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An Autoregressive Model-Based Particle Filtering
Algorithms for Extraction of Respiratory Rates as

High as 90 Breaths Per Minute From Pulse Oximeter
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Abstract—We present particle filtering (PF) algorithms for an
accurate respiratory rate extraction from pulse oximeter record-
ings over a broad range: 12–90 breaths/min. These methods are
based on an autoregressive (AR) model, where the aim is to find
the pole angle with the highest magnitude as it corresponds to
the respiratory rate. However, when SNR is low, the pole angle
with the highest magnitude may not always lead to accurate esti-
mation of the respiratory rate. To circumvent this limitation, we
propose a probabilistic approach, using a sequential Monte Carlo
method, named PF, which is combined with the optimal parameter
search (OPS) criterion for an accurate AR model-based respira-
tory rate extraction. The PF technique has been widely adopted in
many tracking applications, especially for nonlinear and/or non-
Gaussian problems. We examine the performances of five different
likelihood functions of the PF algorithm: the strongest neighbor,
nearest neighbor (NN), weighted nearest neighbor (WNN), proba-
bility data association (PDA), and weighted probability data asso-
ciation (WPDA). The performance of these five combined OPS-PF
algorithms was measured against a solely OPS-based AR algorithm
for respiratory rate extraction from pulse oximeter recordings. The
pulse oximeter data were collected from 33 healthy subjects with
breathing rates ranging from 12 to 90 breaths/ min. It was found
that significant improvement in accuracy can be achieved by em-
ploying particle filters, and that the combined OPS-PF employing
either the NN or WNN likelihood function achieved the best re-
sults for all respiratory rates considered in this paper. The main
advantage of the combined OPS-PF with either the NN or WNN
likelihood function is that for the first time, respiratory rates as
high as 90 breaths/min can be accurately extracted from pulse
oximeter recordings.

Index Terms—Autoregressive (AR) model, optimal parameter
search (OPS), particle filter, pulse oximeters, respiratory rate
extraction.

I. INTRODUCTION

R ESPIRATORY rate is one of the important vital signs,
and much effort has been centered on extracting it from

pulse oximeter and electrocardiogram recordings [1]–[4]. The
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research has been driven largely by the desire to reduce the
number of sensors that need to be connected to a patient to
obtain vital signs.

Recent promising approaches based on time-frequency spec-
tral techniques have been used to extract respiratory rates di-
rectly from a pulse oximeter [1]–[3], [5]–[8]. With recogni-
tion that respiration modulates heart rate and that they are both
time-varying, time-frequency analyses were used to extract the
former signal. Specifically, the continuous wavelet transform
(CWT) [5], [6] and variable frequency complex demodula-
tion (VFCDM) [1], [8] methods were utilized to extract ei-
ther frequency modulation or amplitude modulation seen in the
frequency range associated to the heart rate. Both CWT and
VFCDM methods have been shown to provide accurate respi-
ratory rate extraction in the low- and moderate-breathing rates
(12–36 breaths/min). However, these time-frequency methods’
capability became less reliable with increased respiratory rates
[1].

Recently, an autoregressive (AR) model method, utilizing the
optimal parameter search (OPS) technique [9], [10] showed ac-
curate respiratory rate extraction especially for high-breathing
rates (36–48 breaths/min) [11]. The AR method involves fac-
torizing the estimated AR parameters into multiple pole terms.
The pole with the highest magnitude is chosen to represent a
respiratory rate. The accuracy of our technique using an AR
model should be aided by the OPS as it has been shown to be
more accurate than the well-known model order criteria such as
Akaike information criterion, minimum description length, and
the fast orthogonal search criterion [10], [12]–[15]. However, as
the SNR decreases, the probability increases that incorrect poles
are associated with the highest magnitude, which ultimately af-
fects the accuracy of the method.

To mitigate the previously described limitation of the AR
model, we used a sequential Monte Carlo method, known as
particle filtering (PF) [16], [17]. The PF method has gained
much recognition in recent years and has mainly been used for
tracking moving targets [18], [19]. Recently, much effort has
centered on developing efficient PF algorithms for real-time
implementation [20], [21].

In this paper, we formulate a general framework for respira-
tory extraction based on the PF algorithm combined with OPS.
Specifically, we examine five different likelihood functions for
estimating the probability density function. These five different
likelihood functions were examined to determine which among
the five provided the best results for varying levels of SNR and
breathing rates. The efficacy of our proposed PF-OPS algorithm
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was examined by comparing it to the OPS-based AR model
without PF, using pulse oximeter recordings from 33 healthy
human subjects breathing at 12, 18, 24, 30, 36, 42, 48, 60, 72,
and 90 breaths/ min.

II. METHOD

A. Respiratory Rate Extraction With AR Model

Our approach to extract respiratory rates from photoplethys-
mograph (PPG) is to use combined OPS-PF algorithms. Respi-
ratory rates are formulated as an AR model

x(n) = −
K∑

k=1

akx(n − k) + e(n) (1)

where K is the model order, ak are the unknown coefficients, and
e(n) is the prediction error. We use the OPS to obtain accurate
parameter estimation among the overdetermined model order
K. The OPS can be designed to automatically select the optimal
model order for any signal, thus, can be tuned to each signal
without any human subjectivity. With any initial model order of
K, the significant model order Kopt is determined by the ratio of
two neighboring projection distances [13]. Once the unknown
AR parameters ak are estimated, they are formulated as the
transfer function H(z) as follows:

H(z) =
1∑K o p s

k=1 akz−k
=

zK o p s

(z − z1)(z − z2) . . .
(
z − zK o p s

)
(2)

where the AR coefficients are factorized into Kops pole terms,
where Kops ≤ K. The real and complex conjugate poles define
the power spectral peaks with the larger magnitude poles cor-
responding to the greater magnitudes [11], [22]. The resonant
frequency of each spectral peak is given by the phase angle of
the corresponding pole; the phase angle θ of a pole at frequency f
is defined as 2πf∆t, where ∆t is the sampling interval. Among
the poles, we set the region of interest (ROI) for respiratory
rates between flow and fhigh (e.g., 0.15 and 1.5 Hz). Let us
denote the number of the pole angles within the ROI by Kroi . If
Kroi ≥ 2, the pole with the highest magnitude is chosen to be
representative of the respiratory rate.

In previous studies, the OPS showed better performance than
both CWT [2], [3], [5]–[7], [23] and VFCDM [1], [8]-based
time-frequency spectral techniques for high respiratory rates
(higher than 0.6 Hz) but not at lower breathing rates (0.2–0.6
Hz). The main advantage of the OPS was found to be that the
computational speed was approximately five times faster than
VFCDM and 30 times faster than CWT. In addition, the OPS,
because it is an AR-model-based method, can perform reliable
respiratory rate estimation using only half of the data required
by either the CWT or VFCDM methods.

The aim of the study was to improve the accuracy of an AR
model approach compared to the time-frequency methods for
lower breathing rates and to extend capability to extract respira-
tory rates as high as 90 breaths/min. To illustrate the limitation
of the OPS-model-based respiratory rate extraction, a simple
simulation example is provided to show how and when the
method succumbs to noise perturbation. The test signal involves

TABLE I
FALSE DETECTION OF 0.6070 WITH −10 dB SNR: ANGLES AND MAGNITUDES

OF CANDIDATE POLES AT TIME 60 S IN Fig. 1(b)

two frequencies chosen so that they represent the frequency re-
sponses of the heart rate and the normal respiratory rate, as
shown shortly [11]:

y(n) = Ah cos
(

2πfh(n)
n

fs
+ φh

)
+ Ab cos

(
2πfb(n)

n

fs
+ φb

)
+ Ne (3)

where fh(n) and fb(n) are the heart rate and respiratory rate,
respectively. φh and φb are phases associated to the heart rate
and respiratory rates, respectively, and fs is the sampling rate.
For the simulation example, Ah and Ab were set to 10 and 1,
respectively. The fh(n) and fb(n) were set to 2.0 and 0.4 Hz,
respectively, and φh and φb were randomly generated between 0
and 2π with uniform distribution. In addition, we corrupted the
signal with two different levels of Gaussian white noise (GWN)
Ne so that the SNR are −5 and −10 dB. We generated 60 000
samples for both SNR with a sampling rate of 100 Hz, which
resulted in 10 min of data. We performed the respiratory rate
estimation on 60-s segment waveforms of the test signal, and
the waveform segment was shifted by 10-s for the entire 10-min
duration. Thus, each 60-s segment waveform had a 50-s overlap,
and 55 segments were obtained for the entire signal. To increase
the angular resolution of the low frequency (LF) information
and because we are only interested in respiratory rates up to
1.5 Hz, each windowed waveform was down sampled to 3 Hz.
Using the OPS technique, we selected an AR model order of
20, and the calculated AR parameters were formulated as the
transfer function of (2). Fig. 1 shows the estimation result based
on the SNR of −5 and −10 dB for each of the 55 segments.
Note that there is a lag in the results in Fig. 1 since our data
analysis is based on 60 s segments. It is shown that as the SNR
decreases, the probability that incorrect poles are associated with
the highest magnitude increases. More specifically, we list the
resultant pole angles and magnitudes at time 60 s for an SNR of
−10 dB in Table I. The pole angle of 0.3997 Hz, which is closest
to the true rate of 0.4 Hz, has the magnitude of 0.9852. On the
other hand, the pole angle of 0.6070 Hz has the magnitude of
0.9887, and consequently, is chosen as the respiratory rate since
it has the largest magnitude among all chosen poles. Thus, with
this choice, we have an error of 0.2 Hz deviation from the true
respiratory rate.

B. Development of a General Framework

We formulated a general framework for respiratory extrac-
tion based on PF combined with the OPS technique. Let us
denote a true PPG waveform from time n − nseg to time n by
Sn−n s e g :n (e.g., nseg represents a waveform segment). Based on
the waveform of Sn−n s e g :n , we define the respiratory state at
time n as R(n). By using the OPS technique and the breathing
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Fig. 1. Test signal is corrupted with additive Gaussian white noise (AGWN)
for SNR (a) −5 dB and (b) −10 dB. Based on the OPS technique, the rates
are estimated. As SNR decreases, the chance that false poles have the highest
magnitude is increasing.

rates’ ROI, we obtain Kroi pairs of pole angles and their mag-
nitudes. Let us denote the pairs of pole angles and magnitudes
by the measurement vector P (n).

P (n) = fops
(
Sn−n s e g :n ,Q1(n)

)
(4)

where fops(·) is a function of the OPS and the ROI, and Q1(n)
is a noise term, which is not necessarily Gaussian. The measure-
ment vector obtained by the OPS technique is represented by a
2Kroi-dimensional parameter vector with the first Kroi parame-
ters representing Kroi-pole angles, and the last Kroi parameters
representing Kroi-pole magnitudes.

P (n) =
[
pa

1 pa
2 · · · pa

k · · · pa
K r o i

pm
1 pm

2 · · · pm
k · · · pm

K r o i

]T
(5)

where pa
k and pm

k represent kth pole angle and magnitude, re-
spectively.

We assume that the respiratory state is a Markov process,
which can be modeled by the state transition relation as

R(n) = T (R(n − nsam), Q2(n)) (6)

where T (·) is a known, not necessarily linear function of the
previous state at time sample n − nsam and Q2(n) is a noise
term, which is not necessarily Gaussian.

Let P = (1 : n) = [P (1) . . . P (n − nsam) P (n)] denotes
the concatenation of all measurements up to time n. The aim
is to recursively estimate the conditional probability density
p(R(n) |P (1 : n) ), from which the respiratory rate can be ob-
tained as the mean of the density function. In practice, the poste-
rior probability density is not available. However, assuming that
the posterior probability density at time n − nsam is available,
the posterior probability density at time n can be found through
the Chapman–Kolmogorov equation and Bayes’ rule

p(R(n) |P (1 : n − nsam))

=
∫

p(R(n) |R(n − 1))p(R(n − nsam) |P (1 : n − nsam))

× dR(n − nsam) (7)

p(R(n)|P (1 : n))∝ p(P (n)|R(n))p(R(n)|P (1 : n − nsam))

(8)

where p(R(n) |P (1 : n − nsam)) is the posterior probability
density, p(R(n) |R(n − nsam)) is the state transition density,

Fig. 2. Generic PF algorithm for respiratory rate extraction.

p(R(n) |P (1 : n) ) is the prediction probability density, and
p(P (n) |R(n) ) is the likelihood.

In general, no closed-form solution exists for (7) and (8)
except in the special case, where fops(·) and T (·) in (4) and
(6) are linear functions, and the noises Q1(n) and Q2(n) are
Gaussian. In this case, the Kalman filter is the optimal solu-
tion. However, the pole angles obtained from the OPS method
as well as Burg’s method were found to have a non-Gaussian
distribution [1], [11]. Hence, we use a PF approach, which is
suitable for non-Gaussian problems, and approximate (7) and
(8) via Monte Carlo simulations involving a set of particles. It
has been shown that as the number of particles becomes large,
their particle weights tend to approach the true distribution of
the signal. Details concerning the generic PF algorithm are de-
scribed in [16]. With the framework outlined mentioned earlier,
the algorithm that we propose for respiratory rate extraction
using PF is described in Fig. 2.

C. Particle Generation

The first step to particle generation is to represent a
prior probability density function p(R(n)|P (1 : n − nsam))
by a set of particles. Given the particles corresponding
to the posterior probability density function of p(R(n −
nsam)|P (1 : n − nsam)) obtained at time n − nsam , new parti-
cles are generated at time n as

Ri(n) = F
(
R̄i(n − nsam)

)
+ Q2(n) (9)

where Ri(n) are the ith generated particles, i = {1, 2, . . . , I}
for the number of particles I, and Q2(n) is a Gaussian noise with
N

(
0, σ2

gen
)
. In addition, we assume that R(n) is a stationary

process denoted as

F (R(n − nsam)) = R(n − nsam). (10)

Note that R̄i(n − nsam) represents resampled particles ob-
tained at time n − nsam , and the resampling process will be
explained in the proceeding section.

D. Weight Evaluation With Proposed Likelihood Functions

After the new particles corresponding to the prior probability
density function p(R(n) |P (1 : n − nsam)) are generated, each
particle weight should be evaluated based on the measurement
vector P (n). The weighted particles represent the posterior
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probability density function of p(R(n) |P (1 : n) ). For the par-
ticle weight evaluation, we propose several likelihood functions.
The likelihood functions should be chosen to reflect the fact that
the respiratory rate is chosen as the pole angle with the highest
pole magnitude. They should also reflect the fact that the pole
angle with the highest pole magnitude is occasionally an incor-
rect respiratory rate especially with a low SNR, as shown in our
simulation example. In this study, we examined five different
likelihood functions: the strongest neighbor (SN) likelihood, the
nearest neighbor (NN) likelihood, the weighted nearest neighbor
(WNN) likelihood, the probability data association (PDA) like-
lihood, and the weighted probability data association (WPDA)
likelihood.

1) SN Likelihood: The idea of the SN likelihood we have
developed is based on SN filtering [24], [25]. In SN filtering,
the measurement with the highest intensity among the validated
measurements is used and the others are discarded. Using the
same concept, each particle weight is evaluated by the pole angle
with the highest pole magnitude as

wi(n) = LSN(pa
max

∣∣Ri (n)) = exp

(
−

(
Ri(n) − pa

max
)2

2σ2
gau

)
(11)

where LSN(·) is the SN likelihood operator for a particle weight
evaluation, i = {1, 2, . . . I}, and pa

max is the pole angle with the
highest pole magnitude among the Kroi pole angles.

2) NN and WNN Likelihood: The idea of the NN likelihood
we have developed is based on NN filtering [25], [26]. In NN fil-
tering, the measurement closest to the predicted one is used, and
the others are discarded. With the same concept, each particle
weight is evaluated by its own nearest pole angle as

wi(n) = LNN(pa
nn(i)

∣∣Ri (n)) = exp

−

(
Ri(n) − pa

nn(i)

)2

2σ2
gau


(12-1)

where LNN(·) is the NN likelihood operator for a particle weight
evaluation, i = {1, 2, . . . I}, and pa

nn(i) is the pole angle closest

to each particle of Ri(n).
The WNN likelihood extends the NN likelihood concept by

weighting each pole angle’s magnitude as

wi(n) = LWNN

(
pa

nn(i)

∣∣Ri (n)
)

= exp

−
(
Ri(n) − pa

nn(i)

)2

2σ2
gau

 exp

(
−

(
pm

n n ( i )−pa
m a x

)2

2σ 2
w

)
∑K r o i

m=1 exp

(
−

(
pm

n n ( i )−pa
m a x

)2

2σ 2
w

)
(12-2)

where LWNN(·) is the WNN likelihood operator for a parti-
cle weight evaluation, i = {1, 2, . . . I}, and pm

nn(i) is the pole
magnitude corresponding to the pole angle pa

nn(i) .
3) PDA and WPDA Likelihood: The idea of the PDA like-

lihood we have developed is based on PDA filtering [25], [27].
The PDA uses all of the data with different weights. For exam-

ple, each particle weight is evaluated by all pole angles instead
of using only one pole angle, defined as

wi,k (n) = LPDA
(
P (n)

∣∣Ri (n)
)

= exp

(
−

(
Ri(n) − pa

k

)2

2σ2
gau

)
(13-1)

where LPDA(·) is the PDA likelihood operator for particle
weight evaluation, i = {1, 2, . . . I}, k = {1, 2, . . . Kroi}. Based
on this configuration I × Kroi particle weights are evaluated.
Note that each particle has multiple weights from which we
can obtain multiple posterior probability density functions. Ac-
cordingly, we denote these particles by Ri,k (n), where i = {1,
2, . . . I} and k = {1, 2, . . . Kroi}.

Similar to WNN likelihood, the WPDA likelihood function
extends the PDA likelihood concept by weighting each pole
angle’s magnitude as the following:

wi,k (n) = LWPDA
(
P(n)

∣∣Ri (n)
)

= exp

(
−

(
Ri(n) − pa

k

)2

2σ2
gau

)

×
exp

(
−(pm

k − pa
max)

2
/

2σ2
w

)
∑K r o i

m=1 exp
(
−(pm

k − pa
max)

2
/

2σ2
w

) (13-2)

where LWPDA(·) is the WPDA likelihood operator for a particle
weight evaluation, i = {1, 2, . . . I} and k = {1, 2, . . . Kres}.

4) Weight Normalization and Resampling: For respiratory
rate calculation, we normalize the particle weights as

w̄i(n) =
wi(n)∑I
i=1 wi(n)

for SN,NN, and WNN (14-1)

and

w̄i,k (n) =
wi,k (n)∑K

k=1

(∑I
i=1 wi,k (n)

) for PDA and WPDA.

(14-2)
After particle weight normalization, we calculate the mean

of the particles’ posterior probability density for the respiratory
rate extraction. Once the mean of the particles’ posterior proba-
bility density has been calculated, we resample the particles to
generate new particles at the next time instant, n + nsam . The
basic idea of resampling is to eliminate particles that have small
weights and to concentrate on particles with large weights. In
addition, the resampling process reduces the degeneracy prob-
lem, where after a few iterations, all but one particle will have
negligible weight [16], [28]. As noted in the previous section,
the resampled particles are denoted by R

i
(n). Once the parti-

cles have been normalized, the resampled particles are generated
using the scheme depicted in Fig. 3. In Fig. 3(a), the I to I re-
sampling process is illustrated for the SN-, NN-, and WNN
likelihoods. In Fig. 3(b), the I × Kroi to I resampling process
is illustrated for the PDA- and WPDA likelihoods.

E. PPG Data Collection on Human Subjects

1) Simulation Procedures: To evaluate the proposed PF al-
gorithms for respiratory rate estimation, simulations using the
test signal as described in (3) were performed with additive
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Fig. 3. Illustration of resampling processes: (a) I to I resampling for SN-,
NN-, and WNN likelihoods, (b) I × Kro i to I resampling for PDA- and WPDA
likelihoods. The sizes of the circles represent the value of each particle weight.

GWN (AGWN) so that the SNR was −20 dB. The respiratory
rate estimation performance was compared among six methods:
SN-PF, NN-PF, WNN-PF, PDA-PF, WPDA-PF, and OPS only.
We used 100 particles for all realizations including compari-
son to both experimental and simulated data. For an initial set
of particles, the pole angle with the highest magnitude in the
beginning of the time sample was chosen. For quantitative com-
parison of all methods, a root mean square error (RMSE) E(n)
between R̂(n) and R(n) was computed, where R̂(n) and R(n)
represent an estimated and a true respiratory rate of the wave-
form segment at time n, respectively. For every realization, 55
R̂(n) were estimated (i.e., n = {60, 70, . . . , 600}). In addition,
we defined a deviation percentage. The deviation percentage de-
notes how many of the estimated respiratory rates deviate more
than Thdev from a true rate. We counted the deviation as∣∣∣R̂(n) − R(n)

∣∣∣ > Thdev . (15)

In the simulation result, we set Thdev to 0.2, 0.3, and 0.4 Hz.
In addition, we set the initial model order for the OPS to 30. The
breathing rate of interest was set to flow = 0.15 Hz and fhigh =
0.9 Hz. An important issue in PF design is the choice of the
variance of the particle sampling density (particle distribution)
[29]. Thus, the values of σ2

gen , σ2
gau , and σ2

w play important roles
in determining estimation accuracy. The value of σ2

gen represents
the variance of generated particles as described in (9), and the
chosen value predefines the range of the predicted respiratory
rate. A selected value of σ2

gen should not deviate too much from
the selected chosen pole magnitude via the OPS. The values of
σ2

gau and σ2
w represent the variances of likelihood functions as

described in (11)–(13). Specifically, a choice of σ2
gau determines

the spread of pole angles each particle weight is evaluated,
and likewise for the choice of σ2

w for the likelihood functions
of WNN-PF and WPDA-PF. For NN-PF and PDA-PF, we set
σ2

w = ∞ in (12-2) and (13-2), which results in (12-1) and (13-1),
respectively. For other likelihood functions, the PF parameters
were set to σ2

gen = 0.01, σ2
gau = 0.0001, and σ2

w = 0.0025.
2) PPG Data Collection on Human Subjects: For the PPG

waveform acquisition, we used an MP506 pulse oximeter (Nell-
cor Oximax, Boulder, CO) reusable sensor (Durasensor DS-100
A), which incorporates a conditioning circuit and has an analog
output of 4.864 kHz. The PPG waveforms were collected on 15
healthy subjects with metronome respiratory rates ranging from
0.2 to 0.6 Hz at an increment of 0.1 Hz, and eight additional

healthy subjects instructed to breathe at the rates of 0.7 and 0.8
Hz. Finally, we recruited ten additional healthy subjects and they
were instructed to breathe at the rates of 1.0, 1.2, and 1.5 Hz. We
categorized the respiratory rates of 0.2 and 0.3 Hz as the LF, the
rates of 0.4–0.6 Hz as the high frequency (HF), the rates of 0.7
and 0.8 Hz as the ultra-HF (UHF), and the rates of 1.0–1.5 Hz as
the extremely HF (EHF). Among the 15 healthy subjects, seven
females and eight males of age 21.0 ± 1.2 years were involved,
in the eight healthy subjects (for UHF experiment), one female
and seven males of age 28.4 ± 3.6 years participated, and in the
ten healthy subjects (for EHF experiment), three females and
seven males of age 26.7 ± 4.6 years participated. None of the
subjects had cardiorespiratory or related pathologies.

The PPG data were collected in the supine and upright posi-
tions for subjects instructed to breathe in the LF, HF, and UHF
ranges. For subjects in the EHF protocol, the PPG data were
collected only in the upright position because many participants
had trouble breathing at these high rates in the supine position.
The pulse oximeter sensor was attached to the subjects’ left in-
dex or middle finger. The subjects were instructed to breathe at
a constant rate according to a timed beeping sound so that the
subjects inhaled and exhaled when the beeping sound was heard.
Three minutes of PPG data were collected for each position for
the breathing rates consisting of LF, HF, and UHF. For EHF
rates, only 1–2 min of PPG signals were collected because most
subjects could not keep up with extremely high breathing rates.
We also simultaneously measured respiration signals using the
respitrace system, which uses inductive plethysmography to pro-
vide calibrated voltage outputs corresponding to rib cage and
abdominal compartment volume changes. From the respitrace
system, true respiratory rates were evaluated by counting the
number of peaks in a given minute. For those subjects breathing
at the EHF rates, we also measured their ECG signals.

For all signals, consisting of PPG, respiration, and ECG sig-
nals, we used the PowerLab/4sp (ADInstrument, Inc.) for data
acquisition. The PowerLab/4sp was connected to a laptop via
universal serial bus, and the Chart v4.2.2 software was used to
sample the analog signal at 400 Hz for EHF data and 200 Hz
for LF, HF, and UHF data. All PPG data were low-pass filtered
to 10 Hz. We performed the respiratory rate estimation on 60
s segments for the LF, HF, and UHF data, while 30-s segment
data were used for the EHF data. All data segments were shifted
by 10 s for the entire PPG waveform recording. We set the
initial model order to 30 for the OPS. The breathing rate of in-
terest was set to flow = 0.15 Hz and fhigh = 0.9 Hz for LF, HF,
and UHF data. For the EHF data, we set the breathing rate of
interest to flow = 0.15 Hz and fb < fhigh < fh . Furthermore,
in order to investigate the effect on the heart signal (fh ), we
set an additional ROI as flow = 0.15 Hz and fb < fh. < fhigh .
The PF parameters were set to σ2

gen = 0.01, σ2
gau = 0.0001, and

σ2
w = 0.0025, which are the same as in the simulation example.

III. RESULTS

A. Simulation Results

Fig. 4 shows the results of respiratory rate estimation by
the OPS only (without the PF) and five different PF methods
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Fig. 4. One-hundred simulations were performed so that the respiratory rate was estimated a total of 5500 times, and the number of particles used was 100. (a)
Deviation percentages were calculated as the total number of deviation divided by 5500 and multiplied by 100. Each deviation percentage is shown according to
Thdev from 0.2, 0.3, and 0.4 and each PF algorithm, (b) mean of RMSE and mean plus two standard deviations with the 5500 samples is shown, and the asterisks
indicate the significant difference (p < 0.01) between OPS only and each PF algorithm.

Fig. 5. Mean, standard deviation, and computation time of the average of 100 realizations according to the number of particles used from 1 to 200. (a) Mean of
RMSEs. (b) Standard deviation of RMSEs. (c) Computational time (programs running on MATLAB R2007b).

consisting of SN-PF, NN-PF, WNN-PF, PDA-PF, and WPDA-
PF with the test signal as described in (3). It summarizes the
breathing frequency of 0.4 Hz based on 100 realizations for
each method, which resulted in the estimation of 5500 respi-
ratory rates. Fig. 4(a) shows the deviation percentages defined
in (15). We report deviation percentage as a function of three
different Thdev values: 0.2, 0.3, and 0.4. Regardless of the cho-
sen threshold value, both PDA-PF and WPDA-PF showed the
smallest deviation percentage, while the OPS had the largest.
Fig. 4(b) shows the mean of RMSE and its mean plus two stan-
dard deviations. All PF methods showed smaller RMSE values
than OPS only. The asterisks indicate the significant difference
(p < 0.01) between OPS only and each of the five different likeli-
hood functions. Among the PF methods, there was no significant
difference. Fig. 5(a)–(c) summarizes the mean and standard de-
viation of the RMSEs and the computation time as the number
of particles varied from 1 to 200. These results suggest that ap-
proximately only 25 particles are needed to obtain reasonably
accurate results for all proposed PF methods. There was a sig-
nificant increase in the computation time with both PDA-PF and
WPDA-PF when the number of particles was higher than 75.

B. Experimental Data Results

1) Result of LF, HF, and UHF Respiratory Rate: Figs. 6 and
7 show the RMSEs for each method for LF (0.2–0.3 Hz), HF

(0.4–0.6 Hz), and UHF (0.7–0.8 Hz) during the supine and up-
right positions, respectively. The circles (red) above and below
each method represent the 95th and the 5th percentiles of all es-
timation results for every subject, respectively. Whiskers (blue)
above and below represent the 90th and the 10th percentiles,
respectively. The bars above, middle, and below represent the
75th, the 50th, and the 25th percentiles, respectively. In addi-
tion, the asterisks indicate the mean value. Tables II and III
summarize the measures of accuracy by tabulating the mean
and variance of RMSE across all subjects for both supine and
upright positions. For the statistical analysis, t-test (p < 0.01)
was used among the six methods.

In the supine position, as shown in Fig. 6 and Table II, the
mean of RMSE with WNN-PF was the lowest followed by NN-
PF, WPDA-PF, PDA-PF, SN-PF, and OPS only for the LF res-
piratory rates. Similarly, the variances of RMSE with NN-PF,
WNN-PF, and PDA-PF were the lowest followed by WPDA-
PF, SN-PF, and OPS only. For the HF respiratory rates, the
mean of RMSE with NN-PF was the lowest followed by WNN-
PF, PDA-PF, WPDA-PF, SN-PF, and OPS only. The variance
of RMSE with PDA-PF was the lowest followed by NN-PF,
WNN-PF, WPDA-PF, SN-PF, and OPS only. For the UHF, the
mean of RMSE with PDA-PF was the lowest followed by NN-
PF, WNNA-PF, WPDA-PF, SN-PF, and OPS only. Similarly,
the variance of RMSE with PDA-PF was the lowest followed
by WPDA-PF, WNN-PF, NN-PF, SN-PF, and OPS only. Based
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Fig. 6. RMSEs in the respiratory range of LF (0.2–0.3 Hz), HF (0.4–0.6), and UHF (0.7–0.8) for the supine position: (a) RMSEs for LF range (0.2–0.3 Hz),
(b) RMSEs for HF range (0.4–0.6 Hz), (c) RMSEs for UHF range (0.7–0.8 Hz). The circles (red) above and below each method represent the 95th and the 5th
percentiles of all estimation results for every subject with 16 segments, respectively. Whiskers (blue) above and below represent the 90th and the 10th percentiles,
respectively. The bars above, middle, and below represent the 75th, the 50th, and the 25th percentiles, respectively. The asterisks indicate the mean value.

Fig. 7. RMSEs in the respiratory range of LF (0.2–0.3 Hz), HF (0.4–0.6), and UHF (0.7–0.8) for the upright position: (a) RMSEs for LF range (0.2–0.3 Hz),
(b) RMSEs for HF range (0.4–0.6 Hz), (c) RMSEs for UHF range (0.7–0.8 Hz). The circles (red) above and below each method represent the 95th and the 5th
percentiles of all estimation results for every subject with 16 segments, respectively. Whiskers (blue) above and below represent the 90th and the 10th percentiles,
respectively. The bars above, middle, and below represent the 75th, the 50th, and the 25th percentiles, respectively. The asterisks indicate the mean value.

on the RMSE distribution, all five proposed PF methods showed
significantly lower RMSEs than OPS only in both LF and HF
respiratory rates. In the UHF respiratory rate range, the four PF
methods NN-PF, WNN-PF, PDA-PF, and WPDA-PF all showed
significantly lower RMSE than OPS only. Among the PF meth-
ods, in the LF respiratory rates, NN-PF, WNN-PF, and PDA-PF
showed significantly lower RMSE than SN-PF. Also, NN-PF
and WNN-PF showed significantly lower RMSE than WPDA-
PF. There was no significant difference between NN-PF and
WNN-PF. In the HF respiratory rates, NN-PF, WNN-PF, PDA-
PF, and WPDA-PF showed significantly lower RMSE than SN-
PF. There was no significant difference among the four methods.
In the UHF respiratory rates, there was no significantly differ-
ence among the PF methods.

In the upright position, as shown in Fig. 7 and Table III, the
means of RMSE with NN-PF, WNN-PF, and WPDA-PF were
the lowest followed by PDA-PF, SN-PF, and OPS for the LF
respiratory rates. The variance of RMSE with PDA-PF was the
lowest followed by NN-PF, WPDA-PF, PDA-PF, SN-PF, and
OPS. For the HF respiratory rates, the means of RMSE with
NN-PF, WNN-PF, and WPDA-PF were the lowest followed by
PDA-PF, SN-PF, and OPS. The variance of RMSE with PDA-PF
was the lowest followed by NN-PF, WNN-PF, WPDA-PF, SN-

PF, and OPS. For the UHF, the mean of RMSE with WPDA-PF
was the lowest followed by WNN-PF, SN-PF, NN-PF, PDA-PF,
and OPS. The variance of RMSE with PDA-PF was the lowest
followed by WNN-PF, NN-PF, WPDA-PF, SN-PF, and OPS.
Based on the RMSE distribution, all five proposed PF methods
showed significantly lower RMSE than OPS only in all res-
piratory ranges of LF, HF, and UHF. In addition, among the
PF methods, the same significant differences were observed in
the supine position. Thus, regardless of subject positions, NN-
PF and WNN-PF showed significantly lowest RMSE than any
other method for the LF respiratory rate. For the HF respiratory
rate, NN-PF, WNN-PF, PDA-PF, and WPDA-PF showed signif-
icantly lowest RMSE than any other method. For the UHF res-
piratory rate, all proposed methods showed significantly lowest
RMSE. As shown in Fig. 5(c), PDA-PF and WPDA-PF requires
much more computation time than NN-PF and WNN-PF, it is
concluded that NN-PF and WNN-PF achieved the best result
for LF, HF, and UHF respiratory rates.

2) Result of EHF Respiratory Rate: Fig. 8(a) shows the
RMSE for each method for EHF (1.0–1.5 Hz) breathing rates
during the upright position. For these EHF rates, the breathing
frequency (fb ) may possibly overlap with a heart rate frequency
(fh ), thus we set the range of interest from flow = 0.15 Hz to
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TABLE II
MEANS AND VARIANCES OF RMSES AND CORRESPONDING STATISTICAL SIGNIFICANCE WITH P-VALUES OF SIX METHODS IN RESPIRATORY RANGES LF (0.2–0.3

HZ), HF (0.4–0.6 HZ), AND UHF (0.7–0.8 HZ) FOR SUPINE POSITION: MEANS AND VARIANCES OF RMSES

TABLE III
MEANS AND VARIANCES OF RMSES AND CORRESPONDING STATISTICAL SIGNIFICANCE WITH P-VALUES OF SIX METHODS IN RESPIRATORY RANGES LF (0.2–0.3

HZ), HF (0.4–0.6 HZ), AND UHF (0.7–0.8 HZ) FOR UPRIGHT POSITION: MEANS AND VARIANCES OF RMSES

Fig. 8. RMSEs in the respiratory range of EHF (1.0–1.5 Hz) for the upright position: (a) RMSEs with fb < fhigh < fh (b) RMSEs with fb < fh < fhigh .
The circles (red) above and below each method represent the 95th and the 5th percentiles of all estimation results for every subject with 16 segments, respectively.
Whiskers (blue) above and below represent the 90th and the 10th percentiles, respectively. The bars above, middle, and below represent the 75th, the 50th, and the
25th percentiles, respectively. The asterisks indicate the mean value.

fb < fhigh < fh . For example, when the heart rate is 1.6 Hz and
the respiratory rate is 1.2 Hz, fhigh was set to 1.4 Hz. As shown
in Fig. 8(a) and Table IV (first row), the mean value of RMSE
with WNN-PF was the lowest followed by NN-PF, WPDA-PF,
PDA-PF, SN-PF, and OPS. For the variance of RMSE values,
PDA-PF, NN-PF, and WNN-PF were the lowest followed by
WPDA-PF, SN-PF, and OPS. The proposed five likelihood func-
tions showed significantly lower RMSE than OPS. Based on the
RMSE distribution, all five proposed PF methods showed sig-
nificantly lower RMSE than OPS only. Among the PF methods,
there was no significant difference. Fig. 8(b) shows the RMSE
for each method for EHF (1.0–1.5 Hz) when fb < fh < fhigh
(the range of interest contains heart rate as well as respiratory
rate). In this case, we observed that heart rate and respiratory
rate were correctly detected approximately at only 60% and
40%, respectively, by the OPS technique. As shown in Fig. 8(b)

and Table IV (second row), the respiratory rate extraction be-
came inaccurate due to the heart rate detection. Consequently,
there was no significant difference among all methods. Thus,
for the respiratory rate extraction in the EHF range, we need to
make sure that the heart and respiratory rates do not overlap.
Otherwise, in most instances, the heart rate will be selected as
the dominant pole instead of the respiratory frequency.

3) Discussion and Future Work: Spontaneous breath data
result: We collected PPG data during spontaneous breathing
from two male subjects. As a pilot demonstration of the robust-
ness of our proposed method, we performed the respiratory rate
estimation on 30 s segments for the entire 3 min data. The data
segments were shifted by 10 s for the entire PPG recording,
and the true respiratory rates were evaluated by counting the
number of peaks measured from the respitrace system. For the
OPS only, the mean and variance of RMSEs were 0.0347 and
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TABLE IV
MEANS AND VARIANCES OF RMSES AND CORRESPONDING STATISTICAL SIGNIFICANCE WITH P-VALUES OF SIX METHODS IN RESPIRATORY RANGE OF EHF

(1.0–1.5 HZ) FOR UPRIGHT POSITION: MEANS AND VARIANCES OF RMSES

0.0037, respectively, whereas they were 0.0149 and 0.0002 for
WNN-PF.

Effect of initial set of particles: The performances of PF
methods are affected by the initial set of particles chosen. In this
paper, the initial set of particles was chosen based on the pole
angle with the highest magnitude as determined by OPS. The
accuracy of the PF method will certainly benefit and converge
faster to a true solution if the initially chosen set of particles is
closest to the true respiratory rate. This is the primary reason
why we have combined the OPS with PF to obtain near-optimal
solutions. For more accurate results than presented in this paper,
a method, which provides the optimal initial set of particles, will
need to be investigated.

Multiple dynamic model: In this study, we only considered
fixing the breathing rate for the entire duration of the data record-
ing. In the event of different breathing rates in a sample, the
proposed method would not be optimal. For example, a subject
might breathe at one rate and then either slowly or abruptly tran-
sition to a different breathing rate. To account for these different
scenarios, a dynamic model is needed. For example, in the case
of a constant breathing rate followed by an increase and then
decrease in breathing rates, we may consider the following three
models:

Ri,j (n) = Fj

(
R

i
(n − nsam)

)
+ Q2(n), for j = 1, 2, 3

(16)
where

F1 (R(n − nsam)) = R(n − nsam) (17-1)

F2 (R(n − nsam)) = R(n − nsam) + IR (17-2)

F3 (R(n − nsam)) = R(n − nsam) − DR (17-3)

where IR is the increased rate and DR is the decreased rate.
Note that 3 × I predicted particles will be generated for these
particular models. The question remains, however, how can we
obtain the best values for the parameters IR and DR and dynam-
ically change their weights depending on the breathing scenario
since they are unknown. These questions will be investigated in
our future work.

IV. CONCLUSION

We presented the combined OPS-PF algorithm and examined
the robustness of five different likelihood functions for estima-
tion of respiratory rates directly from pulse oximeter recordings.
They were evaluated on 33 healthy subjects with a wide range
of breathing rates varying from 0.2–1.5 Hz. We found that the

combined OPS-PF approaches provided better accuracy than the
solely OPS-based AR model for all breathing rates considered.
The robustness of the combined OPS-PF approaches is evident
as the accuracy is intact even for breathing rates as high as 1.5
Hz. This suggests that our proposed approach is also applica-
ble for extracting breathing rates during exercise. We are not
aware of any other algorithms that are able to provide such high
breathing rates directly from a pulse oximeter. It should also be
noted that the processing time was 10 ms for SN-PF, NN-PF,
and WNN-PF, and 30 ms for PDA-PF and WPDA-PF. Thus the
combined OPS-PF approach can be realizable in real time for
practical applications.

REFERENCES

[1] K. H. Chon, S. Dash, and K. Ju, “Estimation of respiratory rate from pho-
toplethysmogram data using time-frequency spectral estimation,” IEEE
Trans. Biomed. Eng., vol. 56, no. 8, pp. 2054–2063, Aug. 2009.

[2] P. Leonard, T. F. Beattie, P. S. Addison, and J. N. Watson, “Standard
pulse oximeters can be used to monitor respiratory rate,” Emerg. Med. J.,
vol. 20, no. 6, pp. 524–525, Nov. 2003.

[3] P. Leonard, T. D. Clifton, and P. S. Addison, J. N. Watson, and
T. Beattie, “An automated algorithm for determining respiratory rate by
photoplethysmogram in children,” Acta Paediatr., vol. 95, no. 9, pp. 1124–
1128, Sep. 2006.

[4] P. Langley, E. Bowers, and A. Murray, “Principal component analysis as a
tool for analysing beat-to-beat changes in electrocardiogram features: Ap-
plication to electrocardiogram derived respiration,” IEEE Trans. Biomed.
Eng., vol. 57, no. 4, pp. 821–829, Apr. 2009.

[5] P. S. Addison, “Secondary transform decoupling of shifted nonstationary
signal modulation components: Application to photoplethysmography,”
Int. J. Wavelets Multiresolution Inf. Process., vol. 2, no. 1, pp. 43–57,
2004.

[6] P. S. Addison, “Secondary wavelet feature decoupling (SWFD) and its use
in detecting patient respiration from the photoplethysmogram,” in Proc.
25th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., 2003, vol. 3, no. 1,
pp. 2602–2605.

[7] D. Clifton, J. G. Douglas, P. S. Addison, and J. Watson, “Measurement of
respiratory rate from the photoplethysmogram in chest clinic patients,” J.
Clin. Monit. Comput., vol. 21, no. 1, pp. 55–61, Feb. 2007.

[8] H. Wang, K. Siu, K. Ju, and K. H. Chon, “A high resolution approach to
estimating time-frequency spectra and their amplitudes,” Ann. Biomed.
Eng., vol. 34, no. 2, pp. 326–338, Feb. 2006.

[9] H. Wang, S. Lu, K. Ju, and K. H. Chon, “A new approach to closed-
loop linear system identification via a vector autoregressive model,” Ann.
Biomed. Eng., vol. 30, no. 9, pp. 1204–1214, 2002.

[10] R. Zou and K. H. Chon, “Robust algorithm for estimation of time-varying
transfer functions,” IEEE Trans. Biomed. Eng., vol. 51, no. 2, pp. 219–228,
Feb. 2004.

[11] J. Lee and K. H. Chon, “Respiratory rate extraction via an autoregressive
model using the optimal parameter search criterion,” Ann. Biomed. Eng.,
DOI: 10.1007/s10439-010-0080-9, 2010.

[12] S. Lu, K. H. Ju, and K. H. Chon, “A new algorithm for linear and nonlinear
ARMA model parameter estimation using affine geometry,” IEEE Trans.
Biomed. Eng., vol. 48, no. 10, pp. 1116–1124, Oct. 2001.

[13] R. Zou, H. Wang, and K. H. Chon, “A robust time-varying identification
algorithm using basis functions,” Ann. Biomed. Eng., vol. 31, no. 7,
pp. 840–853, Jul.–Aug. 2003.



LEE AND CHON: AUTOREGRESSIVE MODEL-BASED PARTICLE FILTERING ALGORITHMS FOR EXTRACTION OF RESPIRATORY RATES 2167

[14] L. Faes, G. Nollo, and K. H. Chon, “Assessment of Granger causality by
nonlinear model identification: Application to short-term cardiovascular
variability,” Ann. Biomed. Eng., vol. 36, no. 3, pp. 381–395, Mar. 2008.

[15] X. Xiao, Y. Li, and R. Mukkamala, “A model order selection criterion with
applications to cardio-respiratory-renal systems,” IEEE Trans. Biomed.
Eng., vol. 52, no. 3, pp. 445–453, Mar. 2005.

[16] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-Gaussian Bayesian tracking,”
IEEE Trans. Signal Process., vol. 50, no. 2, pp. 174–188, Feb. 2002.

[17] J. H. Kotecha and P. M. Djuric, “Gaussian particle filtering,” IEEE Trans.
Signal Process., vol. 51, no. 10, pp. 2592–2601, Oct. 2003.

[18] I. Smal, K. Draegestein, N. Galjart, W. Niessen, and E. Meijering, “Particle
filtering for multiple object tracking in dynamic fluorescence microscopy
images: Application to microtubule growth analysis,” IEEE Trans. Med.
Imag., vol. 27, no. 6, pp. 789–804, Jun. 2008.

[19] Y. Rathi, N. Vaswani, and A. Tannenbaum, “A generic framework for
tracking using particle filter with dynamic shape prior,” IEEE Trans.
Image Process., vol. 16, no. 5, pp. 1370–1382, May 2007.

[20] A. C. Sankaranarayanan, A. Srivastava, and R. Chellappa, “Algorithmic
and architectural optimizations for computationally efficient particle fil-
tering,” IEEE Trans. Image Process., vol. 17, no. 5, pp. 737–748, May
2008.

[21] S. Hong, J. Lee, A. Athalye, P. M. Djuric, and W. D. Cho, “Design
methodology for domain specific parameterizable particle filter realiza-
tions,” IEEE Trans. Circuits Syst. I, vol. 54, no. 9, pp. 1987–2000, Sep.
2007.

[22] S. G. Fleming, “A comparison of signal processing techniques for the ex-
traction of breathing rate from the photoplethysmogram,” Int. J. Biomed.
Sci., vol. 2, no. 1, pp. 232–236, 2007.

[23] P. Leonard, N. R. Grubb, P. S. Addison et al., “An algorithm for the
detection of individual breaths from the pulse oximeter waveform,” J.
Clin. Monit. Comput., vol. 18, no. 5–6, pp. 309–312, Dec. 2004.

[24] X. R. Li, “Tracking in clutter with strongest neighbor measurements-Part
I: Theoretical analysis,” IEEE Trans. Autom. Control, vol. 43, no. 11,
pp. 1560–1578, Nov. 1998.

[25] Y. Bar-Shalom and W. D. Blair, Multitarget-Multisensor Tracking: Appli-
cations and Advances. vol. III, Norwood, MA: Artech House, 2000.

[26] A. Jadbabaie, J. Lin, and S. A. Morse, “Coordination of groups of mobile
autonomous agents using nearest neighbor rules,” IEEE Trans. Autom.
Control, vol. 48, no. 6, pp. 988–1001, Jun. 2003.

[27] C. Rasmussen and G. D. Hager, “Probabilistic data association methods
for tracking complex visual objects,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 23, no. 6, pp. 560–576, Jun. 2001.

[28] M. Bolic, P. M. Djuric, and S. Hong, “Resampling algorithms and ar-
chitectures for distributed particle filters,” IEEE Trans. Signal Process.,
vol. 53, no. 7, pp. 2442–2450, Jul. 2005.

[29] A. Doucet, S. Godsill, and C. Andrie, “On sequential Monte Carlo sam-
pling methods for Bayesian filtering,” Stat. Comput., vol. 10, no. 3,
pp. 197–208, Jul. 2000.

Jinseok Lee (M’09) received the dual B.S. degree in
electrical engineering from both Stony Brook Univer-
sity, State University of New York, Stony Brook, NY,
and Ajou University, Suwon, Korea, and the Ph.D.
degree in electrical engineering from Stony Brook
University.

He is currently a Postdoctoral Associate at the
Department of Biomedical Engineering, Worcester
Polytec hnic Institute, MA. His current research in-
terests include medical instrumentation, low-power
VLSI design for biomedical signal wireless commu-

nication, biomedical signal processing, and identification and modeling of phys-
iological systems.

Ki H. Chon (SM’08) received the B.S. degree
in electrical engineering from the University of
Connecticut, Storrs, the M.S. degree in biomedi-
cal engineering from the University of Iowa, Iowa
City, and the M.S. degree in electrical engineer-
ing and the Ph.D. degree in biomedical engineer-
ing from the University of Southern California, Los
Angeles.

He is currently a Professor and the Chair at the
Department of Biomedical Engineering, Worcester
Polytechnic Institute, MA. His research interests in-

clude medical instrumentation, biomedical signal processing, and identification
and modeling of physiological systems.

Prof. Chon is an Associate Editor of the IEEE TRANSACTIONS ON BIOMEDI-
CAL ENGINEERING.


