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Abstract 

We assessed directional relationships between short 

RR interval and systolic arterial pressure (SAP) 

variability series according to the concept of Granger 

causality. Causality was quantified as the predictability 

improvement (PI) of a time series obtained when samples 

of the other series were used for prediction, i.e. moving 

from autoregressive (AR) to AR exogenous (ARX) 

prediction. AR and ARX predictions were performed both 

by linear and nonlinear parametric models. The PIs of 

RR given SAP and of SAP given RR, measuring 

baroreflex and mechanical couplings, were calculated in 

15 healthy subjects in the resting supine and upright tilt 

positions. Using nonlinear models we found a bilateral 

interaction between the two series, unbalanced towards 

the mechanical direction at rest and balanced after tilt. 

The utilization of linear AR and ARX models led to higher 

prediction accuracy but comparable trends of 

predictability and causality measures. 

 

1. Introduction 

Characterization of directional interactions between 

heart period (RR interval) and arterial pressure (AP) 

variability is becoming a very important problem among 

those addressed by cardiovascular time series analysis. In 

the recent years many studies have indeed focused on the 

assessment of causality in cardiovascular interactions, 

providing evidence that variations of the reciprocal 

influence between RR and AP often reflect modifications 

of the regulatory mechanisms related either to diseases or 

experimental interventions [1-4]. 

Among the multiple available definitions of causality 

and practical algorithms developed to quantify directional 

influences between two simultaneously measured signals, 

a prevailing notion is that formulated by Granger in the 

context of linear stochastic modeling [5] and recently 

extended to nonlinear systems [6]. According to 

Granger’s definition, a series is called causal to another if 

we can better predict the second series by using the past 

information from the first one than by using the 

information without it. Albeit methods quantifying linear 

and nonlinear Granger causality are recommended for the 

study of complex physiological systems such as the 

cardiovascular one, their application to short-term 

cardiovascular interactions requires formulations that 

guarantee applicability to time series which are stationary 

only over short epochs (typically a few minutes). 

In the present study, we formalize the Granger’s 

definition of causality in the context of parametric 

modeling of time series, and assess linear and nonlinear 

causality between short-term RR interval and systolic AP 

(SAP) series measured in healthy subjects in the resting 

supine position and in the upright position after passive 

head-up tilt. To describe the dynamics and the 

interactions between the two series, we make use of 

linear autoregressive (AR) and AR exogenous (ARX) 

models, as well as of nonlinear AR (NAR) and nonlinear 

ARX (NARX) models, and combine the resulting 

prediction errors to provide linear and nonlinear Granger 

causality measures. This approach, that exploits the 

advantages of the parametric representation of bivariate 

time series (e.g., robustness of parameter estimation for 

limited sample size and compact representation of linear 

and nonlinear systems), has been recently proposed and 

thoroughly validated on simulated dynamics [7]. 

2. Methods 

Fifteen young healthy subjects (25±3 years old) were 

considered for the study. The surface ECG (lead II) and 

the noninvasive arterial pressure signals (Finapres) were 

acquired with subjects in sinus rhythm during 

spontaneous breathing. The experimental protocol 

consisted of 15 minutes of data collection in the resting 

supine position followed by another 15 minutes with 

subjects in the upright position using a motorized tilt 

table at 60º body position. 
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After digitization of the continuous signals with a 1 

kHz sampling rate and 12 bit precision, the beat-to-beat 

series of the RR intervals and of the SAP values were 

determined as the temporal interval between two 

consecutive R peaks in the ECG and as the local 

maximum of the AP wave within each detected cardiac 

cycle, respectively. After removing artifacts and slow 

trends, two stationary segments of N=300 points were 

selected for each subject, one in the supine and one in the 

upright position. 

For each selected data segment, the RR and SAP series 

were normalized by subtracting the mean and dividing by 

the standard deviation, thus obtaining the dimensionless 

series r(n) and s(n), n=1,…,300. To describe the heart 

period dynamics, the series s and r were considered 

respectively as input and output of a closed-loop time-

invariant NARX model as 
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The same model, implemented reversing the roles of the 

two series, i.e. using r as input series and s as output 

series, was considered to describe the systolic pressure 

dynamics. In the NARX model, the coefficients c0,{a1(i); 

b1(j)}, and{a2(i,j); b2(i,j); c2(i,j)} represent constant (zero-

th order), linear (first order), and nonlinear (second order) 

contributions to y(n), respectively, while e(n) is the 

prediction error. The model orders P1 and P2 determine 

the maximum lags for linear and nonlinear autoregressive 

(AR) influences, respectively, while the maximum lags 

for linear and nonlinear exogenous (X) effects are 

indicated by the orders Q1 and Q2. It is worth noting that 

the formulation in (1) allowed us to perform either linear 

or nonlinear representation of the dynamics of the output 

series, respectively removing from the model the 

coefficients relevant to nonlinear interactions (i.e., 

forcing P2=0 and Q2=-1) or keeping them within the 

model (i.e., allowing P2>0 and Q2>-1). 

Estimation of the model coefficients was performed by 

the Optimal Parameter Search algorithm [8], a recently 

proposed identification method that has been shown to 

outperform the traditional least squares  approach,  and to  

 

Figure 1. Causal analysis of cardiovascular interactions 

for a subject in the supine and upright positions. Upper 

and middle panels show RR interval and SAP series 

measured in the two body positions. Lower panels show 

the MSPE yielded for the two series by AR prediction 

(empty circles), ARX prediction (empty squares), NAR 

prediction (filled circles), and NARX prediction (filled 

squares). 

be suitable for model order selection even in nonlinear 

systems. The reader is referred to Refs. [8] and [7] for the 

detailed description of the algorithm and for the analysis 

of its performance on cardiovascular variability signals. 

After model identification, the estimated coefficients 

were used to forecast the output series, thus obtaining the 

predicted series )(ˆ nr  and )(ˆ ns . The unpredictability of 

the two series was then quantified as mean squared 

prediction error (MSPE): 
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Prediction was performed both by a pure NAR model, i.e. 

forcing Q1=Q2=-1 in (1), and by a NARX model (Q1>-1, 

Q2>-1). Accordingly, the output series was predicted only 

from its own past for a NAR (or AR) model, yielding the 

prediction errors MSPEr|r and MSPEs|s, and from both 

its own past and the past and present of the input series 

for a NARX (or ARX) model, yielding the prediction er- 
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Figure 2. Results of predictability analysis of RR interval 

and SAP series in the supine and upright positions. Plots 

show the MSPE (mean+SD over 15 subjects) obtained by 

linear (white) and nonlinear model identification (black) 

using AR models (MSPEr|r and MSPEs|s) and ARX 

models (MSPEr|s,r and MSPEs|s,r). Student t-test for 

paired data: ** p<0.01 Supine vs. Upright; ## p<0.01 RR 

interval vs. Systolic pressure. 

rors MSPEr|s,r and MSPEs|s,r. Finally, Granger causality 

from the input to the output series was quantified 

calculating the normalized predictability improvement 

(NPI) obtained by the NARX (or ARX) model compared 

to the NAR (or AR) model prediction 
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3. Results 

Fig. 1 depicts an example of the cardiovascular 

variability series measured in the supine and upright 

positions, along with the values of the MSPE index 

obtained for linear and nonlinear model identification 

using only the AR part or including also the X part of the 

model. At rest, the predictability was better for the SAP 

series than for the RR interval series (MSPEs|s < 

MSPEr|r). Tilt position resulted in a marked reduction of 

MSPEr|r that became slightly lower than NMSPEs|s. The 

improvements in predictability with the use of ARX or 

NARX models for the tilt position were less marked than 

in the supine position. For all models, linear prediction 

led to less predictable series than nonlinear prediction. 

 

Figure 3. Results of causality analysis of RR interval and 

SAP series in the supine and upright positions. Plots 

show the normalized predictability improvement (NPI, 

mean+SD over 15 subjects) obtained by linear and 

nonlinear model identification in the direction from SAP 

to RR (NPIr|s, black) and from RR to SAP (NPIs|r, 

white). Student t-test for paired data: * p<0.05 Supine vs. 

Upright; # p<0.01 NPIr|s vs. NPIs|r. 

Fig. 2 summarizes the results of predictability analysis 

of the 15 subjects In the supine position, the SAP was 

significantly more predictable than the RR interval, as 

evidenced by the lower MSPE yielded by AR and NAR 

prediction (upper panels), as well as by ARX and NARX 

prediction (lower panels). After tilt, the predictability of 

the RR interval improved significantly using all four 

models. There was also a tendency of the predictability of 

the SAP to be increased when the body position was 

changed from supine to tilt, although not significant. In 

all RR interval and SAP series, nonlinear model 

prediction yielded a better predictability (i.e. lower 

MSPE) than linear prediction. 

The results of linear and nonlinear Granger causality 

analysis are summarized in Fig. 3. With nonlinear 

modelling, in the supine position the NPI index was 

significantly higher in the direction from RR interval to 

SAP than in the reverse direction. The tilt position 

resulted in a significant increase of the NPI in the 

feedback direction: from SAP to RR interval, while the 

NPI value relating RR interval to SAP did not change 

with alteration in the body position. The analysis 

performed by linear AR and ARX models yielded similar 

results, indicating unbalancing of NPI in the two causal 

direction at rest, and recovering of the unbalance after 

tilt. The only difference with nonlinear analysis was that 

the increase of NPIr|s from the supine to the upright 

position, though documented, was not statistically 

significant. 

4. Discussion 

In this paper we made use of a method to evaluate 

Granger causality in short bivariate variability series [7], 

based on NARX model identification through an efficient 
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optimal parameter search algorithm [8], for assessing 

linear and nonlinear predictability and directional 

interactions between RR interval and SAP series 

measured in healthy subjects during a head-up tilt testing 

protocol. Our main results were well interpretable 

according to the known cardiovascular physiology, thus 

confirming the suitability of the model-based approach. 

The higher predictability of SAP with respect to RR 

observed in the supine position, documented by all 

prediction models, is compatible with the hypothesis that 

the numerous mechanisms responsible to the regulation 

of heart rate exhibit at rest a low degree of 

synchronization that results in an increased complexity of 

the RR series [9]. With assumption of the upright 

position, both RR and SAP became more predictable, 

mainly as a consequence of the rise of a regular dominant 

low frequency oscillation induced by the activation of the 

sympathetic nervous system related to tilt [10].  

The result indicating higher PI from RR interval to 

SAP than in the reverse direction during supine position 

(Fig. 3) reflects an imbalance of the cardiovascular 

regulation towards mechanisms operating along the 

pathway from heart rate to arterial pressure. This finding 

confirms, from the point of view provided by Granger 

causality analysis, the prevailing role of mechanical 

feedforward interactions in the cardiovascular regulation 

of supine humans [2,4]. Moreover, the increase of the PI 

from SAP to RR interval in the upright position, 

responsible for the recovery of a balanced cardiovascular 

regulation, can be explained by the activation of the 

baroreflex control pathway as a consequence of tilt-

induced sympathetic activation [10]. 

With respect to linear model identification, the 

implementation of nonlinear models always led us to a 

better prediction of the cardiovascular variability series. 

This higher prediction accuracy may be interpreted either 

as a consequence of the contribution of nonlinear 

dynamics and nonlinear interactions to cardiovascular 

variability, or simply as an indication of the fact that 

optimal parameter identification of nonlinear models 

leads to select a larger number of significant model terms, 

ultimately improving the fit of the time series. Further 

analysis, e.g. involving surrogate time series in which 

nonlinear dynamics are destroyed and linear properties 

are preserved, is required to be explanatory about this 

point. Nevertheless, we observe that almost all the 

behaviours of predictability and Granger causality indices 

(e.g., in response to tilt or comparing the values of the 

indices for RR and SAP) were obtained similarly using 

linear and nonlinear model identification. This finding 

confirms the suitability of linear tools for assessing 

directionality to be applied for the investigation of 

directionality in short-term cardiovascular variability. As 

an example, utilization of the causal coherence [11] in the 

same experimental protocol considered in this study 

evidenced a similar imbalance of RR-SAP coupling with 

prevalence of mechanical interactions at rest, as well as 

the enhancement of the feedback regulation from SAP to 

RR after tilt [4,11]. 
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