the inter-device variability for the same model of 
smartphones cannot be assessed because only one device per model has been tested. Slight 
differences in flashlight or camera lens may affect results. However, the form factor and so the 
distance between flashlight and camera lens, which is the most important signal-acquisition 
difference between different smartphone models, remains the same for devices of the same 
model. Nevertheless, if different models of smartphone would be wanted to be compared 
in the task of deriving respiratory rate, further studies using several devices for each model 
should be elaborated.

5. Conclusions

Results suggest that normal ranges of spontaneous respiratory rates (0.2–0.4 Hz) can be accu-
rately estimated from smartphone-camera-acquired pulse photoplethysmographic signals 
based on pulse width variability or pulse rate variability with low eR (median on the order of 
0.5% and IQR on the order of 2.5%). The accuracy can be further improved by combining 
them with other methods such as pulse rate and amplitude variabilities, and amplitude and/or 
frequency modulations. Indeed, the combination of these methods resulted in lower eR values 
within normal ranges of spontaneous respiratory rate, but with small degradation in its perfor-
mance at higher rates (up to 0.5 Hz when using HTC One M8, and up to 0.6 Hz when using 
the iPhone 4S or iPod 5 devices).
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These promising results suggest that accurate normal ranges of respiratory rates can be 
obtained from general people using only smartphones without using any external sensors. 
The methods could be extended to other models of smartphones or tablet devices, the only 
requirement is that these smartphones and tablets contain a video camera to image a fingertip 
pressed to it. As smartphones and tablets have become common, they meet the criteria of 
ready access and acceptance. Hence, our mobile phone/tablet approach has the potential to be 
widely-accepted by the general population and can facilitate the capability to measure some 
of the vital signs using only the subject’s fingertip.
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