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Abstract—We compare the performance of two different time–
frequency-based breathing rate (BR) detection algorithms when
used on three different physiological signals: the ECG, the pho-
toplethysmogram (PPG), and the piezoelectric pulse transducer
(PZO) signal. Studies carried out over the past have shown the ex-
istence of amplitude and/or FMs due to respiration in physiological
signals, such as those mentioned. In a recent study, we analyzed the
PPG signal and detected the FM and amplitude modulation effect
that controlled breathing had on it, and inferred the rate of respira-
tion using the time–frequency spectrum (TFS) (via a wavelet (WT)
or complex demodulation (CDM) approach). We showed that such
TFS BR detection methods were very accurate and consistently
outperformed the exclusively time-domain autoregressive model-
ing (AR) method, especially in the real-time (data length of 1 min)
case. We now explore the possibility of using these methods on the
ECG and the finger PZO signal, of which only the former has been
previously used with some success to derive BR. Testing performed
on 15 healthy human subjects for a range of BR and two body
positions showed that though the PPG signal gave the most con-
sistently high performance, the ECG and PZO also proved to be
reasonably accurate over longer time segments. Furthermore, the
CDM approach was on average either better than or comparable
to the WT method in terms of both accuracy and repeatability of
the detection.

Index Terms—Complex demodulation (CDM), ECG, piezoelec-
tric sensors, pulse oximeter, respiratory rate, wavelets (WTs).

I. INTRODUCTION

NONINVASIVE respiratory monitoring is an extensive field
of research, which has seen widespread interest for sev-

eral years. The necessity for early detection and diagnosis of po-
tentially dangerous conditions, such as sleep apnea [1], sudden
infant death syndrome [2], or chronic obstructive pulmonary dis-
ease [3] has fostered the development of several novel methods
for measuring respiratory activity [4], especially in ambulatory
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settings. Indeed, devices such as the capnograph, pulse oxime-
ter, and the inductance plethysmograph are routinely used in
hospital and critical care centers to monitor patients’ cardiores-
piratory status.

The term “respiratory activity” is generally understood to
encompass parameters, such as the patients’ rate and depth of
breathing, and degree of gas exchange [4], all of which are highly
quantifiable measures. However, it is important to understand
that measuring only one of these parameters is of considerably
less use than monitoring all of them, or at least as many as
possible. For instance, an inductance plethysmograph (a belt-
like device that quantifies the physical expansion of the chest
and/or abdominal wall) is a very good estimator of the breathing
rate (BR), but provides no information regarding the percentage
of oxygen saturation, thus lessening the cost-benefit advantage
considerably. To this end, several devices aim to estimate many
respiratory activity measures from as few nonobtrusive devices
as possible.

In a previous study [5], we attempted to derive estimates of
the BR from the signal acquired by the pulse oximeter—a device
based on photoplethysmography (PPG) that is used clinically to
measure the rate of arterial oxygen saturation (SaO2) and car-
diac rhythms—using a method based on time–frequency spec-
tral (TFS) estimation via complex demodulation (CDM) [6].
The objective is by no means a new one, and several notable
methods have been devised to measure respiratory rate from
the pulse oximeter signal [7]–[14], although a time–frequency
approach (as opposed to operating only in the time domain) is
a fairly recent development. We compared the known BR of 15
healthy young subjects with BR estimation from a time-domain
autoregressive (AR) method [9] and a wavelet (WT) based TFS
method [7], [8], [15]. Our findings confirmed that the inherent
nonstationarities and subtle FM, and amplitude modulation in
the PPG signal can be best detected using a TFS approach. Fur-
thermore, we also found that the CDM-TFS method performed
consistently at par with or better than the WT-based method in
terms of accuracy and repeatability, while being considerably
faster in terms of computation time.

The aim of the study is to determine whether a similar BR es-
timation method would work with other signals associated with
cardiorespiratory status, namely the ECG and the piezoelectric
pulse sensor (PZO). Specifically, we are interested in determin-
ing, which BR estimation method is optimal for ECG, PPG, and
PZO signals.

0018-9294/$26.00 © 2010 IEEE
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The ECG has been used in many different ways to quantify
effects of breathing. The most well-known respiration-related
effect is its influence on the variability of heart rate (respiratory
sinus arrhythmia). However, for the purposes of this study, we
are interested only in the rate of respiration. In this regard,
there has been a profusion of research on so-called ECG-derived
respiratory activity (EDR) measures, with a multitude of signal
processing algorithms available to derive respiratory induced
modulations from both multilead and single-lead ECG signals.
The simplest single-lead ECG algorithms utilize the amplitude
modulations in or variations in area under the QRS complex
or T-wave [16]. Usually, some signal processing method for
canceling baseline wander is used to enhance the detection in
the presence of noise or artifacts [17]. Alternatively, one can
also use the heart-rate time series (RR interval series) derived
from accurate QRS complex detection algorithms applied to the
ECG [16]. However, it is generally understood that the presence
of pacemakers and/or abnormal heart rhythms renders the heart-
rate method much less useful. As a result, we concentrate on
simply the raw ECG signal in this study and do not attempt to
derive any heart-rate series from it.

The piezoelectric sensor has been used in many studies to
measure the arterial pulse signal. It relies on the property of
the piezoelectric material to produce electrical potentials in re-
sponse to applied mechanical stress (the reverse is also true,
i.e., application of an electric field across the material will pro-
duce stress/strain variations in the material). Although piezo-
electric finger-pulse sensors have been around for some time,
there is a surprising dearth of literature on its applications and
potential uses, especially in the field of respiratory monitoring.
Nonperipheral piezoelectric sensors have been used to detect
breathing effects, utilizing the pyroelectric property [18], which
directly measures the electric potential changes produced when
the piezoelectric ceramic is impacted by respiratory airflow, or
by placing a piezoelectric transducer under the body [19], there-
fore it can directly measure the mechanical effects of heartbeat
and breathing, although Sato et al. [19] have only used this
on anesthetized mice. To the best of our knowledge, extraction
of breathing signals from the piezoelectric finger pulse has only
been done in one study, that of Chen et al. [20], which attempted
to extract the breathing signal from a polyvinylidene fluoride
(PVDF) sensor using simple time-domain filtering techniques.

Given the outlined scenarios, we aim to compare the WT
TFS and the CDM methods’ accuracy (median% detection er-
ror) and repeatability (interquartile range (IQR) of % detec-
tion error) when applied to the three physiological signals dis-
cussed earlier. The objective is to determine, which of these three
widely used signals gives the best estimates of BR when used in
real-time settings. Moreover, we aim to find any differences in
performances arising because of differences in TFS-estimation
methods (CDM or WT decomposition).

II. METHODS

A. Data Acquisition

Data were collected on 15 healthy subjects (seven female
and eight male, mean age 21 ± 1.2 years) using four different

sensors. An MP506 pulse oximeter (Nellcor Oximax, Boulder,
CO) reusable sensor (Durasensor DS-100 A) incorporating a
conditioning circuit with analog output of 4.864 kHz was at-
tached to each subject’s left index finger. On the right index
finger, the piezoelectric sensor (Jameco Electronics, Belmont
CA) was attached using a simple Velcro belt strap. A single-
lead ECG signal was obtained using a standard three electrode
system, with two electrodes on the chest and one close to the
waist. Breathing signal was also acquired via the Respitrace
system, which uses inductive plethysmography to provide cali-
brated voltage outputs corresponding to rib cage and abdominal
compartment volume changes. No subject had cardiorespira-
tory related pathologies. Data were collected in the upright and
supine positions. The subjects were instructed to breathe at a
constant rate according to a timed beeping sound, i.e., to start an
inspiration whenever they heard a beep sound programmed at
a chosen frequency. The data were collected for breathing fre-
quencies ranging from 0.2 to 0.6 Hz at an increment of 0.1 Hz.
We did not perform analysis higher than 0.6 Hz, since both the
WT and CDM approaches did not provide accurate BR esti-
mation results. Further, we did not include 0.1 Hz because the
Mayer wave has a characteristic at the same frequency and may
confound BR detection. The subjects were given a minute to
practice breathing at the beeping rate. Three minutes of data
were then collected for each frequency for each subject, for
both upright and supine positions, with appropriate rest periods
given to all subjects while the metronome beeping frequency
was being changed. Since in this study, we are merely inter-
ested in the rate of respiration and not the depth (amplitude),
a simple fast Fourier transform and/or manual counting of the
number of peaks can be done on the Respitrace signal to obtain
the true BR. Data acquisition was done using the ADInstru-
ments PowerLab/4Sp data acquisition system and routed into
the PC via a USB port. Chart v4.2.2 software (ADInstruments,
Colorado Springs, CO) was used to sample the analog signal at
200 Hz.

The BR estimation algorithms (implemented on MATLAB)
were applied to 1-min segments of the signal with an overlap of
50 s. Thus, BR was updated every 10 s. The 1-min signal seg-
ment sampled at 200 Hz was first downsampled to 20 Hz (after
low-pass filtering to prevent aliasing), and then, demeaned and
normalized. After this, one of the two BR estimation methods
described later is applied to the signal.

B. BR Detection Algorithms

1) Variable Frequency CDM Method for TFS Estimation:
We have described the CDM method in previous studies in
detail [5], [6] and present only a brief overview next.

Consider a sinusoidal signal x(t) to be a narrow band oscilla-
tion with a center frequency f 0 , instantaneous amplitude A(t),
phase φ(t), and the direct current component dc(t)

x(t) = dc(t) + A(t) cos(2πf0t + φ(t)). (1)

For a given center frequency, we can extract the instanta-
neous amplitude information A(t) and phase information φ(t)
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by multiplying (1) by e−j2πf0 t , which results in the following:

z(t) = x(t)e−j2πf0 t = dc(t)e−j2πf0 t +
(

A(t)
2

)
ejφ(t)

+
(

A(t)
2

)
e−j (4πf0 t +φ(t)) . (2)

A leftward shift by e−j2πf0 t results in moving the center
frequency f0 to zero frequency in the spectrum of z(t). If z(t)
in (2) is subjected to an ideal low-pass filter (LPF) with a cutoff
frequency fc < f0 , then the filtered signal zlp(t) will contain
only the component of interest and we obtain the following:

zlp(t) =
A(t)

2
ejφ(t) (3)

A(t) = 2 |zlp(t)| (4)

φ(t) = tan−1 imag(zlp(t))
real(zlp(t))

. (5)

The method can easily be extended to the variable frequency
case as explained in [6], where the modulating frequency is
expressed as

∫ t

0 2πf(τ)dτ and the negative exponential term

used for the demodulation is e
−j

∫ t

0
2πf (τ )dτ . The instantaneous

frequency can be obtained using the familiar differentiation of
phase information [21] as follows:

f(t) = f0 +
1
2π

dφ(t)
d(t)

. (6)

The variable frequency CDM (VFCDM) method, thus in-
volves a two-step procedure. The first step is to use the CDM or
what we termed the fixed frequency CDM (FFCDM) to obtain
an estimate of the TFS, and the second step is to select only
the dominant frequencies of interest for further refinement of
the time–frequency resolution using the VFCDM approach. In
the first step of the VFCDM method, a bank of LPFs is used
to decompose the signal into a suite of band-limited signals.
The analytic signals that are obtained from these, through use of
the Hilbert transform, then provide estimates of instantaneous
amplitude, frequency, and phase within each frequency band.

2) WT Decomposition Method for TFS Estimation: Leonard
et al. [11], [15], [22] utilize the WT decomposition method to get
an estimate of the TFS of the PPG signal. This is an established
method, which has been used in a wide range of applications
to get TFS estimates. In accordance with recommendations by
Leonard et al., we used a Morlet WT with a half-length of five
samples at the coarsest scale to get a scalogram of the signal. For
further technical details the reader may refer to [11], [15], [22].

3) Extraction of the FM Sequence: Note that filtering or peak
detection procedures on the measured ECG, PPG, and PZO data
are not required prior to computation of TFS via the VFCDM.
This is certainly one of the notable advantages of our approach.
After the TFS of the unaltered signal (ECG, PPG, or PZO) is
obtained either through the VFCDM or the WT methods, the
variation of the peaks at the pulse frequency are extracted. One
can do this relatively simply, since the peak at the heart-rate
frequency (approximately 1 Hz for healthy hearts) is easily the
highest of all other peaks for any of the three signals considered.

We thus define a “ridge band” around the heart-rate frequency.
For each time point, we detect the frequency within this “ridge
band” at which the spectrum has maximum amplitude. We can
thus obtain a time series of frequency values, which we call the
“FM sequence”. In keeping with our assumption that breathing
has a FM effect on the signal, we then find the power spectrum
of this FM sequence using a Welch method. The frequency
at which the highest peak occurs (within a specified feasible
breathing frequency range of 0.15–0.7 Hz) is the detected BR.
Other technical details of the algorithm can be found in [5].

Fig. 1 shows an example implementation of the algorithm for
the PPG signal of a subject breathing at 0.2 Hz (12 breaths per
minute) using the VFCDM and WT approaches. Note that the
y-axes’ ranges in Fig. 1(c) and (d) are slightly different. This is
because, in the WT methodology, frequency is an approximate
conversion from “scale”, whereas the VFCDM approach uses
the standard definition of frequency as periodicity of sinusoids.

III. RESULTS

A complete comparison of both methods for the three sig-
nals considered requires statistical comparisons of detection ac-
curacy, and consistency for a variety of breathing conditions
and true BRs. Similar to the analysis methods in our previous
study [5], we divided the BRs into two different categories. BRs
of 0.2 and 0.3 Hz were grouped into low-frequency (LF) group,
while BR’s of 0.4, 0.5, and 0.6 Hz were categorized as members
of the high-frequency (HF) group. We also studied the effect of
body position (supine or upright) on the detection performance.
Hence, we have four broad categories of test conditions, namely
supine LF, supine HF, upright LF, and upright HF. As mentioned
earlier, 3 min of data were collected for each subject for each
BR for two different body positions. For each such 3-minute
dataset, detection was carried out for 1-min data segments with
an overlap of 50 s. Hence for each subject, there were 13 differ-
ent observations for each BR (in supine and upright condition).

In order to measure performance of the detector, we quantified
the accuracy as well as the repeatability of each method. For this,
we first calculate the percentage detection error for every 1-min
data segment for each method as follows:

%Error =
Detected BR − True BR

True BR
× 100. (7)

We next quantified the “accuracy” as the median detection
error% over the 13 observations for each 3-min dataset. The
“repeatability” is measured as the IQR (difference between the
75th and 25th percentile) of the detection error% over the 13
observations. In general, we observed that the methods studied
had nonnormal distributions of the detection error% over the
3-min dataset. Therefore, we use the median and IQR instead of
the mean and standard deviation of the observed errors. Accord-
ingly, the statistical tests used are also nonparametric. The two
performance measures “accuracy” and “repeatability” defined
earlier are inverse metrics, i.e., the closer the value of median
error% (or IQR of error%) is to zero the better the “accuracy”
(or “repeatability”).

In order to perform a compact statistical hypothesis testing
for differences in the two performance metrics between different
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Fig. 1. Example BR estimation from the PPG signal using the VFCDM and WT methods. (a) Raw PPG signal acquired at 200 Hz. After low-pass filtering and
downsampling to 20 Hz, the TFS is estimated using (b) the VFCDM algorithm or (c) the WT algorithm. (d) and (e) FM sequence (variation of the pulse frequency
(around 1.4 Hz) component) extracted using a peak detection algorithm from the two methods. (f) and (g) Welch periodograms of the FM sequences extracted
from the two TF spectra. A clear peak is visible at 0.2 Hz, which is the true BR (12 beats per minute).

methods, we define six different categories of results for each
of the four breathing conditions (supine LF, supine HF, upright
LF, and upright HF), namely WT-ECG (WTFM-ECG), WT-
PPG (WTFM-PPG), WT-PZO (WTFM-PZO), VFCDMFM-
ECG, VFCDMFM-PPG, and VFCDMFM-PZO. To test for dif-
ferences in median “accuracy” and “repeatability”, we used the
Kruskal–Wallis test, which is the nonparametric equivalent of
the one-way analysis of variance test. If significant differences
(p < 0.05) were found, we used a multiple comparison proce-
dure on ranks to find pairs of methods that had different median
values.

A. Differences in “Accuracy” (Median% Error Across 3-min
Detection)

Fig. 2 shows the distributions of median percentage detection
errors across the population of the 15 subjects for each method
for each of the four test conditions, the PPG signal provided
the best results with regard to accuracy (lowest median% error).
Table Ishows the numerical statistics (median range and IQR)
for the “accuracy” across the population of test subjects. The
median and IQR would be equivalent to the population means
and standard deviations of accuracies had the distributions been
normal. However, the differences in accuracy were not always
significant. In the supine-LF and upright-LF cases, the WTFM-
PPG and the VFCDMFM-PPG methods were significantly more

accurate than all other methods; there was no significant differ-
ence between the two PPG methods. For the supine-HF case, the
WTFM-PPG method was found to be significantly more likely
to underestimate the BR than the VFCDMFM-PZO method,
while no other significant differences were found. For the up-
right HF case, no significant accuracy differences were found
between any pair of methods. Overall, it would be fair to say
that although the PPG methods were much better with regard to
accuracy, nearly all six methods gave fairly good average BR
estimates over 3 min of data. The exception was the WT-FM
method in the supine-HF test condition, which was found to
consistently underestimate the true BR. These results are sum-
marized in Table II.

B. Differences in “Repeatability” (IQR of % Detection Error)

Fig. 3 shows the distribution of the repeatability values for
all 15 subjects for the four test conditions studied. Table III
shows the numerical statistics (median range and IQR) for the
“repeatability” across the population of test subjects. The me-
dian and IQR would be equivalent to the population means and
standard deviations of repeatabilities, had the distributions been
normal. Once again, the PPG signal generally gave much better
results than the ECG or the PZO signal, i.e., the rate tracking
ability of the BR detection method is much better when the pulse
oximeter is used. However, it is instructive to note that the CDM
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Fig. 2. Distributions of “accuracy” median% detection errors across the 15 subjects breathing in (a) supine position and low BRs (0.2–0.3 Hz), (b) supine position
and at high BRs (0.4, 0.5, and 0.6 Hz), (c) upright position at low BRs, and (d) upright position and high BRs. The closer the median detection error set to zero,
the better the accuracy of the method. The lower boundary of the box closest to zero indicates the 25th percentile, a line within the box marks the median, and
the upper boundary of the box farthest from zero indicates the 75th percentile. Hence, the grey area of the box is an indication of the spread, i.e., the variation in
median error (or IQR), across the population. Whiskers (error bars) above and below the box indicate the 90th and 10th percentiles. Solid circles represent the 5th
and 95th percentiles.

TABLE I
POPULATION STATISTICS FOR MEDIAN% DETECTION ERRORS (“ACCURACIES”) FOR EACH METHOD STUDIED FOR DIFFERENT TEST CONDITIONS

method (applied to the PPG) showed remarkably lower value
of IQR of % errors than all the other methods studied here. For
each of the four different test conditions, the VFCDMFM-PPG
method had significantly lower (p < 0.05) IQR% errors than any
other method, as summarized in Table IV. Additionally, in the

supine-LF case, we found that the WTFM-ECG method showed
significantly lower repeatability (higher IQR of % error) than
the WTFM-PPG method. No other significant pairwise differ-
ences were found for the methods studied, for any of the four
different test conditions.
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TABLE II
HYPOTHESIS TESTING RESULTS FOR MEDIAN% DETECTION ERRORS

(“ACCURACIES”) FOR DIFFERENT PAIRS OF METHODS UNDER

DIFFERENT TEST CONDITIONS

IV. DISCUSSION

Respiratory rate detection in a real-time noninvasive setting
is an important requirement in many clinical settings, ambula-
tory, or otherwise. In several situations, it is necessary to have
continuous monitoring of respiratory activity, which involves
not only the measurement of actual saturation levels but also
of BR. For example, a patient can maintain relatively good O2
saturation levels with high BRs and vice versa. Thus, having in-
formation on BRs can lead to better diagnostic care when used
in combination with O2 saturation data.

While technology for capnography or inductive plethysmog-
raphy methods has been becoming increasingly less cumber-
some, they are still quite clumsy to use and may contribute to
patient discomfort, especially for very young or very old sub-
jects. Alternatively, using a manual counting method for BR
estimation is not only highly labor intensive, but also quite sub-
jective, especially in those cases where the mechanical effects
of breathing are subtle [23]. Human observers usually view the
movement of the abdomen and/or rib cage to detect expiration
or inhalation. However, there is a tendency to overestimate this
effect in the presence of low-tidal volume that may frequently
lead to inaccuracies in breathing detection [23]. Sometimes vari-
ations of skin color are used to estimate the degree of respiratory
gas exchange, a method that is quite obviously prone to er-
rors. Even if these problems can be somehow overcome (maybe
through adequate training) the cost-benefit ratio of employing
dedicated human observers for continuous monitoring of respi-
ration is too low for it to remain a viable option.

In recent years, the development of (generally) error-free,
easy-to-use, noninvasive devices in order to measure physiolog-
ical signals has given rise to several attempts to measure the
effects of respiration from different signals. For instance, the
effect of respiration on the ECG has long been known; and this
fact has been utilized in numerous hardware and software ap-
proaches to measure respiratory frequency (the so-called EDR).
Leonard et al. [11], [15], [22], Nilsson et al. [13], [24], [25],
Shelley et al. [14], and several others have shown the power of
the pulse plethysmograph in estimating the effects of breathing.
In a previous study [5], we have shown the use of a novel TFS

estimation method in estimating the FM effect that breathing
has on the PPG signal and deriving the respiratory rate from
this. In this study, we extended the method for use on other
physiological signals of interest, namely the ECG and the pe-
ripheral piezoelectric pulse sensor signal. We concentrated on
the two methods that we found were best suited (based on results
obtained in [5]) for a real-time estimation of the BR: the WT
decomposition VFCDM methods.

First of all, the results of the current study suggest strongly
that there is a FM effect of breathing on all three physiological
signals studied. While the effects of breathing on the ECG and
PPG have been well documented, the effect on the piezoelectric
pulse signal is less widely reported. Moreover, most EDR meth-
ods concentrate solely on amplitude modulation effects on the
ECG signal (which generally show up as morphological changes
that may be difficult to detect in the presence of line noise) or in
the form of the well-known respiratory sinus arrhythmia effect
on the RR interval time-series. Hence, our study helps to show
that there is a fairly significant modulating effect of respiration
on the pulse rate frequency components of these three signals.

The results obtained for the performance metrics for these
methods (“accuracy” and “repeatability”) showed that for most
conditions, the PPG-based estimates of the BR were much more
accurate than both ECG-derived and PZO-derived BR estimates.
This result is somewhat expected, since it is intuitive that the
level of oxygen saturation (SpO2 ) would certainly be much more
influenced directly by the amount of air, a person breathes in,
than the ECG signal, which is known to be influenced signifi-
cantly by mechanical as well as direct breathing effects.

Having said this, one should note that nearly all six methods
studied showed remarkably good median% error values for all
the four conditions studied (supine LF, supine HF, upright LF,
and upright HF). This suggests that the data length available
for each method plays a major part in accurate and precise
estimation of the BR, i.e., if the clinical situation allows for
3-min data to be used (as opposed to 1-min segments), any of
these three signals may be used with reasonable accuracy to
find an estimate of the BR. In fact, the statistical hypothesis
testing results confirmed this. In terms of accuracy, while the
PPG-based methods (either WT or CDM) were more accurate
than the others, there was no significant difference in accuracy
between any other method-pair, while the overall percentage
detection errors remained in the ±5% range for all conditions.
The only exceptions to this were the WT-PPG and the WT-ECG
methods’ accuracies in the supine-HF condition, which showed
significant underestimation of the BR (high negative% detection
error).

The “repeatability” results are more varied. Once again we
found that the VFCDMFM-PPG method showed much lower
spread in detection errors (less IQR of the % detection error)
than all other methods. This means that the VFCDMFM-PPG
method was consistently able to estimate the true BR with high
accuracy over a 3-min period, whereas the other five methods
were more susceptible to noise and/or rate dependent errors.
This is clear from Fig. 3(b)–(d), which shows the high value
of the IQR of detection errors for all methods studied. How-
ever, for the supine-LF case, this effect was not present (except
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Fig. 3. Distributions of “repeatability” IQR% detection errors across the 15 subjects breathing in (a) supine position and low BRs (0.2–0.3 Hz), (b) supine
position and at high BRs (0.4,0.5, and 0.6 Hz), (c) upright position at low BRs, and (d) upright position and high BRs. The closer the IQR is to 0%, the better the
repeatability (ability to consistently track the BR). The lower boundary of the box closest to zero indicates the 25th percentile, a line within the box marks the
median, and the upper boundary of the box farthest from zero indicates the 75th percentile. Hence, the grey area of the box is an indication of the spread, i.e.,
the variation in median error (or IQR), across the population. Whiskers (error bars) above and below the box indicate the 90th and 10th percentiles. Solid circles
represent the 5th and 95th percentiles.

TABLE III
POPULATION STATISTICS FOR IQR% DETECTION ERRORS (“REPEATABILITIES”) FOR EACH METHOD STUDIED FOR DIFFERENT TEST CONDITIONS

in the case of the WTFM-ECG method), which suggests that
any of these methods may be used in a continuous monitoring
situation (such as when monitoring for apneic events) during
sleep or light relaxation. Presumably, such a condition leads
to decreased movement artifacts and allows relatively constant
BRs on average. On the other hand, it is somewhat unclear why
these algorithms (apart from the PPG methods) show such in-

consistent estimation results (high IQR of % error). Certainly,
the effect of standing upright on the pulse-pressure and heart-
rate signal is well documented, and it may be that such an effect
masks the FM effect of inspiration and expiration.

The presence of rate-dependent error was not found by
Leonard et al. [15], although our previous study [5] revealed
that when shorter time segments (1-min length as opposed to
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TABLE IV
HYPOTHESIS TESTING RESULTS FOR IQR OF % DETECTION ERRORS

(“REPEATABILITIES”) FOR DIFFERENT PAIRS OF METHODS UNDER

DIFFERENT TEST CONDITIONS

3-min segments used by Leonard et al. [15]) were used, the
% detection error increased with an increase in true BR of the
subject. This is made clear in Fig. 3, which shows the effect of
higher BR in the greater spread of % errors for the HF conditions
in both supine as well as upright cases. We have previously spec-
ulated that a probable reason for such an effect is the fact that
with higher respiratory rates, the persistent oscillations required
for confirmation of either amplitude or FM may not always be
present. So although the FM effect may be seen for some of the
1-min segments, it may not be consistently present throughout
the breathing period. Further studies may look into the possible
development of an adaptive technique that can be utilized to out-
put a BR estimate only when the presence of FM is confirmed,
but stick with the past value if it is not.

We did not collect data on spontaneous breathing because we
believe our choice of using the metronome breathing allows us
to better estimate near real-time performance of the algorithm
since our results are based on 1-min data segments that are
shifted every 10 s. In our opinion, spontaneous breathing masks
the true performance of the algorithms since the results in the
literature are often reported based on the averaged respiratory
rates over the duration of 3 min [9], [11]. Thus, rather than
comparing the results based on the averaged respiratory rate
over the entire duration of the data segment, we believe our
choice of reporting the results based on each 10 s shift provides
better assessment of the algorithms as well as their near real-
time performances. In addition, we can better gauge the true
performance of the algorithms since the subjects are breathing
at or very closely to the instructed respiratory rate.

In our opinion, the current study shows a different perspective
on the effect of respiration on signals, such as the ECG and the
PZO. Certainly, the nonstationarity inherent in most physiologi-
cal signals makes the use of time–frequency methods highly de-
sirable as opposed to exclusively time-domain methods such as
autoregressive modeling [9]. The limitations usually associated
with TFS estimation methods are the lack of sufficient concomi-
tant time and frequency resolution, a problem that was solved
to a significant extent with the advent of the WT decomposition
method and has been considerably enhanced by the VFCDM [6].

Of course, one can also explore other successful methods for
TFS estimation such as the Pseudo-Wigner Ville method or even
the short-time Fourier Transform (STFT) [14] methods. How-
ever, we concentrated on the WT method when comparing the
CDM approach, since it was the only well-established TFS esti-
mation method that had been used previously for BR estimation
from the PPG signal.

While the studies by Leonard et al. [11] are commendable,
we note that they require the measurement of both amplitude
and FM sequences (as opposed to only the FM sequence) from
the PPG signal. A separate polling algorithm is then required
to find the best BR estimate from either AM or FM sequences.
Instead, our previous study found that actually the FM sequence
gave very good results by itself in almost all cases studied [5],
which is why we have not included the results for AM methods
lest the statistical analysis became even more complicated.

Another advantage of using the VFCDM method is the con-
siderable increase in speed afforded by the two-step approach
(extracting the so-called “backbone” frequency components be-
fore going for even higher resolution extraction of spectral
components). By our estimation the VFCDM method as im-
plemented on the MATLAB platform could perform the BR
extraction in about 0.3 s compared to nearly 2 s for the WT
method, clearly a significant increase in speed.

In summary, we have shown that TFS-estimation-based meth-
ods may be used with success to detect the presence of FM or
amplitude modulation as a direct result of respiration on three
different physiological signals (the ECG, PPG, and the PZO
signal). Especially in the case of continuous real-time setting,
it is desirable to minimize patient inconvenience, so extracting
as many physiologically important parameters as possible from
as few wearable sensors as possible is important. The VFCDM-
FM algorithm presents itself as a fast and accurate alternative to
traditional time domain only algorithms that have been tradition-
ally used to extract respiratory frequency from the ECG or pulse
signals. We stress that in situations, where the PPG signal is
available, it should be used to get the best BR estimate. Another
point worth mentioning is that we have found in our earlier study
[5] that by appropriately tuning the inner parameters of the meth-
ods (for instance the Fw parameter for the VFCDM method), one
could obtain varying values for the accuracy. It is possible that
such tuning may improve (or degrade) the performance of the al-
gorithms on different physiological signals. Hence, future work
will attempt to study more closely the effect of varying such
tuning parameters on the accuracy of the method, particularly
the VFCDM-FM method. Additionally, we will also concentrate
on testing the algorithm on spontaneously breathing subjects as
well as on subjects whose BR is rapidly changing from low to
high (or randomly), in order to check whether the algorithm is
able to reliably sense the change in respiration rate. Decreasing
the required data segment length as well as increasing the speed
of execution even more, will also be explored.
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