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A Method for the Time-Varying Nonlinear Prediction of Complex
Nonstationary Biomedical Signals
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Abstract—A method to perform time-varying (TV) nonlinear
prediction of biomedical signals in the presence of nonstationarity
is presented in this paper. The method is based on identification of
TV autoregressive models through expansion of the TV coefficients
onto a set of basis functions and on k-nearest neighbor local lin-
ear approximation to perform nonlinear prediction. The approach
provides reasonable nonlinear prediction even for TV deterministic
chaotic signals, which has been a daunting task to date. Moreover,
the method is used in conjunction with a TV surrogate method to
provide statistical validation that the presence of nonlinearity is
not due to nonstationarity itself. The approach is tested on simu-
lated linear and nonlinear signals reproducing both time-invariant
(TIV) and TV dynamics to assess its ability to quantify TIV and
TV degrees of predictability and detect nonlinearity. Applicative
examples relevant to heart rate variability and EEG analyses are
then illustrated.

Index Terms—Complexity, EEG, heart rate variability (HRV),
local nonlinear prediction, nonlinear dynamics, nonstationary sig-
nals, surrogate data.

I. INTRODUCTION

DUE TO THE inherent time-varying (TV) characteristics of
biological systems, most biomedical signals are expected

to be nonstationary, independently of the time scale over which
they are analyzed. As an example, heart rate variability (HRV)
time series and EEG signals are expected to show TV behaviors
in both experimental and clinical recordings [1], [2]. Conse-
quently, a large number of TV algorithms have been developed
for the analysis of these signals. Among them, TV linear para-
metric models offer compactness of the signal representation
and high resolution, and have been proposed for HRV and EEG
analysis [3], [4]. On the other hand, there is also evidence that
biomedical signals very often exhibit time-, state-, and site-
dependent degrees of nonlinearity. In fact, many approaches
performing nonlinear dynamical analysis of cardiovascular and
brain signals have been proposed [5], [6]. However, the relia-
bility of nonlinear measures of complexity is dependent on the
validity of the underlying assumption of stationarity, which is
difficult to attain in biomedical recordings.
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This study proposes a new method for the nonlinear analysis
of biomedical signals in the presence of nonstationary dynamics.
The method performs nonlinear prediction through k-nearest
neighbor local linear approximation [7], i.e., defining a linear
model whose coefficients are identified from only the k-nearest
neighbors of the current state. Moreover, the possible evolution
over time of the local linear relationship is accounted for by set-
ting TV model coefficients, according to an expansion onto a set
of predefined basis functions [8]. The proposed method appears
to be one of the few existing approaches that are able to handle
both nonlinear (even deterministic chaotic) and nonstationary
dynamics.

This letter is organized as follows. Section II presents the
method and describes how it performs nonlinear prediction,
as well as detection of nonlinearity, in nonstationary signals.
Section III describes its validation, in comparison with time-
invariant (TIV) nonlinear prediction, on simulated linear and
nonlinear dynamics with imposed stationary or nonstationary
behaviors. Section IV describes examples of application to typi-
cal HRV and EEG signals. Conclusions are drawn in Section V.

II. TV NONLINEAR PREDICTION

Given a normalized time series y of N samples, its current
value y(n) is predicted as a linear combination of the lagged sam-
ples forming the reference vector yP (n) = [y(n − τ), y(n −
2τ), . . . , y(n − Pτ)]T by means of a linear TV autoregressive
(AR) model: y(n) = a(n).yP (n) + e(n), where e(n) is the pre-
diction error and a(n) = [a(1, n), . . . , a(P, n)] is the vector of
the TV AR coefficients to be determined. Nonlinear prediction
is accomplished according to a k-nearest neighbor local linear
approximation [7]. Specifically, the k-nearest neighbors of the
reference vector yP (n1), . . . ,yP (nk ) are found as the k vectors
having the minimum Euclidean distance to yP (n), and are used
to set a system of k equations

y (nj ) =
P∑

i=1

a (i, nj ) y (nj − iτ), j = 1, . . . , k. (1)

The system (1) is solved by expanding the TV coefficients
onto a set of basis functions π such that

a (i, nj ) =
∑M

m=0
α (i, m) πm (nj ) (2)

where α(i, m) represent the expansion parameters with M + 1
as the maximum number of basis sequences [8]. The system
resulting after expansion is TIV, as the P (M + 1) new coeffi-
cients, α(i,m), i = 1, . . . , P , m = 0, . . . ,M, are not functions
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of time. Hence, it is identified by traditional least-squares op-
timization, and the estimated coefficients α̂(i,m) are used to
predict y(n)

ŷ (n) =
P∑

i=1

M∑

m=0

α̂ (i,m) πm (n) y (n − iτ). (3)

Prediction is performed for each sample of y, and a measure
of unpredictability of the series is finally taken as the mean-
squared prediction error (MSPE)

MSPE = (N − Pτ)−1
N∑

n=P τ +1

(y (n) − ŷ (n))2 . (4)

The two key parameters that determine how the proposed ap-
proach deals with nonlinear and nonstationary dynamics are the
number of neighbors k and the number of basis functions M ,
respectively. Specifically, the use of a low k allows to perform
local nonlinear prediction since any possible nonlinear relation
between yP (n) and y(n) is approximated locally in the P -
dimensional state space; by contrast, a high k determines linear
AR prediction since a global relationship between yP (n) and
y(n) is imposed [9]. Hence, nonlinear (even chaotic) dynam-
ics are captured using a local predictor, while linear dynamics
can be described either by local or by global predictors. More-
over, nonstationary dynamics can be tracked by defining a TV
model with M ≥ 1, while without basis function expansion
(M = 0, π0(n) = 1), a TIV model working only under station-
ary conditions is defined. In this study, we implemented two dif-
ferent types of basis functions: Legendre polynomials, which are
appropriate for smoothly changing dynamics, and Walsh func-
tions, which behave well for dynamics exhibiting fast transients
and/or burst-like behaviors [8]. After evaluation of the proper
type and number M (via the mean-square-error criterion) of
basis functions to be used, the number of neighbors was let free
to vary between kmin = P (M + 1) and kmax = N − Pτ − 1
to allow a comparison between local and global AR models.
The embedding parameters were optimized to allow a proper
description of the signal under analysis. Specifically, the time
lag was set either to τ = 1, to focus on a short temporal scale
or at the value corresponding to the autocorrelation function
dropping to its (1/e)th value, to adapt the temporal scale to the
sampling frequency in sampled signals. The AR model order
was determined by varying P from 1 to 12 and selecting the
value yielding the lowest MSPE.

The proposed approach was used in conjunction with the
method of surrogate data [10] to test the presence of nonlin-
ear dynamics in the analyzed signals. Surrogate data to be used
for TV nonlinear prediction were generated by the paramet-
ric approach, i.e., fitting a TV AR model to the original signal
and regressing the estimated TV model coefficients with inde-
pendent noise realizations to produce the surrogates [11]. The
MSPE index was used as nonlinear discriminating statistic, and
nonlinearity was detected when the MSPE of the original signal
was smaller than the threshold value given by the fifth percentile
of the MSPE distribution estimated from 100 surrogate series.

Fig. 1. (a) TIV linear time series. (b) TV linear time series. (c) TIV nonlinear
time series. (d) TV nonlinear time series. Right panels show MSPE estimated by
TIV prediction (M = 0, solid curve) and TV prediction (M ≥ 1, dashed curve)
by varying the number of neighbors k. Distribution bars of MSPE (5th, 50th,
and 95th percentiles; right dashes: TIV approach; left dashes: TV approach)
estimated from 100 surrogate series are also indicated for local prediction (k =
km in ) and global prediction (k = km ax ). MSPE is estimated with τ = 1 and
P = 2, using M = 2 Legendre basis functions in (a) and (b), and M = 1 Walsh
basis function in (c) and (d).

To provide a comparison with the traditional test for nonlinear-
ity, we also performed TIV nonlinear prediction, implementing
TIV AR models (M = 0) to estimate MSPE and generate TIV
surrogates. The comparison is important because the traditional
surrogate-based nonlinearity tests require stationarity [10], and
its application to nonstationary signals may lead to erroneous
detections of nonlinear dynamics [11].

III. METHOD VALIDATION

The proposed approach was validated on simulated linear and
nonlinear time series, in which either stationary or nonstationary
conditions were reproduced. In the first simulation, the ability
of the method to quantify the degree of predictability and detect
the nature of the dynamics was tested on a linear second-order
AR (AR2) process with a narrow-band oscillation at 0.1 Hz,
and the nonlinear map described in [12] (N = 500). Stationary
realizations of the two dynamics are shown in Fig. 1(a) and (c),
respectively, while nonstationary behaviors were obtained by
imposing a quadratic increase of the frequency of the AR2 pro-
cess between 0.1 and 0.4 Hz [see Fig. 1(b)] and a step variation
(occurring at n = 250) of the coefficient controlling the nonlin-
ear dynamics [see Fig. 1(d)]. Results of local linear prediction
are expressed in Fig. 1 by plotting the MSPE index as a func-
tion of k. During stationary conditions, TIV and TV predictions
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gave comparable results, correctly capturing the predictability
of the dynamics (very low MSPE) with a global neighborhood
(high k) for the linear series [see Fig. 1(a)] and a very local
neighborhood (small k) for the nonlinear series [see Fig. 1(c)].
By contrast, the predictability of nonstationary time series was
captured only by TV prediction, while the TIV approach gave an
erroneous indication of high complexity [high MSPE; Fig. 1(b)
and (d)]. Moreover, the linear TV dynamics of Fig. 1(b) was
detected erroneously as nonlinear by TIV nonlinear prediction,
as the original MSPE values were outside the distribution of the
surrogates for local prediction, while the TV approach was used
for correct detection.

The second simulation tested the method’s ability to fol-
low changes over time by using predictability as a figure of
merit. The first signal [see Fig. 2(a)] was a linear AR2 pro-
cess with main oscillation at 10 Hz (sampling rate = 128 Hz),
in which four increasing predictability levels were obtained by
step variations in four subsequent time windows of the param-
eter controlling the regularity of the process. The application
to ten realizations of the process evidenced that the MSPE val-
ues evaluated within each of the four stationary subsegments
were better bounded inside their expected range when the TV
method was implemented, while the TIV approach was biased
toward a worse prediction [i.e., a higher MSPE; Fig. 2(b)]. The
second signal, shown in Fig. 2(c), was the nonlinear map pro-
duced by the Mackey–Glass differential equation with temporal
parameter T = 10, for which 1024 points were taken (sampling
rate = 128 Hz) after discarding 1000 points as transients. As
shown in Fig. 2(d), the maximum predictability was achieved
for a local predictor with k = 40, and addition of noise caused a
progressive unpredictability of the signal, with MSPE ranging
from 0.21 for the clean signal to 0.91 for the 0 dB noise level.
To achieve TV predictability degrees, the map was corrupted
with additive noise of variance linearly increasing in time up to
the 0 dB level. As seen in Fig. 2(e) (average over ten realiza-
tions), the MSPE evaluated over time after using TV nonlinear
prediction matched with good approximation the expected lin-
ear variation in predictability, while TIV prediction was unable
to follow the changes in predictability due to progressive noise
contamination.

IV. ILLUSTRATIVE EXAMPLES

To demonstrate the usefulness of the proposed TV nonlinear
prediction method, we report representative examples of appli-
cation on HRV time series and EEG signals. It is worth noting
that the computational complexity of TV nonlinear prediction,
as observed in this application, is compatible with a real-time
implementation of the algorithm on biomedical signals.

Fig. 3 illustrates the application to heart period series (RR in-
terval sequences) measured from the ECG in healthy subjects,
resting in the supine position either during spontaneous breath-
ing or paced breathing at 0.2 Hz. The series of Fig. 3(a)–(c)
were acquired during carefully controlled experimental settings
that should guarantee the absence of important transients, while
the one in Fig. 3(d) is not stationary as at the beat 200, there
was a transition from spontaneous to paced breathing. While for

Fig. 2. (a) TV linear AR process. (b) MSPE estimated (τ = 3, P = 4) for ten
realizations of the process by TIV prediction (M = 0, circles) and TV prediction
(M = 4 Walsh basis functions, triangles) within each of the four stationary
windows (w1 , w2 , w3 , and w4 ) of the TV signal. The bound lines indicated
within each window are the expected median (dashed) and percentiles (5th
and 95th, solid) of MSPE distribution, estimated from 100 stationary segments
of 256 points each. (c) Mackey–Glass signal. (d) MSPE estimated for TIV
nonlinear prediction (M = 0, τ = 3, and P = 6) as a function of the number
of neighbors k for the clean Mackey–Glass signal (dashed curve) and after
20, 15, 10, 5, and 0 dB noise addition (solid curves, from bottom to top). (e)
Time course of the MSPE index estimated (τ = 3, P = 6) after adding noise
with variance linearly increasing in time to the clean map, using both TIV
(M = 0, upper dashed curve) and TV (M = 1 Legendre function, lower solid
curve) approaches with k = 40. MSPE is calculated over subsegments of 200
samples, sample-by-sample forward-shifted in time.

the first series, both TIV and TV predictors detected the dynam-
ics as linear [MSPE was lower for k = 295 than for k = 50,
and original MSPE values were encompassed by their surro-
gate distribution; Fig. 3(a)], the second series was detected as
nonlinear by TIV prediction (M = 0) and linear by TV predic-
tion [M = 2, Legendre functions; Fig. 3(b)]. This disagreement
indicates a possible confounding role of nonstationarity in the
detection of nonlinear dynamics performed by the traditional
TIV approach [11] and suggests the appropriateness of using a
TV approach even in the short-term analysis. The series mea-
sured during paced breathing [see Fig. 3(c) and (d)] was detected
as nonlinear both by TIV and TV predictors, as the MSPE was
lower for local prediction (low k) than for global prediction
(high k), and was below its surrogate distribution. Moreover,
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Fig. 3. RR interval variability series measured in four healthy subjects. (a) and
(b) Spontaneous breathing. (c) and (d) Paced breathing. Asterisks in the right
panels indicate the MSPE values obtained by TIV prediction (left) and TV pre-
diction (right), either using a local predictor (low k) or a global linear predictor
(high k), for which the number k of considered neighbors is indicated in the
panels. MSPE distribution bars (expressed as 5th, 50th, and 95th percentiles)
evaluated on 100 TIV surrogates (left) and 100 TV surrogates (right) are also
indicated. Prediction was performed with τ = 1 and with P = 4, 5, 3, 3 for the
series (a)–(d).

the nonstationary transition of Fig. 3(d) was better captured by
TV prediction (M = 1, Walsh function), as the MSPE was lower
than that of TIV prediction (M = 0).

In the second application, we considered four EEG signals
acquired in young healthy subjects from frontal head locations
(standard 10–20 acquisition system, sampling rate = 128 Hz).
The first two signals [see Fig. 4(a) and (b)] were judged by an
expert reader as stationary eyes-closed and eyes-opened record-
ings. In these signals, the MSPE values obtained by TIV and
TV prediction were comparable and were almost stable when
evaluated over consecutive time windows of 1 s length. A larger
predictability (lower MSPE), related to the presence of a dom-
inant regular alpha rhythm, was measured during eyes closed.
The signals of Fig. 4(c) and (d) were classified as showing a
slow establishment and an abrupt interruption of alpha-EEG
activity, respectively. In these signals, TV nonlinear prediction
(with M = 3 Legendre and M = 1 Walsh basis functions, re-
spectively) led to a lower MSPE than TIV prediction (M = 0).
Moreover, by using TV prediction instead of TIV prediction, the
time course of the MSPE index was better able to reflect both
the expected slow increase of predictability of Fig. 4(c) and the
expected subtle loss of predictability of Fig. 4(d).

Fig. 4. EEG signals acquired in four healthy subjects. (a) and (c) Eyes-closed
conditions. (b)–(d) Eyes-opened conditions. Right panels indicate the MSPE ob-
tained by TIV prediction (circles) and TV prediction (triangles) within consecu-
tive temporal windows of 1 s each. Prediction was performed with τ = 3, 3, 4, 3
and with P = 4, 5, 3, 2 for the signals (a)–d), using the number of neighbors k
that yielded the best prediction on the whole 8-s epoch.

V. CONCLUSION

The proposed TV nonlinear prediction method appears suit-
able to quantify the complexity of biomedical signals exhibiting
nonlinear and/or nonstationary behaviors. As shown by the re-
ported simulations, the use of a local linear predictor with small
neighborhood sizes favors the accurate evaluation of complexity
even in nonlinear time series. At the same time, the expansion
of the TV AR coefficients onto a set of proper basis functions
allows to evaluate complexity even in case of time-changing
dynamics, as well as to track possible dynamic variations of
the signal complexity. Moreover, the use of TV nonlinear pre-
diction together with TV surrogates extends the applicability of
the surrogate-based test for nonlinearity to biological signals,
in which nonstationary behaviors are quite common. All these
peculiar features make the proposed method eligible to describe
the complex and nonstationary signals produced by a variety
of biological systems. We reported instances of cardiovascular
and brain signals, showing that TV nonlinear prediction is ap-
propriate for HRV time series and EEG signals that are likely
to exhibit significant nonlinear dynamics and/or TV complexity
degrees.
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