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Abstract—A method for assessing Granger causal relation-
ships in bivariate time series, based on nonlinear autoregres-
sive  (NAR) and nonlinear autoregressive exogenous
(NARX) models is presented. The method evaluates bilateral
interactions between two time series by quantifying the
predictability improvement (PI) of the output time series
when the dynamics associated with the input time series are
included, i.e., moving from NAR to NARX prediction. The
NARX model identification was performed by the optimal
parameter search (OPS) algorithm, and its results were
compared to the least-squares method to determine the most
appropriate method to be used for experimental data. The
statistical significance of the PI was assessed using a
surrogate data technique. The proposed method was tested
with simulation examples involving short realizations of
linear stochastic processes and nonlinear deterministic signals
in which either unidirectional or bidirectional coupling and
varying strengths of interactions were imposed. It was found
that the OPS-based NARX model was accurate and sensitive
in detecting imposed Granger causality conditions. In addi-
tion, the OPS-based NARX model was more accurate than
the least squares method. Application to the systolic blood
pressure and heart rate variability signals demonstrated the
feasibility of the method. In particular, we found a bilateral
causal relationship between the two signals as evidenced by
the significant reduction in the PI values with the NARX
model prediction compared to the NAR model prediction,
which was also confirmed by the surrogate data analysis.
Furthermore, we found significant reduction in the complex-
ity of the dynamics of the two causal pathways of the two
signals as the body position was changed from the supine to
upright. The proposed is a general method, thus, it can be
applied to a wide variety of physiological signals to better
understand causality and coupling that may be different
between normal and diseased conditions.
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INTRODUCTION

Detection and characterization of interdependence
among simultancously collected signals for coupled
systems is one of the most relevant problems in car-
diovascular pathophysiology.'” For example, under-
standing the baroreceptor dysregulation that is
implicated in cases such as syncope and orthostatic
hypotension provides the impetus for developing a
quantitative and noninvasive method for the detection
of imbalance,’ as most existing methods require inva-
sive pharmacological interventions. Full characteriza-
tion of the dynamics involved in coupled systems
requires not only accurately detecting the presence or
absence of interactions, but also identifying driver—
response relationships, so that causality information
between the two signals can be obtained. It is hoped
that such combined information may provide better
understanding of the pathophysiology involved in the
baroreceptor imbalance. The issue of detection and
quantification of bilateral interactions between vari-
ables measured from coupled systems is receiving sig-
nificant attention in the scientific literature.
Applications are ubiquitous in fields ranging from
economics'! to climatology®® and to the analysis of
biological systems, with particular emphasis on neu-
ral’® and cardiac signals. In the latter application, a
large body of work has been developed to assess cau-
sality in both cardiovascular®®?**-° and cardiore-
spiratory®>3? interactions.

Although there has been no universally accepted
definition of causality,'? it is commonly accepted that
the notion of causality of two events describes to what
extent one event is caused by the other. According to
this very general concept, different approaches have
been proposed to estimate causality in bivariate time
series. Within the framework of chaos theory, methods
deducing causality from asymmetries of nonlinear
interdependency measures have been presented.'>
However, such asymmetries can reflect differences in
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the intrinsic dynamics of the two series rather than the
actual strength of the causal interactions,’® and thus
they can provide misleading information about direc-
tionality of the coupling. Other approaches exploit
information theory to quantify bilateral interdepen-
dences according to a probabilistic notion of causality
(i.e., an event X causes another event Y if the likeli-
hood of Y occurring given X is greater than the like-
lihood of Y occurring alone). These approaches are
mostly based on the concept of transfer entropy,”” and
have found application in various fields.'> Unfortu-
nately, entropy calculations need the estimation of
probability distributions in mixed state spaces, and
therefore, require a large quantity of data, which in
turn violates the stationarity assumption of the data.
The inference of causal interactions has been investi-
gated also within the framework of phase synchroni-
zation by assessing bilateral coupling between the
phases of self-sustained interacting oscillators.>® This
method was subsequently utilized to detect cardiore-
spiratory interactions in humans.”> However, this
approach was designed for narrow-band signals with
dominant oscillations, which poses constraints on
cardiovascular signals as they exhibit largely broad-
band characteristics.*'**

An approach to analyze causality between two time
series was formalized by Granger in the context of
linear regression modeling of stochastic processes.''
According to Granger’s definition, if the prediction
error of a time series is reduced by the inclusion of
another time series in the regression model, then the
second series is said to have a causal influence on the
original time series. By reversing the roles of the two
series, causal influences in the opposite direction can be
quantified. While Granger causality was originally
proposed for linear systems,'' it has been recently ex-
tended to nonlinear time series analysis.>>'" Nonlinear
Granger causality methods are appropriate for study-
ing the complex cardiovascular and cardiorespiratory
systems, since couplings are most likely to be mani-
fested by nonlinear dynamics.”>*>*>* The main
problem with the current nonlinear Granger causality
methods is that they require long data records which
preclude their application to short-term cardiovascular
data.

In the present study, we propose a new approach
to detect the presence of coupling as well as the
causality between two signals via the use of a non-
linear autoregressive exogenous (NARX) model. The
advantage of using the NARX model instead of other
existing nonlinear methods is that our approach
provides more compact representation of the system,
as few parameters are needed to characterize the
system dynamics. In addition, the parameters provide
a physical interpretation of the dynamics of the

system, as the NARX coefficients represent the linear
and nonlinear transfer functions. Furthermore, the
NARX model is an appropriate tool to use for short
data records. One main caveat with either the linear
ARX or NARX model is the proper determination of
the model order, as the least squares-based methods
are largely dependent on the appropriate initial
selection of a model order. We overcome this com-
plication with the use of the Optimal Parameter
Search (OPS) Algorithm,'® a recently proposed
method for parameter estimation that is able to
identify and retain only the significant model
parameters despite an a priori incorrectly over-deter-
mined model order selection. The OPS has been
shown to outperform the widely utilized least squares
(LS) approach for parameter estimation in linear
ARX models,'® and in most cases is more accurate
than other algorithms.'* Moreover, it is especially
useful for NARX model identification as it is specif-
ically designed to select only the significant model
terms from the initial large pool of model coefficients
that is composed of both linear and nonlinear terms.
This allows performing nonlinear model identification
without resorting to out-of-sample prediction
schemes, which in short time series would be difficult.

As described above, the assessment of Granger’s
causality involves evaluating the reduction of predic-
tion error of a time series by the inclusion of another
time series in the regression model. To quantitatively
address the significance of reduction in the prediction
error, we used a surrogate data analysis technique.
Moreover, the use of surrogate data analysis allows us
to investigate the nature of coupling (unidirectional or
bidirectional) as well as to quantify the relative
strength of coupling.

We examined the feasibility of the proposed ap-
proach using various simulation examples designed to
exploit the full capabilities of the method, comparing it
to the standard LS method based on the use of the
Akaike Information model order criterion." The ap-
proach was then applied to heart rate and systolic
arterial pressure time series measured from healthy
humans. These signals are ideal for understanding
causality and coupling as they are known to operate
within a closed loop system.”?

METHODS

Nonlinear ARX Model Identification

Let x and y be two stationary series of N values,
considered, respectively, as input and output of a
closed-loop time-invariant nonlinear system described
as:
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where the coefficients ¢g,{a;(i); b1(j)} and {a-(i, j); b2(i,
J)); ¢ (i, j)} represent constant (zero-th order), linear
(first order), and nonlinear (second order) contribu-
tions to y(n), respectively, and ey(n) is the prediction
error. The model orders P; and P, determine the
maximum lags for linear and nonlinear autoregressive
(AR) influences, respectively, while the maximum lags
for linear and nonlinear exogenous (X) effects are
indicated by the model orders Q; and Q,.

The NARX model of Eq. (1) can be represented in
the matrix form:

y :coh1+Hya1+be1+Hyya2+Hxxb2+nycz + ey (2)

where the vector y = [y(1), ¥(2)...., »(N)]” contains all
values of the available realization of the output series,
ey = [ey(1), ey(2),..., ey(N)]T is the prediction error
series, ¢ is the zero-th order coefficient, a; and by are
the first-order vector coefficients, and a,, b,, and ¢, are
the second order vector coefficients. The matrices H,
and H, contain the P; linear AR terms and the
(@7 + 1) linear X terms, respectively:

»(0) (=1 y(1=P1)7
y(1) »(0) y(2—Py)
oo ye-2) o s-py |
rx(1)  x(0) - x(1-01)7
x(2)  x(1) - x(2-01)
Hy= x(n) x(n—1) x(n—01)
Lx(N) x(N—1) -+ x(N—0)J

The matrix Hyy contains the P>(P> + 1)/2 quadratic
AR terms given by the product between the terms of
the matrix Hy. Similarly, the matrix Hy, contains the

(0>, + 1)(Q5 + 2)/2 quadratic X terms, and the ma-
trix Hyy contains the P,(Q, + 1) cross-terms. All these
matrices, along with the constant vector h; formed by
N unitary values, constitute the observation matrix
H = [h; Hy H, H,, Hy\ H,,]. Thus:

y=Hd ey

4
4= oal b a] b <) @
The vector d of the model coefficients can be estimated
through the traditional least squares (LS) approach, by
means of the well known equation:

d= (H'H) 'H'y. (5)

However, the LS algorithm estimates all of the model
coefficients d (as determined by the initially chosen
model order), whether or not they reflect the true
dynamics of the investigated output series. The maxi-
mum model order can be determined by variants of the
Akaike information criterion (AIC),! which are
appropriate for linear ARX models.

The OPS algorithm is designed to overcome the
above limitations by means of a two step procedure,
which is described in detail in Lu ez al.'® and thus, is only
briefly summarized here. First, the linearly independent
vectors are selected from the observation matrix H.
Being H; the i-th column of H, linear independence
between the first two vectors H; and H, is tested. That is,
H, isused to fit H, by the least squares method and, if the
residual of the fit is larger than a preset threshold (in this
study, 0.001, assuming normalized data in which the
threshold is related to the variance of the data), then H,
is considered to be independent from H;. If not, H, is
discarded, the third vector Hj is selected, and the pro-
cedure is repeated. Once a vector H; is determined to be
linearly independent from Hy, it is added to the set of
independent vectors that will be used to estimate the
linear interdependence of H,;;. This procedure is
repeated until all the independent vectors are selected
to form a new observation matrix containing only the
linearly independent vectors:

WZ[W]WZ‘“WR] (6)

where R is the maximum number of selected linearly
independent vectors.

The second step of the OPS is to retain only the sig-
nificant model terms among the pool W of independent
candidate vectors. To this end, the output vector is
projected onto the set of linearly independent vectors:

y=W0 +e, (7)
where @ = [O(1), O(2)...., O(R)]” is the vector of the

expansion coefficients. The least squares solution of
Eq. (7) is:
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6 = (W'W) 'Wy. 8)

The vectors of W are rearranged in descending order
according to the value of their projection distance,
which is defined as:

1 N
C,:N;(’D(r)wr(n), r=1,...,R (9)

Finally, only the terms that reduce the error value
significantly, that is, the vectors w; = [wi(1), w,(2),...,
wi{N)]” for which the projection distance C; is large,
are retained. Thus, the final model identification is
performed (Eq. 8) after eliminating from the observa-
tion matrix W the vectors associated with the lower
projection distances.

In the present study, an automatic criterion for the
determination of the number of significant candidate
vectors was adopted. It was based on retaining the first
k vectors having associated cumulative projection dis-
tances larger than 95% of the sum of all projection
distances, i.e., S5, C, > 095 % C,. This way, the
OPS algorithm provides only the & most significant
model coefficients, despite an incorrectly over-deter-
mined initial model order selection. This feature also
allows the method to identify any possible missing
model terms that may be present in the signal.

Estimation of Nonlinear Causality

In this section, we show how the definition of
Granger causality'' can be applied to NARX models
by comparing the degrees of predictability yielded by
NAR and NARX models. One approach to determine
the degree of predictability is to examine the mean-
squared prediction error (MSPE) of the fitted model:

N

MSPEY =530 =50 (10
n=1

To bound the MSPE between 0, which corresponds to

a fully predictable series, and 1, corresponding to a

fully unpredictable series, the index of Eq. (10) is

divided by the variance of the output series, obtaining

the normalized MSPE, termed, NMSPE}.

The prediction of the output series y can be per-
formed either by means of a pure NAR model, forcing
0, =0,=0 in Eq. (1), or by a NARX model
Q7 # 0, O, # 0). Accordingly, the output series is
predicted only from its own past for a NAR model,
yielding the prediction error NMSPEy|y, or from both
its own past and the past and present of the input series
for a NARX model, yielding the prediction error
NMSPEy|x,y. Thus, causality from the input to the
output series can be quantified by calculating the

absolute or relative predictability improvement (PI)
obtained by the NARX model compared to the NAR
model prediction:

Ply|x = NMSPEy|y — NMSPEy|x,y,

PI 11
NPIy|x = _ Phlx (11)
NMSPEYy|y

Similarly, causality from y to x can be investigated
by reversing the input—output roles of the two series
and calculating the absolute and normalized PI, i.e.,
Plx|y and NPIx|y, resulting from the inclusion of y
samples in the prediction of x.

Finally, the relative strength of the causal interac-
tions from x to y and from y to x is quantified by the
directionality index:

_ NPIy|x — NPIx|y
¥ NPIy|x + NPIx|y

(12)

With this definition, D,, ranges from -1 to 1. A neg-
ative value implies that the direction of causality is
from y to x, whereas a positive value indicates that
causality is from x to y. A value of zero indicates
balanced bilateral interactions between x and y.

Surrogate Data Analysis

In order to test the statistical level of significance of
the proposed causality measures, we use a surrogate
data technique. The purpose is to establish if the
reduction in the prediction error of the output series y
is made statistically significant by the inclusion of the
input series x (i.e., comparison between NAR and
NARX prediction). To accomplish this, surrogate data
are generated in which the individual spectral proper-
ties of the series are maintained while influences of the
input series on the output series are destroyed. The
NMSPE yielded by NARX prediction of the surrogate
data is used as a discriminating statistic to test whether
the predictability improvement evaluated for the out-
put series is statistically significant, in accordance with
the null hypothesis of absence of any correlation
between the two series.

Starting from the original series x and y, N, pairs of
surrogate series are generated as follows. For the i-th
surrogate pair, the output series y is left unchanged,
while a surrogate of the input series x, x;, is generated
using the iteratively refined amplitude adjusted Fourier
transform (IAAFT) surrogate data technique.*® This
method maintains an excellent approximation of both
the power spectrum and the amplitude distribution of
the original series. After IAAFT surrogate data are
generated, NARX model prediction is performed for
the original x and y series, yielding the error NMS-
PEy|x,y, and for the N pairs of surrogate series,
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yielding the errors NMSPEy|xy,y, i = 1,....N,. The
prediction errors derived from the original and surro-
gate data are compared and, if NMSPEy|x,y is lower
than the threshold given by the 100-x-percentile of
the NMSPEy|x,,y distribution (where o is the pre-
scribed significance level), the null hypothesis is
rejected and the measured PI is considered statistically
significant. A nonparametric test based on percentiles
is preferred in order to account for possible deviations,
from Gaussian behavior of the surrogate NSMPE
distribution.

SIMULATED SIGNALS

The proposed approach was validated using simu-
lation examples designed to reproduce different types
of interactions between bivariate time series with short
data lengths. We considered both linear stochastic
processes and nonlinear deterministic signals, and the
degree of interaction was varied to obtain uncoupled,
unidirectionally coupled, and bidirectionally coupled
dynamics.

For simulations involving linear dynamics, ARX
model identification was performed both by the OPS
algorithm and the LS approach with the AIC as the
model selection criterion (with the same number of
model coefficients), in order to compare the perfor-
mance of the two approaches in identifying causality.
For nonlinear dynamics, NARX models were identi-
fied by means of the OPS algorithm to assess the ability
of the proposed approach to detect causal relationships
in the presence of complex dynamics. In all simula-
tions, the length of the simulated series was set to
N = 300 points. The maximum linear model orders
were set to Py = Q; = 12, and the maximum non-
linear model orders were set to P, = Q, = 0 for linear
simulations and to P, = @, = 5 for nonlinear simu-
lations. The significance of the causality indices was
assessed by generating N, = 100 surrogate pairs for
each pair of the original series, and by setting the
statistical significance level at the value « = 0.05.

Linear Unidirectional Coupling

In the first simulation, we considered unidirection-
ally coupled AR processes:’

x(n) = V2px(n — 1) — p*x(n — 2) + wy(n)
y(n) = V2plex(n—1) + (1 — ¢)y(n — 1)] (13)
— p?y(n =2) + w,(n)

where p is the modulus of the complex conjugate poles
of the AR process (set to 0.8), and w, and w, are
independent Gaussian white noise signals with zero

mean and unit variance (GWN(0,1)). The coupling
factor ¢, which determines the strength of the unidi-
rectional interaction from x to y, was varied from 0 to
1, at an increment of 0.1.

Figure 1 shows the results of the OPS and LS based
on 100 realizations of Eq. (13). For ¢ = 0, the distri-
butions of NMSPEyly and NMSPEy|x,y are sub-
stantially superimposed (panels a and b), and the
corresponding normalized PI, NPIy|x, is close to zero
(panels e and f), correctly indicating the uncoupling of
the two series. Increasing the causal coupling strength ¢
from 0.1 to 1 resulted in progressive improvement in
the predictability of the ARX identification as com-
pared to AR identification, as noted by the larger
difference between NMSPEy|y and NMSPEYy|x,y
(panels a and b) as well as by the increasing values of
NPIy|x (panels e and f). In contrast, no PI was
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FIGURE 1. Causal analysis of linear unidirectionally coupled
signals. (a, b) Normalized mean squared prediction errors
(NMSPE) obtained by linear AR prediction (filled symbols) and
linear ARX prediction (empty symbols) of the series y and;
(c, d) of the series x, generated by the simulation of Eq. (13);
(e, f) Normalized predictability improvements (NPlylx, circles;
NPIxly, squares) and directionality index (D, triangles) esti-
mated for the same series. All indices are plotted as a function
of the imposed degree c of unidirectional interaction from x to
y, and are expressed as mean + SD over 100 realizations of
the simulation. Indices were calculated after using the OPS
(a, ¢, e) and the LS (b, d, f) algorithms to perform model
identification.
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detected, for any value of ¢, in the direction from x to y
(panels c¢—f). Consequently, the directionality index
shifted progressively towards 1, indicating unidirec-
tional coupling. While both OPS and LS correctly
detected the unidirectional coupling, results for the
OPS are more stable as we observe lower variances (see
Fig. le vs. Fig. 1f).

For the series y, the average number over the 100
simulation trials of significant AR model terms in AR
identification, and of significant AR and X model terms
in ARX identification, was 2.6, 3.5, 2.0 with ¢ = 0, and
4.3,2.3, 3.7 with ¢ = 1 for the OPS algorithm; 2.4, 2.2,
1.2 with ¢ = 0, and 4.1, 1.8, 3.7 with ¢ = 1 for the LS
algorithm. The same numbers for the series x were 2.6,
3.7,2.0(OPS)and 2.4,2.2, 1.3 (LS) with ¢ = 0, and 2.6,
4.4,2.0(OPS)and2.1,2.3, 1.3 (LS) with¢ = 1

With surrogate data analysis, the PI was statistically
significant in only 4 out of 100 realizations for the OPS
and in 11 out of 100 realizations for the LS with ¢ = 0.
When ¢ = 0.1, the PI was significant in 42 out of 100
realizations for the OPS and in 83 out of 100 realiza-
tions for the LS. Both methods indicated significance
for all realizations for all values of ¢ greater than or
equal to 0.2.

Linear Bidirectional Coupling

In the second simulation, bidirectionally coupled
AR processes’ were generated by:

x(n) = V2pleay(n = 1) + (1 = c2)x(n = 1)]
— px(n —2) + wyln)

y(n) = V2plerx(n = 1) + (1 = e)y(n = 1)]
— p*y(n—2) 4+ wy(n)

with w, and w, = GWN(0, 1) and p = 0.8. The two
coupling factors ¢; and ¢, represent the degrees of
coupling from x to y and from y to x, respectively. The
value of ¢, was varied from 0 to 1 while ¢; was constant
with a value of 1, in order to reproduce coupling
conditions varying from unidirectional coupling from
xtoy (¢ = 1, ¢, = 0) to bilateral balanced coupling
(C] = C = 1)

The results obtained by the OPS and LSQ algo-
rithms, expressed as a function of the coupling factor
¢, over 100 realizations of the simulation, are shown in
Fig. 2. The unidirectional coupling (¢; = 1, ¢; = 0)
was correctly detected, as evidenced by the significant
reduction in the predictability of the series y (Fig. 2a,
b) and the non-significant reduction for x (Fig. 2c, d),
which consequently resulted in the directionality value
being very close to 1 (Fig.2e, f). Increasing the
coupling from y to x towards the state of balanced
interactions resulted in a progressive increase of the PI
estimated for the series x, while the predictability of y
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FIGURE 2. Causal analysis of linear bidirectionally coupled
signals. (a, b) Normalized mean squared prediction errors
(NMSPE) obtained by linear AR prediction (filled symbols) and
linear ARX prediction (empty symbols) of the series y and; (c,
d) of the series x, generated by the simulation of Eq. (14); (e, f)
Normalized predictability improvements (NPlylx, circles;
NPIxly, squares) and directionality index (D, triangles) esti-
mated for the same series. All indices are plotted as a function
of the imposed degree ¢, of interaction from y to x with con-
stant degree of interaction from x to y (¢; =1), and are
expressed as mean = SD over 100 realizations of the simula-
tion. Indices were calculated after using the OPS (a, c, e) and
the LS (b, d, f) algorithms to perform model identification.

remained almost constant. As a consequence, direc-
tionality decreased from 1 to 0, correctly indicating a
shift from unidirectional to bidirectional coupling. As
in the previous simulation, the OPS provided more
consistent results than did the LS, as evidenced by the
lower dispersion of the causality indices around their
mean value (Fig. 2e, f).

For the series y, the average number over the 100
simulation trials of significant AR model terms in AR
identification, and of significant AR and X model
terms in ARX identification, was, respectively, 4.2, 2.2,
3.4 with ¢, = 0, and 4.4, 2.6, 3.8 with ¢, = 1 for the
OPS algorithm; 4.0, 1.8, 2.0 with ¢, = 0, and 4.0, 2.0,
1.3 with ¢, = 1 for the LA algorithm. The same
numbers for the series x were 2.4, 4.4, 1.7 (OPS) and
2.1, 2.3, 1.1 (LS) with ¢, = 0, and 4.6, 2.8, 2.9 (OPS)
and 4.1, 2.1, 1.3 (LS) with ¢, = 1.
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According to the surrogate data analysis, the ARX
model prediction yielded NMSPEy|x,y values that
were significant in 4, 38, and 78 out of 100 realizations
for the OPS and 7, 55, and 98 out of 100 realizations
for the LS with ¢, = 0, 0.1, and 0.2, respectively. They
were all significant for both methods when ¢, was
higher than 0.3. The prediction error, NMSPEy|y,x,
was below the IAAFT surrogate threshold in all real-
izations and for all ¢, values.

Linear Coupling with Long Memory

To assess the performance of the OPS and LS
algorithms in the presence of interactions with long
memory, we considered the following bivariate
process:

x(n) = V2px(n— 1) — p>x(n — 2) + wy(n)
y(n) =—1.1y(n—1) +0.45p(n — 3) — 1.22x(n)
+0.64x(n — 2) + c[0.4x(n — 4) + 1.5x(n — 6)]
(15)

where x is an AR process with pole modulus p = 0.8,
and y is an ARX process in which the long memory of
the X model terms (modeled by the terms x(n — 4) and
x(n — 6)) was tuned by the factor c.

Results obtained over 100 realizations of Eq. (15)
and expressed as a function of ¢ are summarized in
Fig. 3. With an ARX model identification based on the
OPS, the series y was fully predictable as noted by the
null values of NMSPEy|x (Fig. 3a). The same situa-
tion was observed for the ARX model prediction of the
series x (NMSPEXx|y is always null, Fig. 3c). This result
is explained by the presence of instantaneous causality
between the two series (i.e., both x(n) and y(n) are
present in Eq. 15). As a consequence, the two PIs have
unit values and the bilateral interactions are equal as
the directionality index (Fig. 3¢) had a value of zero. In
contrast, the LS identification was not able to repro-
duce the above-mentioned behaviors in the presence of
significantly long memory effects from x to y. Indeed,
the ARX prediction of y (Fig. 3b) and x (Fig. 3d)
yielded increasing errors when the coupling factor ¢
was increased. In addition, an erroneous indication of
reduction in causality and of unbalancing between the
two dynamics was suggested by the progressive
decrease of the NPI indices and the directionality index
(Fig. 3f).

The number of model terms selected by OPS and LS
algorithms was substantially unvaried at changing the
parameter ¢. The averages over 100 simulations and
over all ¢ values for the series y were: 6.7 AR terms
(AR identification), 2 AR terms and 4 X terms (ARX
identification) with the OPS; 6.5 AR terms (AR iden-
tification), 1.9 AR terms and 3.6 X terms (ARX
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FIGURE 3. Causal analysis of linear coupling with long
memory. (a, b) Normalized mean squared prediction errors
(NMSPE) obtained by linear AR prediction (filled symbols) and
linear ARX prediction (empty symbols) of the series y and; (c,
d) of the series x, generated by the simulation of Eq. (15); (e, f)
Normalized predictability improvements (NPlylx, circles;
NPIxly, squares) and directionality index (D, triangles) esti-
mated for the same series. All indices are plotted as a function
of the coupling factor ¢, and are expressed as mean = SD over
100 realizations of the simulation. Indices were calculated
after using the OPS (a, c, e) and the LS (b, d, f) algorithms to
perform model identification.

identification) with the LS. The same numbers for the
series x were 2.5, 3, 3 with the OPS and 2.2, 1.8, 3 with
the LS. Note that ARX identification performed with
the OPS always returned the exact number of coeffi-
cients according to Eq. (15).

Surrogate data analysis indicated the significance of
the PIs for all realizations for the OPS, while the PI of
y was often not significant when estimated by the LS
method for high values of ¢ (NMSPEy|y,x was sig-
nificant in 70 and 50 out of 100 realizations with
¢=09and ¢ = 1).

Nonlinear Unidirectional Coupling

As an example of unidirectional nonlinear interac-
tion, we consider the following coupled non-identical
Henon maps:34
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x(n) = 1.4 —x*(n— 1) +0.3x(n — 2)
ym)=1d—[ex(n—1)+ 1 —=c)y(n—Dy(n—-1)
+0.1y(n—2)

(16)

where ¢ denotes the degree of coupling from x to y.
The values chosen for the parameters as well as the
initial conditions resulted in Henon maps operating in
a chaotic regime.

Figure 4 shows the results of the causality analysis
performed by NARX model prediction with the OPS,
with the coupling ¢ varying in the range {0, 0.05, 0.1,
0.2,..., 1}. For each ¢ > 0, the NARX model’s MSPE
decreased with respect to NAR model prediction
(Fig. 4a). The decrease was statistically significant,
according to surrogate data analysis, for ¢ = 0.05,
0.1,..., 1. Accordingly, the normalized predictability
NPIy|x had a unit value (Fig. 4c). For ¢ = 0, the
difference between NMSPEy|y and NMSPEy|x,y, and
thus the index NPIy|x, was not statistically significant.
The PI of x was always zero (Fig. 4b, ¢), and was not
statistically significant. Accordingly, the directionality
index was not defined for ¢ = 0, reflecting the
uncoupling between the two dynamics. For all other
values of ¢ the method correctly detected the imposed
unidirectional interactions.

The OPS algorithm returned the exact number and
value of the coefficients in all coupling conditions, ex-
cept for AR identification of the series y when ¢ > 0. In
this case the model selected a number of linear AR
terms variable from 3 to 5, and of nonlinear AR terms
variable from 3 to 9, depending on the coupling ¢, thus
explaining the high NMSPE of the AR prediction of y
(see Fig. 4a). In all other cases, the OPS detected ex-
actly 1 linear AR term equal to 0.1, 1 nonlinear AR
term equal to ¢ — 1 and 1 cross term equal to —c for the
series y, and 1 linear AR term equal to 0.3 and 1
nonlinear AR term equal to —1 for the series x (for
both AR and ARX identification), as well as the
constant term equal to 1.4.

Nonlinear Bidirectional Coupling

For the final simulation, we consider bidirectionally
coupled Henon maps:'°

x(n) = 1.4 — x*(n— 1) +0.3x(n — 2)
+o[¥P(n—1) =y (n-1)]

y(n) =14 —1y*(n—1)+0.3y(n—2)
+o[pn—1)—x*(n—1)]

(17)

where ¢; and ¢, represent the coupling strengths from y
to x and from x to y, respectively. These two coupling
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FIGURE 4. Causal analysis of nonlinear unidirectionally
coupled signals. (a, b) Normalized mean squared prediction
errors (NMSPE) obtained by nonlinear AR prediction (filled
symbols) and nonlinear ARX prediction (empty symbols) of
the series y and of the series x generated by the simulation of
Eq. (16); (c) Normalized predictability improvements (NPlylx,
circles; NPIxly, squares) and directionality index (D, triangles)
estimated for the same series. All indices are plotted as a
function of the imposed degree c of unidirectional interaction
from x to y.

strengths were varied from 0 to 0.33, at an increment of
0.05. Values higher than 0.33 resulted in identical
synchronization® which cannot provide information
about causality. The NARX predictability in each
direction was tested for statistical significance by the
surrogate data approach. For the results that were
found not to be statistically significant, the corre-
sponding PI index was set to zero so that a clear
graphical representation of the results can be demon-
strated. Similarly, the directionality index was set to
zero when both PI indices were not statistically
significant.
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FIGURE 5. Causal analysis of nonlinear bidirectionally coupled signals. Values of the predictability improvement for the series y
(Plylx) and x (PIxly), as well as their difference (Plylx — Plxly) and the directionality index (D,,) are represented according to the
indicated color scales, as a function of the coupling strengths ¢; and ¢, of Eq. (17).

Figure 5 depicts the results of the causality analysis
as a function of the coupling strengths in the two
directions, ¢; and ¢,. When the coupling from x to y
was absent, the PI for the series y was always not
statistically significant, as documented by the hori-
zontal blue line present in the graph of Ply|x for
¢> = 0. The same situation was observed for the PI of
x when ¢; = 0 (vertical blue line in the plot of Plx|y).
Accordingly, the directionality index D,, had a low
negative and high positive values, respectively. When
significant coupling was imposed in the two causal
directions (i.e., ¢; > 0 and ¢, > 0), the PI indices suc-
cessfully detected the coupling strength in both direc-
tions. Indeed, for ¢; < 0.1 and ¢, > 0.2 causality was
detected more from x to y than vice versa (i.c.,
Ply|x > PIx|y). A similar result, but in the opposite
direction, was found for ¢; > 0.2 and ¢, <0.1 (i.e.,

Plx|y > PlIy|x). The difference between the two Pls, as
well as the directionality D,,, reflected the asymmetry
in the coupling degree between the two dynamics (see
Fig. 5). Note the large areas with no PI in both
directions (blue color), corresponding to zero direc-
tionality (green) that occurred when strong synchro-
nization was present, which consequently eliminates
causality.

For all combinations of the imposed coupling
strengths, ARX prediction of the two series returned
exactly the number and values of the coefficients as in
Eq. (17). On the contrary, AR prediction of one of the
two series was accurate only when the coupling
strength in the corresponding equation was set to zero,
while nonzero coupling strengths yielded a larger
number of AR terms thus increasing in the prediction
error of the series.
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APPLICATION TO CARDIOVASCULAR DATA

Subjects and Experimental Protocol

The study population consisted of 15 young healthy
subjects (25 + 3 years old). The surface ECG (lead II)
and the noninvasive arterial pressure signals (Finapres)
were acquired with subjects in sinus rhythm during
spontaneous breathing. The experimental protocol
consisted of 15 min of data collection in the resting
supine position followed by another 15 min with sub-
jects in the upright position using a motorized tilt table
at 60° body position. Subjects were given 10 min of
acclimatizing for each body position before data were
collected.

After digitization of the continuous signals with a
1 kHz sampling rate and 12 bit precision, the beat-to-
beat series of the cardiac cycle length (RR interval) and
of the systolic arterial pressure (SAP) were determined
as the temporal interval between two consecutive R
peaks in the ECG and as the local maximum of the
arterial pressure wave within each detected cardiac
cycle, respectively. After removing artifacts and slow
trends, two stationary segments of 300 points were
selected for each subject, one in the supine and one in
the upright position.

Data Analysis

For each selected data segment, the RR and SAP
series were normalized by subtracting the mean and
dividing by the standard deviation, thus obtaining the
dimensionless series r(n) and s(n), n = 1,..., 300. To
assess causality between the two cardiovascular series,
model identification was performed by comparing the
degree of predictability obtained by the NAR model
and also by the NARX model. Nonlinear model
identification and model order optimization were per-
formed via the OPS algorithm, setting the maximum
linear and nonlinear model orders to P = Q; = 12
and P, = Q, = 5, respectively. Moreover, linear AR
and ARX model identification (OPS with maximum
model orders Py = Q; = 12 and P, = Q, = 0) were
also performed to provide a comparison between linear
and nonlinear approaches on cardiovascular data.

Causality from SAP to RR interval was assessed by
setting x = s and y = rin Eq. (1), while the opposite
(x = rand y = s) was set to study causal interactions
from RR interval to SAP. In the latter case, the s series
was one-beat delayed before model identification to
properly account for the non-immediate effects from
RR interval to SAP. The causality analysis should
yield improvements in the predictability of RR inter-
vals given SAP, via the index NPIr|s, and of SAP given
RR intervals, via NPIs|r. The resulting directionality
index Dy, will be positive when the feedback interac-

tions from SAP to RR are dominant, and negative
when feedforward effects from RR to SAP are domi-
nant. The significance of the prediction errors obtained
by ARX prediction of the two series (NMSPEr|s,r and
NMSPEs|s,r) was assessed by the 100 surrogate series
and the statistical significance was evaluated at the
threshold of « = 0.05.

Results

Results of NARX model prediction for a represen-
tative subject in the supine position and after head-up
tilt are shown in Figs. 6 and 7, respectively. At rest, the
NAR predictability was better for the SAP series than
for the RR interval series (NMSPEs|s < NMSPEr|r).
For both series, NARX model prediction led to a
statistically significant reduction in the prediction error
(i.e., NMSPEr|s,r and NMSPEs|s,r were below 5% of
the distribution of their surrogate counterparts). Tilt
position (Fig. 7) resulted in a marked reduction of
NMSPEr|r that became slightly lower than NMS-
PEs|s. The improvements in predictability with the
NARX model prediction for the tilt position, while
less marked than in the supine position, were still
statistically significant.

Figure 8§ summarizes the results of the causality
analysis of the 15 subjects. In the supine position, the
SAP (first two bars in panel b) was significantly more
predictable than the RR interval (first two bars in
panel a), as evidenced by the lower NMSPE with both
NAR and NARX model predictions. After tilt, the
predictability of the RR interval improved signifi-
cantly. There was a tendency of the predictability of
the SAP to be increased when the body position was
changed from supine to tilt, although not significant.
According to Fig. 8c, at rest the normalized PI was
significantly higher in the direction from RR interval
to SAP than in the reverse direction. This unbalancing
was also confirmed by the negative values of the
directionality index (Dy = —0.262 + 0.398, mean +
SD over 15 subjects). The tilt position resulted in a
significant increase of the PI in the feedback direction:
from SAP to RR interval, while the normalized PI
value relating RR interval to SAP did not change with
alteration in the body position. The directionality in-
dex shifted towards zero (D, = 0.036 £ 0.296,
p < 0.05 vs. supine, t-test for paired data), thus pro-
viding more supporting evidence for causality in the
feedback direction. The analysis performed by linear
AR and ARX models yielded similar results, with
values of the estimated NMSPE that were always
slightly higher than those obtained with nonlinear
model identification. The statistical differences shown
in Fig. 8 were confirmed also with the linear approach,
with the only exception that the increase of NPIr|s
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FIGURE 6. Causal analysis of the cardiovascular interac-
tions for a subject in the supine position. (a, b) RR interval and
systolic arterial pressure (SAP) variability series; (c) Normal-
ized mean squared prediction error (NMSPE) obtained by
nonlinear AR prediction (NMSPErir and NMSPEsls, circles)
and by nonlinear ARX prediction (NMSPErls,r and NMS-
PEsls,r, squares) for the RR intervals (filled symbols) and for
the SAP (empty symbols). The distributions of NMSPE yielded
by ARX prediction on 100 surrogate series are also repre-
sented as 5-th percentile, median and 95-th percentile.

from the supine to the upright position was docu-
mented but was not statistically significant.

The number of linear model terms selected for the
RR interval series by the OPS during NAR identifi-
cation decreased significantly from supine (4.0 + 1.7,
mean + SD) to upright (2.6 £+ 1.2) position, while the
number of nonlinear terms remained unaltered
(7.3 £ 2.5vs. 7.1 £ 2.5). For the SAP series, no sig-
nificant changes were observed (supine: linear AR
terms = 3.7 £ 2.4, nonlinear AR terms = 7.4 £+ 1.8;
upright: linear AR terms = 3.0 = 0.9, nonlinear AR
terms = 7.8 £+ 1.8). As regards NARX identification,
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FIGURE 7. Causal analysis of the cardiovascular interac-
tions for the same subject of Fig. 6, performed in the upright
position. (a, b) RR interval and systolic arterial pressure (SAP)
variability series; (c) Normalized mean squared prediction
error (NMSPE) obtained by nonlinear AR prediction (NMSPErir
and NMSPEsls, circles) and by nonlinear ARX prediction
(NMSPEris,r and NMSPEsis,r, squares) for the RR intervals
(filled symbols) and for the SAP (empty symbols). The distri-
butions of NMSPE yielded by ARX prediction on 100 surrogate
series are also represented as 5-th percentile, median and
95-th percentile.

the number of model terms did not vary significantly
from the supine (RR interval: linear terms = 4.9 +
2.7, nonlinear terms = 29.0 + 7.0; SAP: linear
terms = 4.5 £ 2.6, nonlinear terms = 26.5 £+ 8.5)
to the upright position (RR interval: linear terms =
3.9 + 3.1, nonlinear terms = 24.3 + 8.3; SAP: linear
terms = 6.3 £ 2.6, nonlinear terms = 24.3 £+ 5.9).
However, significant differences were found looking at
the number of X terms, that decreased significantly
during prediction of the RR series (linear X terms =
3.3 £ 2.3 (supine), 1.8 £ 2.5 (upright); nonlinear X
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FIGURE 8. Causal analysis of the cardiovascular interac-
tions for the 15 subjects. (a) Normalized mean squared pre-
diction error (NMSPE) of the RR interval and; (b) systolic
arterial pressure (SAP) series (NMSPEr and NMSPEs) ob-
tained by nonlinear AR prediction (black bars) and by non-
linear ARX prediction (white bars); (c) Normalized
predictability improvement of RR intervals given SAP (NPIrls,
black bars) and of SAP given RR intervals (NPIslIr, white bars).
All indices are expressed as mean (bar) + SD (error bars) over
the 15 subjects in the supine and upright positions. Student #-
test for paired data: *p<0.05, **p<0.01, supine vs. upright;
#1<0.01, RR vs. SAP; 5p<0.01, NPIrls vs. NPIslr.

terms = 12.9 £ 2.5 (supine), 8.5 = 4.0 (upright)),
and increased significantly during prediction of the
SAP series (linear X terms = 0.9 + 1.0 (supine),
2.9 = 1.7 (upright); nonlinear X terms = 5.5 £ 5.0
(supine), 10.0 £ 3.6 (upright)). It is worth noting that
the identification of a considerable number of nonlin-
ear model terms could not be directly associated to the
presence of nonlinear dynamics underlying RR and
SAP series, as for stochastic time series NARX models
tend to fit the dynamics using also nonlinear terms.

The surrogate data approach applied to the car-
diovascular series measured in the supine position
revealed that the PI of SAP given RR intervals was
statistically significant in all subjects, while the PI of
RR intervals given SAP was not significant in 3 out of
15 subjects. After tilt, the PI was significant in all
subjects for the RR intervals, and in all but one subject
for the SAP series.

DISCUSSION AND CONCLUSIONS

In this paper we proposed a NARX model identi-
fication approach to assess nonlinear Granger causal-
ity in short bivariate time series. With the proposed
approach, the PI resulting from moving from NAR to
NARX models was taken as a measure of causal
interaction from the input to the output series. The
application of the OPS-based NARX model in com-
bination with a surrogate data procedure enabled sta-
tistical determination of the strength of the causal
interactions between bivariate time series.

The core of the proposed approach is the identifi-
cation of the NARX model that was based on the
recently proposed OPS algorithm.'® The salient feature
of the OPS algorithm is its accuracy in reflecting only
the model coefficients pertaining to the dynamics of the
system despite overdetermined initial model order
selection. This feature consequently leads to better
performance over the other model order selection cri-
teria."*! Note that both AIC' and minimum descrip-
tion length®' model order selection criteria are mainly
designed for linear model identification, and they only
have the capability to provide the maximum model
order of the system. Thus, their accuracy suffers when
there are missing model terms (e.g., systems with long
delays). The benefits of the OPS-based NARX algo-
rithm were clearly demonstrated with simulation
examples involving short data records. Such benefits
were particularly evident in deterministic simulations
where noise did not contaminate the dynamics (e.g.,
Eq. 15), as also demonstrated by the comparison be-
tween the numbers of significant model terms selected
by the OPS and the AIC. Moreover, even for linear
simulations with noise included in the generation of the
dynamics (Eqs. 13 and 14) the OPS resulted more
stable than the AIC, even though both identification
techniques selected a similar number of significant
model terms and thus yielded comparable prediction
errors.

Other nonlinear approaches to assessing Granger
causality have been proposed.”>'® However, most of
these methods require a large amount of data in order
to provide reliable causality indices, which is an obvi-
ous limitation for short-term cardiovascular variability
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applications. In our study, the reliability of the results
with the proposed method was apparent even with
short data records, as the simulation examples dem-
onstrated. Another issue is the lack of accuracy with
the other nonlinear methods, as in certain circum-
stance they could not be able to recognize variables
without causality relationships.'” While a method
based on the use of a radial basis function improved
the accuracy of detecting causality,>' it could not
provide compact system representation, as our pro-
posed approach does. It should be mentioned, how-
ever, that the proposed approach based on NARX
models is appropriate only up to 3rd-order nonlin-
earity as the number of model terms to be searched
becomes excessively large after that. However, this is
not a major problem for the cardiovascular system in
general, since it has been shown that it can be char-
acterized by nonlinearity lower than 3rd-order.°

The application of the approach to RR interval and
SAP series in the supine and upright positions pro-
vided physiologically interpretable results. For exam-
ple, the high predictability of the SAP series in either
body position can be simply observed in the time series
itself. On the contrary, the RR variability is much
greater and appears more random than the SAP vari-
ability. The major contribution to SAP variability is
that located in the low frequency region of the spec-
trum (LF, around 0.1 Hz), and has been theorized to
be reflection of the sympathetic nervous activities.'***
However, since respiratory-related high frequency
(HF) oscillations are present in both body positions, it
may be argued that the contemporaneous presence of
low and high frequency rhythms does not directly
imply complexity.?’” A physiological interpretation of
the observed higher complexity (i.e., lower predict-
ability) in the RR intervals, especially in the supine
position, is that this may reflect low synchronization
among the several mechanisms that are responsible for
heart rate regulation in the LF band (e.g., central
oscillators at the brain stem level, baroreceptive and
chemoreceptive feedback, peripheral vasomotion'*!').
Our results are in agreement with those obtained in
previous studies.””*

In the upright position, both the SAP and the RR
series became highly predictable. This is mainly be-
cause the LF oscillations are enhanced and the HF
dynamics are nearly abolished due to the activation of
the sympathetic nervous activities induced by tilt. It
has been shown that dominant activation of the sym-
pathetic activities can lead to a simplification of the
cardiovascular dynamics, and hence reduction of RR
and SAP complexity.”'** The observed modifications
of the predictability degrees with changing the body
positions were reflected by corresponding variations of
the significant number of model terms selected by OPS

identification. In general, an increase in predictability
was associated with a reduction in the number of
model terms needed to describe a specific part of the
observed dynamics, due to the fact that more pro-
nounced phenomena can be described with lower
coefficients required to capture the variability of the
considered signal. For instance, the higher predict-
ability of the RR in the upright position was measured
with a significantly lower number of linear AR terms
during NAR prediction, and with a significantly lower
number of (linear and nonlinear) X terms during
NARX prediction. These behaviors could be associ-
ated, respectively, to a larger involvement of linear
dynamics in the generation of the RR oscillations,”’
and to a larger contribution of SAP to the variability
of RR,**** during head-up tilt.

The result indicating higher PI from RR intervals to
SAP than in the reverse direction during supine posi-
tion (Fig. 8¢) may indicate an imbalance of the car-
diovascular regulation in humans at a resting state.
This observation suggests, from the point of view
provided by Granger causality analysis that a major
role in cardiovascular regulation is played by mecha-
nisms operating along the mechanical pathway from
heart rate to arterial pressure.'® Significant increase of
the PI from SAP to RR intervals in the upright posi-
tion can also be explained by the activation of the
baroreflex control pathway as a consequence of tilt-
induced sympathetic activation.!” Our results based on
the directionality index are in agreement with the
above-noted physiological interpretation, as we found
the values to be negative in the supine position and
then approached zero in the upright position. It is
worth noting that our directionality analysis mostly
confirms previous results obtained by methods
exploiting the concept of Granger causality according
to different paradigms, such as cross correlation of AR
residuals,® cross-conditional entropy,” and causal
coherence.”?® In particular, the causal coherence is a
tool proposed by Porta er al.*® to quantify in the fre-
quency domain the strength of the linear causal cou-
pling in bivariate time series, and allows to assess
Granger causality within specific frequency bands.
When applied to LF cardiovascular oscillations in
healthy humans, this tool evidenced both the imbal-
ance of the RR-SAP coupling with prevalence of
interactions from RR to SAP,”>?® and the enhance-
ment of the feedback regulation from SAP to RR after
head-up tilt.>> The similarity of the conclusions drawn
in previous studies using the linear causal coher-
ence’”® and in the present study using the NARX
model suggests that a linear approach is appropriate to
elicit directionality in the study of RR-SAP interac-
tions in supine and upright healthy humans. We pro-
vided a direct evidence for this hypothesis through the
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comparison between linear and nonlinear ARX iden-
tification on the same data set, as we found analogous
results using the two approaches. Nevertheless, the
implementation of nonlinear parametric models should
be preferred to infer directionality in experimental
protocols (e.g., paced breathing) or pathological states
(e.g., myocardial infarction) where nonlinear dynamics
have been shown to play a greater role in the genesis of
cardiovascular interactions.?*?’

In conclusion, we demonstrated the effectiveness of
the combined OPS-based ARX model and a surrogate
data technique in evaluating nonlinear Granger cau-
sality. This combined method is effective even for short
bivariate time series (a few hundred samples). Our
simulation results have shown the efficacy of the
method in accurately detecting directionality of the
coupled linear and nonlinear dynamics. In addition, we
demonstrated that the OPS’s inherent ability to dis-
criminate only the significant model terms resulted in
better performance than the least-squares based
NARX model. Our application to cardiovascular data
also illustrated the feasibility of the method, as the
results were relevant and interpretable according to the
known cardiovascular physiology.
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