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Abstract
This paper proposes a novel structural health monitoring framework for damage detection of
smart structures. The framework is developed through the integration of the discrete wavelet
transform, an autoregressive (AR) model, damage-sensitive features, and a support vector
machine (SVM). The steps of the method are the following: (1) the wavelet-based AR (WAR)
model estimates vibration signals obtained from both the undamaged and damaged smart
structures under a variety of random signals; (2) a new damage-sensitive feature is formulated
in terms of the AR parameters estimated from the structural velocity responses; and then (3)
the SVM is applied to each group of damaged and undamaged data sets in order to optimally
separate them into either damaged or healthy groups. To demonstrate the effectiveness of the
proposed structural health monitoring framework, a three-story smart building equipped with a
magnetorheological (MR) damper under artificial earthquake signals is studied. It is shown
from the simulation that the proposed health monitoring scheme is effective in detecting
damage of the smart structures in an efficient way.

(Some figures may appear in colour only in the online journal)

1. Introduction

In recent years, smart control technology has been proposed
in large-scale structures because the dynamic behavior of
a structural system can be modified to counter destructive
environmental forces without significantly increasing the
mass of the structure (Spencer et al 1997, Nagarajaiah and
Spencer 2003, Hurlebaus and Gaul 2006, Kim et al 2009).
However, the performance of the smart control systems
can degrade in the presence of sensor/actuator faults and/or
structural damage. To address the aforementioned issues,
structural health monitoring (SHM) has become increasingly
important for large-scale civil infrastructures, because damage
affects the current or future performance of the structures
(Sharifi et al 2010). SHM can provide information when the
structures experience any significant change or damage. SHM
improves the safety and reliability of critical structures by

detecting the damage before they reach a critical state. It also
allows rapid damage assessment. In order to practice SHM
more efficiently, engineers and researchers have developed
various global and local approaches.

In general, SHM can be divided into local and global
methods (Chang 2005). The local methodology (also known
as the visual method) usually detects damage using local
information such as eye inspection, acoustic emission, eddy
current scanning, magnetic field methods and the thermal
field method, among others. The methods are very sensitive
and are able to identify even slight damage. However, it
may be challenging to apply the local methods to some
applications due to extensive equipment installation and
prohibitive costs. In contrast, being a vibration-based method,
the global method makes it possible to detect damage using
data measured from the structural systems. It can identify
structural damage more efficiently when the damage may
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be hidden below the surface of the structure. Also, it has
the potential to facilitate the more economical management
and maintenance of large-scale civil infrastructures. As for
the vibration-based SHM, a feature extraction scheme can be
used. It identifies damage-sensitive properties, obtained from
the structural dynamic responses. One of the effective feature
extraction procedures is system identification (SI) using the
measured data (Kim et al 2009). SI can be used to identify
the location and the severity of the damage by constructing
mathematical models of dynamic systems from measured
data. The SI techniques can be applied to either a set of input
and output data or univariate input/output data. In particular,
the output-only SI methods, such as an autoregressive model,
have become of significance in assessing large-scale civil
structures, since the input data (e.g. environmental conditions)
are not readily available.

The autoregressive (AR) time series model is one
example of using output-based SI methods. Due to its
advantage of requiring only the output data from the structure
under ambient excitations, time series analysis methods using
the AR model are being employed by various researchers
(Silva et al 2008, Nair et al 2006, Ettefagh et al 2007, Nair
and Kiremidjian 2007, Carden and Brownjohn 2007, Brincker
et al 1995a, Zheng and Mita 2007, Brincker et al 1995b,
Kondo and Hamamoto 1996). Once a specific model is
established through the time series method, structural damage
can be identified. The autoregressive (AR) coefficients
of the time series model can represent the dynamics of
damage-sensitive features, by observing the changes in the
AR coefficients (Nair et al 2006, Sohn et al 2000, Nair and
Kiremidjian 2007, Sohn and Farrar 2000, Lu et al 2008,
Carden and Brownjohn 2007, Gul and Catbas 2009, Mosavi
et al 2011). Nair et al (2006) have suggested a new
damage-sensitive feature which is a function of the first
three AR coefficients. They performed a hypothesis test
involving the t-test to assess the significance of the damage
identification. The results provided effective representation of
structural damages and their localization within a structural
system.

However, all of the aforementioned approaches have
been applied based on the assumption that the structure
under investigation is linear and time invariant: to date,
there is no study on the application of nonlinear and
time-varying AR-based SHM schemes to smart structures.
In addition, most AR modeling algorithms require intensive
computation time to obtain the parameter estimates, which
can become a drawback for real time applications. Such a
problem can be solved by a discrete multi-resolution wavelet
transform. Hence, perhaps it would be informative to cite
the work of Daoudi et al (1999) on a multi-scale analysis
framework. They integrated a multi-scale AR model with all
compactly supported wavelets under an assumption that the
prediction errors are white. To demonstrate its effectiveness,
the multi-scale analysis framework was applied to the problem
of estimating a fractional Brownian motion (fBm). However,
such a hybrid scheme has not yet been applied to the problem
of health monitoring of civil structures equipped with smart
control devices.

The wavelet transform (WT) provides a time–frequency
representation of the signal through time and scale window
functions. The WT reduces computational time, and is also
effective in reduction of noise when measured vibration
signals are obtained with undesirable noise (Mitchell et al
2012a, 2012b). The WT has been used for SHM and damage
detection due to its advantages such as data compression
and noise reduction (Hou et al 2000, Bajaba and Alnefaie
2005, Rucka 2011, Gokdag 2010, Daoudi et al 1999). In this
paper, the WT is integrated with the AR (WAR) such that
the measured data are compressed and de-noised. Hence the
AR models can be efficiently constructed. When the WAR
model is available from both the undamaged and damaged
dynamic systems, a supervised classification approach, the
support vector machine (SVM), can be used to detect the
damage.

The SVM technique (Vapnik 1995) for solving pattern
recognition problems is being considered to classify the target
structures as either damaged or healthy. The SVM is based
on statistical learning theory, which classifies the given data
by finding the optimal hyperplane with the largest margin
between the classes in a high dimensional feature space.
The SVM has recently been applied for structural damage
detection because of its ability to form an accurate boundary
and its good generalization capability with large margin scales
(Park et al 2007, Mita and Hagiwara 2003, Worden and Lane
2001, Shimada and Mita 2005). In this paper, based on the
differences in eigenvalues (or poles or AR coefficients) of the
damaged and undamaged structures, the damage is identified
using the SVM.

This study will be the first attempt to systematically
integrate the WT, the AR, the damage-sensitive energy
feature (DEF), and the SVM into a single SHM framework
for damage detection of smart structures equipped with
time-varying nonlinear hysteretic control devices. This paper
is organized as follows: first, the wavelet-based autoregressive
(WAR) time series model is described in section 2. Section 3
discusses the SVM, followed by simulation results in
section 4. Concluding remarks are given in section 5.

2. Wavelet-based AR

In this paper, a novel SHM scheme for damage detection
in smart structures is presented as shown in figure 1. First,
the discrete wavelet transform (DWT) is applied to the
measurements in order to not only reduce the computational
time but also reduce noise from the measured data. Then,
the AR time series model estimates behavior of structural
dynamic systems, based on the wavelet-filtered data. Once the
WAR is constructed, the AR coefficients from the WAR model
are extracted to identify structural damage. The prediction
root mean squared error (RMSE) is minimized by using the
least-squares method.

The main advantage of the proposed approach is that
it can be applied to structures under ambient vibrations. To
apply the proposed method to real structures, two excitation
sources will be needed: first, the structures need to be excited
by impact hammers, shakers, vehicles or unknown ambient
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Figure 1. Architecture of the proposed WAR–SVM.

excitation sources. The second excitation is the voltage
signal to input to the MR damper, which will be converted
into currents using voltage-to-current converters. Based on
these excitations, several measurements will be collected,
including displacements, velocities, accelerations, and forces.
Then, appropriate measurements will be selected to allow the
proposed signal processing technique to detect any damage in
the structures. However, in real applications, there are many
challenging issues. For example, the effects of temperature
changes lead to a shift of fundamental frequencies in large
civil structures. This may lead to undesirable decision making
about structural damage (Sohn et al 1998).

2.1. AR model

In general, the AR model is given by

y(n) =
P∑

i=0

aiy(n− i)+ e(n), (1)

where P represents the optimal AR model order. The term
e(n) is considered a noise source or prediction-error term.
The parameter ai represents to-be-estimated coefficients of
the AR term. The candidate vectors are the following: y(n −
1), . . . , y(n−P). This candidate vector can be arranged as the

matrix shown below:

y(0) y(−1) · · · y(1− P)

y(1) y(0) · · · y(2− P)
...

... · · ·
...

y(n− 1) y(n− 2) · · · y(n− P)
...

... · · ·
...

y(N − 1) y(N − 2) · · · y(N − P),

(2)

where N is the total number of data points. With the new
candidates for linearly independent vectors, least-squares
analysis is performed:

y(n) = θT
g H+ e(n), (3)

where H = [h0, h1, . . . , hR], hi are the selected linearly
independent measurements, R is the maximum number of
selected vectors and

θg = [g0, g1, . . . , gR]
T, (4)

where gi is the coefficient estimate of the AR model. The
objective is to minimize the equation error, e(n), in the
least-squares sense using the criterion function defined as

JN
(
θg
)
= [y(n)− θT

g H]2. (5)

The criterion function in (5) is quadratic in θg, and can
be minimized taking a partial derivative with respect to θg,
yielding the following well-known least-squares equation:

θ̂g = [HHT
]
−1Hy(n). (6)

With the obtained coefficients, we calculate every |g2
mh2

m|, and
rearrange the hm in descending order. Note that the over-bar
represents the time average. At this step of the algorithm,
the number of candidate vectors hm necessary for obtaining
proper accuracy needs to be chosen. This approach is taken
in order to retain only the hm that reduce the error value
significantly. If either negligible decrease or increase in the
error value by adding additional hm is found, then those hm
are dropped from the model. Once only those hm that reduce
the error value significantly are obtained, the AR model terms
are estimated using the least-squares method, as described by
Lu et al (2001). In order to enhance the efficiency of the AR
model, the DWT method is introduced. The integration of the
WT method helps not only to reduce the computational time,
but also to reduce the amount of data noise.

2.2. Discrete wavelet transform (DWT)

The continuous WT is a time–frequency analysis method
which allows arbitrarily high localization of high frequency
signal features within the given time. The continuous WT can
be defined as

Wψ f (bw, aw) =
1
√

aw

∫
∞

−∞

f (t)ψ

(
t − bw

aw

)
dt, (7)

where ψ(t) is the wavelet function, and aw and bw represent
the scale and the translation parameter, respectively. The
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Figure 2. Wavelet transform-based multi-resolution analysis
framework.

Figure 3. Wavelet transform-based multi-resolution analysis
framework.

DWT, which can yield a fast computation of WT, can be
derived:

Ws1,s2 = 2s1/2
∑

n
f (n)ψ

(
2s1n− s2

)
, (8)

where f (n) is the discrete time signal, and s1 and s2 represent
the scaling factor and the translation factor, respectively. The
WT can be applied to multi-resolution analysis (WMRA)
frameworks using wavelet basis functions (Mallat 1989). The
WMRA can decompose the structural response signals into
sub-components at different resolutions as shown in figure 2.

It decomposes the measured signals into low and high
frequency components, which are called approximation (Ap)
and detail (Wp) components, respectively. Hence it allows
for a representation of the measured responses at a single
level of approximation by discretizing the measurement using
the step size, and therefore significantly reducing the total
number of data points. It is also known as a multi-filter
bank (Strang and Nguyen 1996). The multi-filter bank-based
wavelet decomposition tree is depicted in figure 3.

In the configuration of the multi-filter bank-based wavelet
decomposition, the following vector notation is used:

Ap := {as1,s2} (9)

Wp := {ws1,s2} (10)

H0 := {h0[s2]} (11)

H1 := {h1[s2]} (12)

where H0 and H1 are convolution operators. The subspaces
Ap are generated by φ(n) ∈ L2(Z), called the scaling function,
while Wp is generated by the wavelet function ψ(n) ∈ L2(Z),
where Z is the set of all integers. The scaling function
φ(n) and the corresponding wavelet ψ(n) are defined by the
following dilation equations:

φs1,s2 = 2s1/2φ(2s1n− s2), (13)

ψs1,s2 = 2s1/2ψ(2s1n− s2). (14)

The scaling function acts as a low pass filter and also provides
an approximation of the original series in the AR modeling
process, while the corresponding wavelet acts as a high pass
filter and provides the detailed information. The Daubechies
scaling function is used. In summary, by removing the detail
components (Wp−p∗) from the original signal (Ap), some
signals that are not related to fundamental characteristics of
the dynamic system are filtered, e.g. noise signals. Hence
the filtered signal (Ap−p∗) is used for modeling the AR time
series models, that is, the wavelet function is not used. This
is because we extract the characteristic properties (i.e. the
approximation function) of the smart structure, not any
damage features (i.e. the detail function) for smart structures.
This helps compress the size of the data.

2.3. Wavelet-based AR model

As previously discussed, the WT provides a useful
decomposition of the time series in both time and frequency.
Thus, when it is incorporated into the AR model, the WT
enhances the efficiency of the modeling process. A WAR
model is proposed as an integration of the WT into the AR
model. The wavelet-based AR can be derived as follows:

ŷ(n) =
P∑

l1=0

al1 Ap−p∗(n− l1)+ e(n). (15)

The proposed WAR model uses level two multi-resolution
wavelet decomposition. To perform the structural damage
detection on smart structures, the AR coefficients are
extracted from the AR models.

3. Structural damage detection

3.1. AR coefficients

Any damage to a structure will cause changes in the system
stiffness and damping. These changes can be quantitatively
measured by observing the AR coefficients. This is because
the AR coefficients are correlated with the eigenvalues
of dynamic systems. Hence, when the AR coefficients
from the damaged and undamaged systems are available,
damage-sensitive features can be extracted in order to detect
the damage. However, the first few AR coefficients have
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limited use for the linear stationary dynamic signals (Nair
et al 2006). It would not be effective to apply the AR
coefficients to the responses measured from the nonlinear
time-varying dynamic systems such as structures equipped
with nonlinear hysteretic control devices. With this in mind,
a new damage-sensitive feature is defined in terms of the
AR parameters estimated from the velocity responses of the
structure-control system, termed the damage-sensitive energy
feature or DEF.

3.2. Damage-sensitive energy feature (DEF)

In this paper, a new damage-sensitive energy feature (DEF) is
defined through the grouping of the AR coefficients. Although
a number of damage features were considered, dividing the
AR parameters into two groups appeared to be the most
effective, as it is challenging to extract damage-sensitive
features using only the first few AR coefficients obtained
from nonlinear dynamic systems. From many trial and error
simulations, it was found that the AR coefficients normalized
by the pseudo-energy expression provide the most effective
damage features. The proposed damage feature is defined as
follows:

DEF =
P∑
q

1
2 m

∣∣∣VE
q

∣∣∣2 , (16)

where m is the mass of the structure, VE
q is the qth

AR coefficient, which can be obtained from the velocity
responses, and P is the total number of AR coefficients. Note
that the velocity is obtained from a Kalman filter estimator,
based on three acceleration responses. The effectiveness of
the estimator has been demonstrated from previous studies,
numerically and experimentally (Dyke et al 1998). The value
of the mass m is unknown in real applications although it can
be roughly estimated using information on dimensions and
material densities. Hence, the value of m in real structural
applications needs to be determined by trial and error until
the healthy and damaged statuses are reasonably visualized.
However, m in this application does not need to be an exact
representation of the structure’s mass. The value of the mass
is used only for the normalization process. Note that it would
not be easy to identify some damage in the smart structure
because many DEF values are collected; in this paper 100
DEF points are obtained from 100 WAR models. To address
this issue, an SVM is applied to the sets of DEF values in
order to effectively classify the measured data into damaged
or undamaged status.

3.3. Support vector machines (SVMs)

SVMs classify data by finding the optimal hyperplane with
the largest margin between the classes in a high dimensional
feature space (Burges 1998). Consider a training data set
S comprising N observations, {yi}, where i = 1, 2, . . . ,N
along with corresponding target values {Ti} with two separate

classes, i.e. Ti ∈ {−1, 1}, and the equation of the hyperplane
is

FH = 〈ws, φ(y)〉 + bs = 0,

ws ∈ R0, y ∈ R0, bs ∈ R (17)

where y is a zero-dimensional input vector, φ(y) is a
feature-space transformation, ws is the weight vector, bs is
the bias, and 〈ws, φ(y)〉 is the inner product of ws and y. The
optimal separating hyperplane is the hyperplane that separates
S by concentrating all points within the same class on one side
while maximizing the margin, which is the distance between
the closest points of the divided classes. This closest vector
yi is called the support vector. SVMs can be categorized into
linear and nonlinear.

Linear SVMs can be classified into hard-margin SVMs
and soft-margin SVMs (Mainmon and Rokach 1980). A
hard-margin SVM ensures that the maximum margin classifier
classifies correctly, under the condition that the data are
separable. The equation for finding the support vectors and
their optimized separating hyperplane for hard-margin SVM
is defined as follows.

Minimize d(ws) =
1
2 〈ws,ws〉.

Subject to Ti(〈ws, yi〉 + bs) ≥ 1, for i = 1, 2, . . . ,N.

(18)

Since data are often not linearly separable, soft-margin SVMs
introduce the idea of slack variables δi = |Ti − FH(yi)| and
the tradeoff between maximizing the margin and minimizing
the number of misclassified variables by the parameter Cs.
The equation for finding the support vector and its optimized
separating hyperplane for the soft-margin SVM is defined as
follows.

Minimize d(ws) =
1
2 〈ws,ws〉 + Cs

∑
δi

Subject to Ti(〈ws, yi〉 + bs) ≥ 1− δi,

for i = 1, 2, . . . ,N, for δi ≥ 0.

(19)

The application of a linear SVM can be further extended to
build a nonlinear SVM. The concept of nonlinear SVM is to
allow an SVM with a nonlinear decision surface to classify
nonlinearly separable data. For a nonlinear SVM, each input
data point yi is transformed into a feature space using a
nonlinear mapping yi → 8(yi). The classification constraints
in (19) are replaced with

Ti(〈ws,8 (yi)〉 + bs) ≥ 1, for i = 1, 2, . . . ,N. (20)

A kernel function Ks is a function that corresponds to a dot
product in some expanded feature space. The benefit of the
kernel function is that, as the original input vectors appear
only in terms of inner products, the kernel function can be
calculated without knowing 8(yi) explicitly:

Ks
(
yi, yj

)
= 〈8(yi),8(yj)〉. (21)

Among the possible function candidates, the Gaussian radial
basis function is used to assess the damage of a structure:

Ks
(
yi, yj

)
= exp

(
−
‖yi − yj‖

2

2σ 2

)
. (22)
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Figure 4. MR damper.

Figure 5. Smart building equipped with MR dampers.

In order to demonstrate the effectiveness of the nonlinear
wavelet-based AR–SVM classification technique, a three-
story building equipped with an MR damper is investigated.

4. Case study

4.1. A structure equipped with magnetorheological (MR)
dampers

To demonstrate the effectiveness of the proposed WAR–SVM
framework, a three-story building structure employing MR
dampers was investigated (Kim et al 2009). It was a laboratory
model (Dyke et al 1996) of a prototype building structure that
was developed by Chung et al (1989). The MR damper is
one of the promising semi-active control devices for structural
vibration reduction that combines the best features of both
active and passive control systems. An MR damper is filled
with MR fluids and controlled by a magnetic field as shown in
figure 4.

When a magnetic field is applied to the MR fluids,
the MR fluids are changed into a semi-solid state in a
few milliseconds. A typical example of a building structure
employing an MR damper is shown in figure 5.

Figure 6. Integrated building structure–MR damper system.

The equation of motion of the structure is defined as

Mÿs + Cẏs +Kys = 0fMR (t, ys1, ẏs1, v1)−M3ẅg, (23)

where ẅg represents the ground acceleration, M the mass
matrix, K the stiffness matrix, and C the damping matrix. The
vector ys is the displacement relative to the ground, ẏs the
velocity, ÿs the acceleration; yi and ẏi are the displacement
and the velocity at the ith floor level relative to the ground,
respectively, vi is the voltage level to be applied, and 0 and Λ
are the location vectors of control forces and the disturbance
signal, respectively. Figure 6 shows the configuration of the
integrated building–MR damper system.

The second order differential equation can be converted
into a state space model:

żs = A∗zs + B∗fMR (t, zs1, zs4, v1)− E∗ẅg

y = C∗zs + D∗fMR (t, zs1, zs4, v1)+ n,
(24)

where

A∗ =

[
0 I

−M−1K −M−1C

]
, (25)

B∗ =

[
0

M−1F

]
, (26)

C∗ =

 I 0

0 I

−M−1K −M−1C

 , (27)

D∗ =

 0

0

M−1F

 , (28)

E∗ =

[
0

F

]
, (29)

F is the location matrix of where chevron braces are located
within the building structure, and n is the noise vector. The
properties of a three-story building structure are given: the
mass of each floor m1 = m2 = m3 = 98.3 kg; the stiffness
of each story k1 = 516 000 N m−1, k2 = 684 000 N m−1 and
k3 = 684 000 N m−1; and damping coefficients of each floor
c1 = 125 N s m−1, c2 = 50 N s m−1 and c3 = 50 N s m−1. The
properties of the SD-1000 MR damper are given by table 1.
Based on this building–MR damper system, a set of dynamic
responses is collected for use in modeling the WAR model.
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WAR

Figure 7. Comparison of the WAR model and healthy data from
smart structures.

Table 1. Parameters for SD-1000 MR damper model.

Parameter Value Parameter Value

c0a 21.0 N s cm−1 αa 140 N cm−1

c0b 3.50 N s cm−1 V−1 αb 695 N cm−1 V−1

k0 46.9 N cm−1 γ 363 cm−2

c1a 283 N s cm−1 β 363 cm−2

c1b 2.95 N s cm−1 V−1 A 301
k1 5.00 N cm−1 N 2
x0 14.3 cm η 190 s−1

4.2. System identification using the WAR models

To construct the WAR models, a random artificial earthquake
and a pseudo-random binary signal are applied to the
structure–MR damper system as input disturbance and control
current signals, respectively. Figure 7 represents one of 100
WAR models of the undamaged smart structure, while figure 8
represents one of 100 WAR models of the damaged smart
structure.

As shown in these figures, good agreement between the
proposed WAR model and the original data is found. In
addition, to quantify the performance evaluation, RMSE and
the fitting rate (FR) are used. As the first evaluation index, the
RMSE is given by

J1 = RMSE =

√∑
|ŷ− ỹ|2

N
, (30)

where ŷ is the estimation, ỹ is the actual structural response
data, and N is the number of data points. As the second
evaluation index, the fitting rate (FR) is used:

J2 = FR =

[
1−

var
(
ỹ− ŷ

)
var (ỹ)

]
× 100. (31)

If the trained model produces the same responses as the
original data, the FR is 100. Table 2 provides the training
results, including the error of the trained model and the actual

WAR

Figure 8. Comparison of the WAR model and damaged data from
smart structures.

Table 2. Training results and error.

Average training
time (s) J1 J2

AR Undamaged system 6.1673 0.0301 93.1530
Damaged system 6.2890 0.0380 93.3555

WAR Undamaged system 1.4173 0.0584 95.8929
Damaged system 1.4085 0.0549 96.1184

Table 3. C∗ obtained by fivefold cross-validation and grid search
method.

Scenario Value

50% stiffness at 1st floor 128
30% stiffness at 1st floor 128
15% and 10% stiffness at 1st floor 10
5% stiffness at 1st floor 128
50%, 30%, 10%, 15% and 5% stiffness at
2nd floor

10

Table 4. (C∗, σ ∗) obtained by fivefold cross-validation and grid
search method.

Scenario Value

50% stiffness at 1st floor (10, 0.25)
30%, 15% and 10% stiffness at 1st floor (10,

√
2)

5% stiffness at 1st floor (10, 0.5)
50%, 30%, 10%, 15% and 5% stiffness at
2nd floor

(10,
√

2)

response of the smart structure using the AR model and WAR
model.

The WAR model holds its advantage against the AR
model in terms of computational loads and the modeling
accuracy, i.e. the computation of the WAR only requires about
20% of the AR model’s training time with the better fitting
rate; the fitting rate of the WAR model is more than 95% while
that of the AR is about 93%. It should be noted that, even with
the computational load reduction, the WAR model has a very

7
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Figure 9. Class cluster centers, margins and decision making lines of the DEF distributions for 50% stiffness degradation. (a) 50%
degradation of the first floor stiffness and (b) 50% degradation of the second floor stiffness.

Figure 10. Class cluster centers, margins and decision making lines of the DEF distributions for 30% stiffness degradation. (a) 30%
degradation of the first floor stiffness and (b) 30% degradation of the second floor stiffness.

high fitting rate. Thus, the WAR model is used in detecting
structural damage in smart structures.

4.3. Structural damage detection

Based on the estimated WAR time series models, the DEFs
are extracted through the comparison between damaged and
undamaged states of the smart structure using our proposed
equation (15). The cluster center values of each group are
calculated using the fuzzy C-means clustering algorithm (Kim
et al 2011). The decision making depends on whether or
not the system is damaged and the associated margins are
derived using the SVM. In order for the SVM to separate
the training datasets into classes with the least possible error,
the best SVM kernel and its parameters must be selected. In
order to select the best SVM kernel and its parameters, the
performance evaluation of each kernel on various parameters
requires many trials and errors. If the target class that is
predicted differs from the known label of the point, that
target class can be classified as an error. By obtaining the
errors for a given number of test points, the error rate is

evaluated. The error rate is an indication of the SVM’s ability
to predict the damage in a structure. Therefore, the effect of
the kernel parameter (σ ) and regularization parameter (C) on
the SVM boundary with the lowest error rate is considered,
and the parameters with the lowest error accuracy rate using
cross-validation and grid search are chosen (Hsu et al 2010).
For one-dimensional DEF classification (i.e. related to the first
10 AR coefficients) a linear kernel with C = 2−5, . . . , 215

is considered in fivefold cross-validation to obtain the SVM
boundary, while for two-dimensional DEF classification (i.e.
related to both the first 10 AR and the first 100 AR parameters)
a Gaussian kernel with various grid pairs of (C, σ ), where
C = 2−5, . . . , 215 and σ = 2−15, . . . , 215, is considered.
The obtained parameters for one- and two-dimensional DEF
classifications are listed in tables 3 and 4, respectively. After
acquiring the most suitable kernel and its parameters, the
dataset can then be classified by the SVM.

Figures 9–13 show the results from the application of the
proposed DEF and the SVM algorithms to the smart structures
with stiffness degradations of 50%, 30%, 15% and 5%. In

8
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Figure 11. Class cluster centers, margins and decision making lines of the DEF distributions for 15% stiffness degradation. (a) 15%
degradation of the first floor stiffness and (b) 15% degradation of the second floor stiffness.

Figure 12. Class cluster centers, margins and decision making lines of the DEF distributions for 10% stiffness degradation. (a) 10%
degradation of the first floor stiffness and (b) 10% degradation of the second floor stiffness.

Figure 13. Class cluster centers, margins and decision making lines of the DEF distributions for 5% stiffness degradation. (a) 5%
degradation of the first floor stiffness and (b) 5% degradation of the second floor stiffness.

9
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Figure 14. Relationship between the lower and higher AR groups.
(a) 50% stiffness degradation at the first floor and (b) 50% stiffness
degradation at the second floor.

Figure 15. Relationship between the lower and higher AR groups.
(a) 30% stiffness degradation at the first floor and (b) 30% stiffness
degradation at the second floor.

each figure, (a) and (b) represent the first and second floor
damage cases, respectively.

As shown in the figures, the proposed DEF effectively
identifies the damage cases, except the 50% and 30% damage

Figure 16. Relationship between the lower and higher AR groups.
(a) 15% stiffness degradation at the first floor and (b) 15% stiffness
degradation at the second floor.

Figure 17. Relationship between the lower and higher AR groups.
(a) 10% stiffness degradation at the first floor and (b) 10% stiffness
degradation at the second floor.

cases at the first floor level. However, such issues can be
addressed by visualizing the relationship between the first AR
group (i.e. the summation of the first to tenth AR parameters)

10
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Figure 18. Relationship between the lower and higher AR groups.
(a) 5% stiffness degradation at the first floor and (b) 5% stiffness
degradation at the second floor.

and the second AR group (i.e. the summation of the first to
100th AR parameters). Figures 14–18 show such relationships
between each group of the AR parameters. As shown in the
figures, all the structural damage features can be identified. It
is shown in these figures that the damage in smart structures
can be more clearly discerned by finding the cluster centers
and margins.

5. Conclusion

This paper proposes a novel structural health monitoring
(SHM) scheme for damage detection of smart structures
undergoing destructive environmental forces by employing
time-varying nonlinear hysteretic control devices. The SHM
framework is developed through the integration of discrete
wavelet transform (DWT), autoregressive moving average
models (AR), and a new damage-sensitive feature and
support vector machine (SVM). The method is as follows:
(1) based on ambient excitation-based nonlinear dynamic
responses, wavelet-based AR (WAR) time series models are
constructed. (2) From the WAR models derived from both
the damaged and undamaged structural systems, damage-
sensitive energy features (DEFs) are extracted in terms of
the AR coefficients, which are related to the eigenvalues of
smart structures. (3) The damage is detected by observing
the migration of the extracted AR coefficients and SVM. To
demonstrate the effectiveness of the proposed WAR–SVM
health monitoring framework, a three-story building equipped
with a magnetorheological (MR) damper was studied. It is

demonstrated from the simulation that the proposed SHM
framework is effective in identifying the damage of smart
structural systems equipped with time-varying nonlinear MR
dampers.
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