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Automatic Motion and Noise Artifact Detection
in Holter ECG Data Using Empirical Mode
Decomposition and Statistical Approaches
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Abstract—We present a real-time method for the detection of
motion and noise (MN) artifacts, which frequently interferes with
accurate rhythm assessment when ECG signals are collected from
Holter monitors. Our MN artifact detection approach involves two
stages. The first stage involves the use of the first-order intrinsic
mode function (F-IMF) from the empirical mode decomposition
to isolate the artifacts’ dynamics as they are largely concentrated
in the higher frequencies. The second stage of our approach uses
three statistical measures on the F-IMF time series to look for
characteristics of randomness and variability, which are hallmark
signatures of MN artifacts: the Shannon entropy, mean, and vari-
ance. We then use the receiver–operator characteristics curve on
Holter data from 15 healthy subjects to derive threshold values
associated with these statistical measures to separate between the
clean and MN artifacts’ data segments. With threshold values de-
rived from 15 training data sets, we tested our algorithms on 30
additional healthy subjects. Our results show that our algorithms
are able to detect the presence of MN artifacts with sensitivity and
specificity of 96.63% and 94.73%, respectively. In addition, when
we applied our previously developed algorithm for atrial fibrilla-
tion (AF) detection on those segments that have been labeled to be
free from MN artifacts, the specificity increased from 73.66% to
85.04% without loss of sensitivity (74.48%–74.62%) on six subjects
diagnosed with AF. Finally, the computation time was less than 0.2 s
using a MATLAB code, indicating that real-time application of the
algorithms is possible for Holter monitoring.

Index Terms—Atrial fibrillation (AF), empirical mode decom-
position (EMD), Holter recording, motion and noise (MN) artifact
detection, statistical method.

I. INTRODUCTION

W E have recently developed an algorithm for accurate
and real-time detection of atrial fibrillation (AF) that is

well- suited for continuous ECG monitoring applications [1].
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Use of ECG monitors (e.g., Holter monitors) is common in the
diagnosis and management of patients with, or at risk for, AF,
given the paroxysmal, short-lived, and frequently asymptomatic
nature of this serious arrhythmia. Monitoring for AF is impor-
tant because, despite often being paroxysmal and associated
with minimal or no symptoms, AF is associated with severe ad-
verse health consequences, including stroke, heart failure, and
death [2]. Our test of accuracy of the AF algorithm was per-
formed on noise-removed test databases, which also consisted
of Holter recordings. Certainly, motion and noise (MN) artifacts
are significant during Holter recordings and can lead to false de-
tections of AF. Clinicians have cited MN artifacts in ambulatory
monitoring devices as the most common cause of false alarms,
loss of signal, and inaccurate readings [3], [4].

Previous computational efforts have largely relied on MN arti-
fact removal, and some of the popular methods include linear fil-
tering [5], adaptive filtering [6], [7], wavelet denoising [8]–[10],
and Bayesian filtering methods [11]. One main disadvantage of
the adaptive filtering methods is that they require a reference sig-
nal, which is presumed to be correlated in some way with the MN
artifacts. For mitigating this limitation, use of accelerometers to
obtain a reference signal has resulted in some success [12],
[13]; however, this approach has not been applied to Holter
monitors. The wavelet denoising approach attempts to separate
clean and noisy wavelet coefficients, but it can be difficult to
use since it requires identification of the location of each ECG
morphology including the P and T waves [8]–[10]. Bayesian
filtering requires estimation of optimal parameters using any
variant of Kalman filtering methods: extended Kalman filter,
extended Kalman smoother, or unscented Kalman filter [11].
The main disadvantage of the Bayesian filtering approach is the
improper assumption that noise has an additive Gaussian prob-
ability density function. Further, the method requires R-peak
locations for each cycle of ECG data.

While the aforementioned signal processing approaches have
been applied, they are not appropriate, and consequently MN
artifacts remain a key obstacle to the accurate detection of AF
and atrial flutter, which is an equally problematic arrhythmia.
A novel method to separate clean ECG portions from segments
with MN artifacts in real time is urgently needed for more ac-
curate diagnosis and treatment of clinically important atrial ar-
rhythmias. For our paper, the aim is to detect the presence of
MN artifacts; for Holter applications, there are a sufficient num-
ber of clean segments in each recording that MN-contaminated
segments can be discarded, thereby increasing the specificity
of AF identification. Moreover, our AF detection algorithm is
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Fig. 1. F-IMF based on clean and noisy ECG signal. (a) Clean ECG signal. (b) F-IMF of the clean signal. (c) Noisy ECG signal. (d) F-IMF of the noisy signal.

based on irregular RR interval dynamics that require accurate
identification of R-wave peaks. However, previously developed
algorithms involving filtering or signal reconstruction methods
are all inappropriate for our application as we need to be cer-
tain that the precise timing of the RR interval duration is at-
tained. Reconstruction of ECG waveform algorithms involves
estimation procedures, and filtering algorithms may distort the
location of R-wave peaks; thus, these algorithms distort RR in-
terval duration calculations and consequently lead to incorrect
classification of the presence or absence of AF.

Our MN detection algorithm involves two stages. The first
stage of the algorithm involves the use of empirical mode de-
composition (EMD) [14] to isolate HF components of the signal
under the assumption that they contain most of the MN artifacts’
dynamics. The second stage involves calculation of statistical
approaches on the high-pass-filtered signal from the first stage
to look for signatures of randomness associated with MN arti-
facts, and the methods utilized include Shannon entropy, mean,
and variance values. Specifically, we use the first mode of in-
trinsic mode function (F-IMF) of the EMD, as the F-IMF of
the clean ECG segments have periodic patterns, whereas the
MN-artifact-corrupted ECG segments have highly varying ir-
regular dynamics with lower magnitudes. We then obtain an
F-IMF threshold value for the separation between clean and
MN-corrupted data, derived from 15 healthy subjects with 24-h
Holter recordings. With the derived threshold values, we tested
the efficacy of the algorithms on 30 different healthy subjects. In
addition, we applied the algorithm for AF detection on Holter
data from six subjects diagnosed with AF and seven subjects
without AF, which were all provided by the Scottcare Corpora-
tion, Cleveland, OH.

II. METHOD

A. MN Artifact Detection

1) Algorithm Description: Our approach to separate clean
and noise-corrupted ECG segments starts with EMD. EMD is
defined by a process called sifting, and it decomposes any data
into a set of IMF components, which become the basis functions
for representing the data [14]. It is well known that the IMF
basis functions provide a physically meaningful representation

of the underlying processes in many applications [15]–[19]. For
our MN artifact detection, we only use a subset of the EMD
algorithm, i.e., only the portion of the EMD algorithm that
determines the first IMF (F-IMF) is used. Specifically, given a
signal x(t), the F-IMF is found via the EMD by the following
procedure.

1) Identify all extrema of x(t).
2) Interpolate between minima (respectively, maxima) by us-

ing a cubic spline and ending up with some envelope
emin (t) (respectively, emax (t)).

3) Compute the mean m(t) = (emin (t) + emax (t))/2.
4) Subtract from the signal: d(t) = x(t) − m(t).
5) Replace x(t) with d(t) and iterate the aforementioned steps

until d(t) becomes a zero-mean process. After stopping the
iteration, d(t) is the F-IMF.

It was shown that the dynamics of the F-IMF of the EMD
are as though they have been passed through a high-pass filter
(HPF) [20]. Hence, it is not surprising that the F-IMF contains
dynamics associated with noise for any well-sampled data [21].

The previous statement remains valid for the ECG signal
corrupted by MN artifact, i.e., we observe a high-pass filtered
signal [see Fig. 1(d)] that has the characteristics of noise dynam-
ics. To illustrate the presence of noise in ECG signal using the
F-IMF, we show 5 s of clean and noisy ECG segments from a
Holter recording, and the F-IMFs are shown in Fig. 1. The ECG
segments were recorded by ScottCare’s RZ153 series recorders
sampled at 180 Hz with a 10-bit resolution. One segment shown
in Fig. 1(a) is noise free without any subject movement, while
the other segment shown in Fig. 1(c) is measured with MN ar-
tifacts. Fig. 1(b) represents the F-IMF of the clean signal and
Fig. 1(d) represents the F-IMF of the noisy signal. It can be
seen that the F-IMF of the clean ECG segment has periodic
patterns, whereas the MN-artifact-corrupted ECG segment has
highly varying irregular dynamics of a lower magnitude than
the noise-free ECG signal.

After obtaining F-IMF, we square it since it has both negative
and positive values, and then normalize it to a unit value. Note
that as the ECG signal amplitudes are different among subjects,
who also may have different lead configurations and sensor
amplifications, we normalized the squared F-IMF to a unit value.
Fig. 2 shows representative squared F-IMF of the clean [see
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Fig. 2. Squared-IMF based on clean and noisy ECG signal. (a) Clean ECG segment. (b) Noisy ECG segment.

Fig. 3. Simplified algorithm for MN artifact detection in an ECG segment by
using EMD and three statistical techniques.

Fig. 1(a)] and noisy signals [see (Fig. 1(b)]. As shown in Fig. 2,
the peak amplitudes of the clean signal [see Fig. 2(a)] are an
order of magnitude higher than those of the MN-corrupted signal
[see Fig. 2(b)], indicating that a threshold value can be derived
to separate between the two types of signals.

With a normalized squared IMF, we determine the optimum
low noise level threshold (LNLT) value and define it as THLNLT .
For each THLNLT value starting from 0 to 1 at an increment
of 0.05, we investigate the following three statistical indices:
Shannon entropy to characterize randomness, a mean value to
quantify LNLT level, and variance to quantify variability. If all
values of Shannon entropy, mean, and variance are higher than
threshold values of THent , THmean , and THvar , we declare the
segment to be a noise-corrupted segment. The overall algorithm
is summarized in Fig. 3. Once THLNLT and the thresholds for
maximum sensitivity and specificity are determined for each of
the three statistical values (THent , THmean , and THvar) using
the receiver–operator characteristic curve analysis on the data,
as described in Section II-B, no further heuristic tuning for the
threshold values is required. We also investigated the optimum
segment length (Lseg ) for maximum sensitivity and specificity
along with computational complexity.

B. Data Acquisition I: Data Collection and Determination of
Optimal Threshold Values

We collected 5-lead ECG Holter recordings (Scottcare Corpo-
ration) from 15 healthy subjects. Data were acquired at 180 Hz

with 10-bit resolution for 24 h. None of the subjects had clini-
cally apparent cardiovascular disease. The 15 healthy subjects
comprised 8 females and 7 males of age 31.7 ± 3.4 years.
During Holter recording, each subject was asked to perform
routine daily activities. Among the acquired data, we collected
144 10-s noisy segments, where R-peaks were not clearly rec-
ognizable due to MN artifacts. Along with the noisy segments,
we collected 144 10-s clean segments, where RR intervals were
clearly discernible. Note that the decision to deem a segment
noise corrupted or clean was based on the criterion of whether
or not the R-peaks of the ECG waveforms were recognizable to
the eye.

For the selection of the optimal threshold set consisting of
THLNLT , THent , THmean , and THvar , we searched every pos-
sible combination among the 4-D vectors with the following
interval increments:

1) THLNLT varied from 0 to 1 at intervals of 0.05;
2) THent varied from 0 to 1 at intervals of 0.0001;
3) THmean varied from 0 to 1 at intervals of 0.0001;
4) THrmssd varied from 0 to 0.01 at intervals of 0.00001.
The optimal threshold was determined according to a combi-

nation of the four threshold values that provided the best accu-
racy. The accuracy was calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

where TP, TN, FP and FN are true positives, true negatives, false
positives, and false negatives, respectively. With the data length,
Lseg = 5 s, we found the accuracy of 0.9688, and the sensitivity
and specificity values of 0.9549 and 0.9792, respectively.

1) Optimal Data Length and Computational Time: To deter-
mine the optimum data length Lseg for MN artifacts detection,
we repeated the aforementioned procedure with a segment size
varying from 1 to 10 s at an increment of 1 s. Based on each
Lseg (1–10 s), we obtained the optimal parameters (e.g., 10 sets
of threshold sets) and plotted the accuracy according to Lseg ,
as shown in Fig. 4(a). The accuracy increased when Lseg in-
creased, but the rate of increase declined when Lseg was equal
to or greater than 5 s. In addition, as shown in Fig. 4(b), the
computation time for a clean segment linearly increased with
the length of data segments. However, the computation time
for noisy segments dramatically increased especially when the
segment length exceeded 6 s, as shown in Fig. 4(c). Taking
into account the computational complexity, we chose the op-
timum Lseg = 5 s. Note that the computational time was ob-
tained by MATLAB 2010a on 2.66 GHz Intel Core2 processor.
Table I summarizes the final optimal threshold parameters and
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Fig. 4. Effects of segment length: (a) accuracy, (b) computation time with clean segment, and (c) computation time with noisy segment. Whiskers (blue) above
and below represent the 90th and the 10th percentiles, respectively, and circle (red) represents median values.

TABLE I
OPTIMUM PARAMETERS WITH Lseg = 5

the corresponding sensitivity, specificity, and accuracy, where
sensitivity and specificity were calculated as follows:

Sensitivity =
TP

TP + FN
(2)

Specificity =
TN

TN + FP
. (3)

2) Comparison of Our Approach to an HPF: In order to
evaluate our algorithm, we compared its performance against
a standard HPF. For the HPF, the whole procedure is the same
as detailed previously, but we used a squared high-pass-filtered
signal instead of the squared F-IMF. We investigated the HPF
signal with different cutoff frequencies ranging from 1 to 89 Hz
since the data were acquired at 180 Hz. We examined these
various fcut values since the best cutoff frequency to eliminate
noise is not known a priori. Fig. 5 shows a comparison of the
accuracy values [as defined in (3)] for HPF and EMD. We have
normalized the highest frequency of 89–0.4944 Hz. As shown
in Fig. 5, the accuracy values change as a function of cutoff
frequency for the HPF approach. Note that the accuracy can be
as low as ∼0.45 and as high as 0.94, depending on the choice of
the cutoff frequency for the HPF, whereas the accuracy for the
EMD has a constant value of 0.97 for all frequencies.

C. Data Acquisition II: Algorithm Verification

In order to verify our algorithm and the threshold values de-
rived from the data, as described in Section II-B, we collected
ECG Holter recordings from 30 apparently healthy subjects.
All data recordings were collected using ScottCare RZ153 se-
ries recorders, and acquired at the sampling rate of 180 Hz with
10-bit resolution for 3 min. The verification sample comprised
15 men and 15 women, with a mean age of 24 ± 3.1 years. None
of the verification study sample had clinically apparent cardio-
vascular disease. During the Holter recording, each subject was
asked to stand without any movement for the first 1 min. For the
next 1 min, each one was asked to jog. For the last 1 min, each

Fig. 5. Accuracy comparison between EMD and HPF with different cutoff
frequencies.

one was asked to tap the electrodes attached to their body. Thus,
the last 2 min ECG segments were corrupted by MN artifact,
while the first 1 min segment was free of noise on the Holter
recording. Each data set was categorized into “clean,” “jogging,”
and “tapping,” and then tested for MN artifact detection using a
MATLAB implementation of our algorithm.

D. Data Acquisition III: AF Detection

In order to investigate the efficacy of our algorithm using
the threshold values derived from the data, as described in
Section II-B, we applied the MN artifact algorithms on Holter
data from 13 subjects. Six of the thirteen participants had AF,
whereas seven participants were in normal sinus rhythm during
ECG assessment. These data are from a database provided by
Scottcare Corporation. All data were collected using ScottCare
RZ153 series recorders with a sampling rate of 180 Hz with 10-
bit resolution. Duration of monitoring was 10 min and 24 h for
participants in normal sinus rhythm and AF, respectively. The
goal of using our MN artifact detection algorithm is to determine
how much more accurately the AF detection can be achieved if
we do not use those segments that have been identified to contain
MN artifacts. In addition, we are also interested in examining



LEE et al.: AUTOMATIC MOTION AND NOISE ARTIFACT DETECTION IN HOLTER ECG DATA 1503

TABLE II
TP, TN, FP, AND FN BEFORE AND AFTER MN ARTIFACT ELIMINATION BASED ON SEVEN NON-AF SUBJECT DATA SETS

if the MN artifact detection algorithm inadvertently eliminates
those segments that have been labeled correctly to contain AF.

The procedure first starts by examining if a data segment
contains MN artifacts or not. If the tested segment is corrupted
with MN artifacts, then we move on until a segment is found
to be free of MN artifacts and subsequently perform our AF
detection algorithm, which has been shown to provide accurate
AF detection [1].

III. RESULTS

A. Algorithm Verification With Additional Data

Based on additional ECG data from the 30 healthy subjects
described in Section II-C, we classified a segment’s detection
result into one of four possible categories, as given below.

1) True negative (TN) = segment detected as “clean” and
true annotation is “static. ”

2) True “jogging” positive (TP) = segment detected as
“noisy” and true annotation is “jogging” or “tapping.”

3) False negative (FN) = segment detected as “noisy” and
true annotation is “static.”

4) False “jogging” positive (FP) = segment detected as
“clean” and true annotation is “jogging” or ‘tapping.”

We found the sensitivity, specificity, and accuracy to be
0.9663, 0.9473, and 0.9536, respectively. For HPF, the best
values of sensitivity, specificity, and accuracy were found to be
0.9447, 0.9451 and 0.9450, respectively, when fcut = 12 Hz
(normalized frequency of 0.07 Hz).

B. Non-AF Subject Data Result

Table II shows TPs, TNs, FPs, and FNs of AF detection before
and after MN artifact elimination on seven non-AF subjects, as
described in Section II-D. Note that data do not include any AF
beats; thus, TPs and FNs are zero, and hence, the sensitivity
value is not applicable. For subject I, an incorrect AF detection
was reported 172 times out of 745 RR intervals, but with our
MN artifact algorithm, it was determined that 69.30% of the
segments were declared to be contaminated by MN artifacts.

Thus, when these MN artifact segments were not analyzed by
our AF algorithm, there was no FP detection of AF. Similarly,
for subjects II–VII, all FP AF detection rates were reduced to
zero because they were due to MN artifacts and not AF. Again,
the concept is that if MN artifacts are detected in a data segment,
then AF detection is not performed, thereby reducing FPs. In
summary, inclusion of our MN artifact algorithm increased the
specificity from 87% to 100%. For comparison, we applied HPF
and found the best specificity of 95.92% when fcut = 10 Hz
(normalized frequency of 0.06 Hz) as it determined a TN of 4001
and FP of 170. While this result is good, it does not favorably
compare to our MN artifact detection algorithm, which had a
specificity of 100%.

C. AF Subject Data Result

Table III shows TPs, TNs, FPs, and FNs of AF detection be-
fore and after MN artifact elimination on six AF subjects. In the
six AF subjects, TNs slightly reduced from 440082 to 409240
beats, while FPs significantly reduced from 157337 to 72018
beats; thus, specificity increased from 73.66% to 85.04%. In
addition, the number of AF beats eliminated by our MN artifact
algorithms was only 10 out of 56966 beats, which is 0.02%, and
sensitivity slightly increased from 74.48% to 74.62%. Thus, we
could increase specificity without a loss of sensitivity by using
our algorithm (accuracy of 83.61%). For HPF, we found the
highest accuracy of 79.97% with fcut = 16 Hz (normalized fre-
quency of 0.09 Hz). Using this value, sensitivity and specificity
were 74.56% and 80.78%, respectively; TP, TN, FP, and FN
were 56679, 407140, 96847, and 19344, respectively.

IV. DISCUSSION AND CONCLUSIONS

We presented a set of algorithms for robust MN artifact de-
tection under the assumption that noise-contaminated segments
exhibit random and higher variability characteristics than their
noise-free counterparts. The method consists of the use of EMD
to isolate the noise component of the signal followed by three
statistical measures that are especially well suited to measure the
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TABLE III
TP, TN, FP, AND FN BEFORE AND AFTER MN ARTIFACT ELIMINATION BASED ON SIX AF SUBJECT DATA SETS

Fig. 6. Noise-contaminated ECG segments from a non-AF subject (top) and an AF subject (bottom).

signal’s complexity and variability: the Shannon entropy, mean,
and variance. We found that our algorithms resulted in sensi-
tivity of 0.9663 and specificity of 0.9473 based on 30 healthy
subjects.

MN artifacts are abundant in Holter recordings, and they cor-
rupt ECG data and interfere with accurate rhythm assessment.
This is especially true with respect to identification of AF, a
common and clinically- relevant cardiac arrhythmia. Thus, the
goal is to identify MN artifacts using ECG data in order to avoid
cardiac rhythm assessment using MN-corrupted data. Since au-
tomated AF detection is primarily based on RR interval dynam-

ics (e.g., regular for normal sinus rhythm (NSR) and irregular
for AF), noise contamination of ECG segments often results in
incorrect detection [1], [22]–[24]. The presence of MN artifacts
is a crucial issue for both AF clinicians and engineers [25],
[26]. In fact, when professional Holter data analysts interpret
a subject’s data, they are taught to ignore noise-contaminated
segments in order to make an accurate AF diagnosis. Thus, our
method is following the guidelines already used clinically. Fig. 6
shows noise-contaminated ECG segments from a non-AF sub-
ject (top) and an AF subject (bottom), where the segments are
captured from the HolterCare program supported by Scottcare
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Corporation. As shown in Fig. 6, all three channels show that
the ECG segments are corrupted by MN artifacts to such an
extent that the correct RR interval cannot be obtained. Espe-
cially for the segment from a non-AF subject, the RR intervals
are highly irregular and hence they could be mistaken as AF.
Thus, it is reasonable to exclude the noise-contaminated seg-
ment in order to accurately detect fibrillation. Note that while
accurate AF detection is important, it is imperative to also min-
imize FP detection of AF. Using this strategy, we demonstrated
a significant increase in the accuracy of AF detection in 13 sub-
jects. For these non-AF and AF subject pools, we increased the
specificity from 86.96% to 100% and from 73.66% to 85.04%,
respectively, without compromising the sensitivity. Further, the
use of the MN artifact detection algorithm had negligible impact
on those segments that were previously detected to contain AF
as only 0.02% of the correct AF detections were eliminated.
Should our algorithm be validated in larger cohorts with AF?
We believe our real-time realizable methods will significantly
improve automated AF detection using continuous ECG data,
perhaps ushering in a new era of automated arrhythmia moni-
toring.

We can use our MN artifact method for many applications in
need of discrimination between clean and noise-contaminated
ECG segments. It may be possible that our MN artifact algo-
rithms can be applied to respiratory rate estimation [27]–[30]
and autonomic nervous function assessment [31] as well. In
[27]–[30], the respiratory sinus arrhythmia is associated with
RR intervals or heart rate variability. In [31], the sympathetic
and parasympathetic nervous systems were assessed from RR
intervals. Thus, incorrect RR interval detection due to MN ar-
tifacts can lead inaccurate respiratory rate and autonomic ner-
vous function assessments. Furthermore, since our algorithms
for MN artifact detection are not dependent on sensor source, the
procedure has the potential to be applicable to other vital-sign
sensors. For example, the photoplethysmogram (PPG) signal
is a prime candidate for this application. There is ongoing re-
search and clinical applications for deploying wearable vital
sign sensors, and certainly, a PPG sensor fits this initiative as
it has recently been shown to provide a wealth of vital sign
information [32]–[34].

Another advantage of our algorithms is that they are real-
time realizable. Specifically, using MATLAB version 2010a on
a 2.66 GHz Intel Core2 processor, the computational time was
0.18–0.20 s for a 5 s data segment.

A. Limitations and Future Work

One potential issue with our MN artifact detection algorithm
is that segment disconnectivity can occur when an identified
corrupted segment is not used for subsequent AF detection. To
remedy this disconnectivity, we can splice the two disconnected
segments together so that AF detection can be made. However,
this can potentially lead to misclassifications of the presence or
absence of AF especially if there are many gaps in the required
1 min data segment. To further examine this issue, we collected
10 segments, each with 10 min duration taken from 10 non-
AF subjects, and tested the AF detection algorithm by varying

disconnectivity frequency. Given each 10 min duration segment,
we eliminated 5 s of data every 10, 15, 20, 25, and 30 s, and
spliced them all together. It was found that all 10 segments with
different disconnectivity frequencies resulted in the absence of
AF. While this issue can be further examined, our preliminary
analysis reveals that splicing together only those noise-free data
segments does not result in false detection of AF.

Another limitation of our MN artifact detection algorithm
is that the segments with saturated ECG values can often be
detected as noise free. For example, ScottCare’s RZ153 series
recorders have an A/D dynamic voltage range between−2.5 and
+2.5 V. If the ECG value is greater than 2.5 V due to extreme
motion, the recorders show a constant 2.5 V. A consequence
of this saturation effect is that the LNLT becomes smaller, has
lower variability, and less randomness than the true MN arti-
facts’ LNLT, thereby leading to an incorrect determination that
the data are noise free. A simple remedy is to filter saturated
signals prior to MN artifact detection. To further improve the
MN artifact detection algorithm, probabilistic approaches such
as the Bayesian classifier, hidden Markov model, or weighting
training data (boosting algorithm) can be employed to exam-
ine if other IMF components can be included to further reduce
artifacts.
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