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Nonlinear multiclass support vector
machine–based health monitoring
system for buildings employing
magnetorheological dampers
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Abstract
In this article, a nonlinear multiclass support vector machine–based structural health monitoring system for smart struc-
tures is proposed. It is developed through the integration of a nonlinear multiclass support vector machine, discrete
wavelet transforms, autoregressive models, and damage-sensitive features. The discrete wavelet transform is first applied
to signals obtained from both healthy and damaged smart structures under random excitations, and it generates
wavelet-filtered signal. It not only compresses lengthy data but also filters noise from the original data. Based on the
wavelet-filtered signals, several wavelet-based autoregressive models are then constructed. Next, damage-sensitive fea-
tures are extracted from the wavelet-based autoregressive coefficients and then the nonlinear multiclass support vector
machine is trained by a variety of damage levels of wavelet-based autoregressive coefficient sets in an optimal method.
The trained nonlinear multiclass support vector machine takes new test wavelet-based autoregressive coefficients that
are not used in the training process and quantitatively estimates the damage levels. To demonstrate the effectiveness of
the proposed nonlinear multiclass support vector machine, a three-story smart building equipped with a magnetorheolo-
gical damper is studied. As a baseline, naive Bayes classifier–based structural health monitoring system is presented. It is
shown from the simulation that the proposed nonlinear multiclass support vector machine–based approach is efficient
and precise in quantitatively estimating damage statuses of the smart structures.
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Introduction

Nonlinear multiclass support vector machine

In recent years, support vector machine (SVM) has
received much attention from a variety of engineering
fields. In particular, SVM has recently attracted the
attention of civil engineering scholars. The reason is
that it is effective in dealing with the classification of
incomplete and noisy measurements obtained from
large-scale civil structures; Oh and Sohn (2009) inte-
grated an SVM with a principal component analysis,
an autoregressive (AR)-AR exogenous (ARX) model,
and a sequential probability ratio test process. The inte-
grated process compares the AR-ARX coefficients
obtained from the undamaged and damaged dynamic
systems. The damage detection performance is evalu-
ated in the presence of an unmeasured operational var-
iation. Park et al. (2006) applied a radial basis function
to nonlinear SVM-based binary classification for

damage detection of small-scale steel bridge compo-
nents. The key to the method is comparing the maxi-
mum peak values of the reconstructed wavelet signals
at a specific frequency. They demonstrated that the
SVM is effective in classifying the ambiguous class
regions. He and Yan (2007) proposed the wavelet-
based SVM for damage detection of a single-layer
spherical lattice dome under ambient excitations. The
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SVMs are trained using damage-sensitive feature
(DSF) vectors obtained from the dynamic responses. It
has also been demonstrated from experimental studies
that an SVM can be effective in estimating steel bridge
rust (Chen et al., 2012). They extracted two features of
the background surface and the damaged surface (i.e.
rust pixels) using the Fourier transform and the
Gaussian low-pass filter. Then, a binary-type SVM
effectively identified the different features of the rust
(i.e. damage) and background. The binary SVM has
also been used for detection of abnormality on a cable-
stayed bridge structure located in an inner gulf of
Zhanjiang City in south China (Vines-Cavanaugh
et al., 2010). The SVM was used to identify whether the
east end expansion joint of the bridge was normal. It
also classified whether the longitudinal motion of the
main girder was constrained or not. Chen et al. (2012a,
2012b) proposed a new evolutionary SVM by integrat-
ing SVM and a fast messy genetic algorithm (fmGA).
They used the fmGAs for the performance evaluation
of school buildings in seismic zones of Taiwan. The
fmGA-SVM was trained using performance-target
ground accelerations expressed in terms of design
response spectrums, performance points, equivalent
basic period, and equivalent damping ratio. Bulut et al.
(2005) studied the effectiveness of SVM applications
for damage detection of the Humboldt Bay Middle
Channel Bridge. To generate the data sets for training
SVMs, a finite element model (FEM) employing perfect
hinge elements under hammer-like forces was con-
structed. The signals obtained from the FEM were pre-
processed first using the wavelet transform and then
the SVM classifier was used to detect the location of
damage with a high degree of accuracy. In other exam-
ples, many attempts have been made by Mita and col-
leagues to apply SVM to detecting damage in a variety
of systems, including a five-story shear-type building
structure (Mita and Hagiwara, 2003; Shimada and
Mita, 2005), a power distribution pole with various
boundary conditions (Shimada et al., 2006), a fiber
Bragg grating (FBG) sensor imbedded structure
(Hayano and Mita, 2005), and two aluminum plates
joined by bolts employing piezoelectric (lead zirconate
titanate (PZT)) sensors (Mita and Taniguchi, 2004).

However, all the aforementioned SVM models have
been applied based on the assumption that the struc-
ture under investigation is linear and time-invariant
(LTI). There is no nonlinear multiclassification using
SVM on time-varying nonlinear dynamic systems (e.g.
smart structures equipped with highly nonlinear hys-
teretic control devices) under ambient excitations.

Monitoring of smart structures

Control technology has recently been used in large-scale
civil structures because behavior of structural systems
can be modified to counter destructive environmental

loadings without significantly increasing the mass of the
structure (Adeli and Saleh, 1999; Mitchell et al. 2012).
In this context, smart structures using semiactive control
devices have received great attention because they com-
bine the best features of passive and active control sys-
tems (Dyke et al., 1996; Kim et al., 2009a, 2009b, 2011;
Nagarajaiah and Spencer, 2003; Spencer et al., 1997).
However, the performance of the smart structures can
degrade in the presence of structure/sensor/actuator
faults Ankireddi and Yang 1999; Li et al., 2007; (Sharifi
et al., 2010).

Yun and Masri (2008, 2009) have provided an appli-
cation example on how nonlinear smart control devices
can be monitored. For example, they proposed an effec-
tive method for damage detection of magnetorheologi-
cal (MR) dampers using the restoring force method
(RFM). It was shown that the RFM coefficients (in
particular, orthogonal coefficients) can be used as DSFs
of the MR dampers. Unfortunately, no systematic
approach for structural health monitoring (SHM) has
been investigated to identify structural damage of build-
ings equipped with MR dampers under ambient excita-
tions. In particular, there is no comprehensive report on
using nonlinear multiclass SVMs (NMSVMs) for dam-
age detection of buildings employing MR dampers
(Kim et al., 2013b). Therefore, the discussion in this
article will center on developing a novel NMSVM-based
SHM framework for damage detection of buildings
employing MR dampers under ambient excitations.

This article is organized as follows: section
‘‘Multiclass classification’’ describes the NMSVM algo-
rithm in detail. Section ‘‘Statistical pattern’’ discusses
the pattern extraction process, including wavelet trans-
form, the AR model, and DSFs. Simulation results
are given in section ‘‘Case study: smart structures.’’
Finally, concluding remarks are given in section
‘‘Conclusion.’’

Multiclass classification

In this section, NMSVM-based classification algorithms
are described for SHM of smart buildings with a highly
nonlinear time-varying damping device. Since the SVM-
based classification results are compared with naive
Bayes (NB) approach, NB classifiers are first described
in section ‘‘NB classifiers’’; then multiclass SVM-based
classification is described in section ‘‘SVM classifier.’’

NB classifiers

The NB classifier first trains itself by formulating a
probability distribution function of PfzjSkg,
k = 1, . . . ,NS , with the given training data points
ztr, tr= 1, . . . ,NT and their corresponding target vari-
able ttr 2 fS1, . . . , SNS

g, where Ntr is the number of
training data points and NS is the number of classes. A
Gaussian function is widely adopted for PfzjSkg
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where mk and sk denote the mean and variance of class
Sk , respectively. Hence, training the Gaussian function–
based NB classifier becomes deriving the sample mean
and variance in ztr for each class Sk . Then, the trained
NB classifier classifies unknown test input data based
on the following Bayesian theorem

PfU jzteg}PfztejUgPfUg ð2Þ

where zte are the unknown test data points and
U 2 fS1, . . . , SNS

g are their corresponding estimated
target variable. Specifically, the trained NB classifier
determines the class tte of new input data zte as

tte = argmax
U2fS1, ..., SNsg

PfU ztej g ð3Þ

This NB classifier is used as a baseline. Its perfor-
mance is compared with the NMSVM approach in
terms of training and validation errors in classifying a
variety of damage levels in nonlinear time-varying
smart buildings.

SVM classifier

Binary SVM. The SVM classifier that finds support vec-
tors for two classes (damage and health) is first trained
so that the distance between two classes is maximized.
A SVM can be categorized as either a hard-margin
SVM or a soft-margin SVM, where the margin is
defined as the smallest distance between the training
data and the decision boundary. A hard-margin SVM
can only be applied to completely separable training
data sets. The support vectors of the hard-margin SVM
can be found by the following equation

Minimize dSVM(ws)=
1

2
ws, wsh i

Subject to ttr ws, ztrh i+ bsð Þ � 1, for tr= 1, 2, . . . ,NT

ð4Þ

where ws 2 RO is the weight vector, ztr 2 RO is the trth
input vector data, ttr 2 f1, � 1g is the trth target vari-
able, bs 2 R is the bias, and ws, ztrh i is the inner product
operation of ws and ztr. With these support vectors, the
decision boundary Fsv is derived as

Fsv = w�s , z
� �

+ b�s = 0 ð5Þ

where w�s and b�s are the weight vector and bias, respec-
tively, obtained from equation (4), and z is the input
point.

A soft-margin SVM can be applied to completely
nonseparable training data sets. A soft-margin SVM
introduces slack variables dtr = ttr � Ftr(ztr)j j,
tr= 1, . . . ,NT to control the trade-off between

minimizing the misclassification errors and maximizing
the margin by parameter CSVM. The support vectors of
the soft-margin SVM can be derived by solving the fol-
lowing equations

Minimize dSVM(ws)=
1

2
ws,wsh i+CSVM

X
dtr

Subject to ttr ws, ztrh i+ bsð Þ � 1� dtr,

for tr = 1, 2, . . . ,NT , for dtr � 0

ð6Þ

The corresponding decision boundary of a soft-
margin SVM can be obtained using equation (5). The
linear SVM can be extended to a nonlinear SVM by
introducing the nonlinear mapping ztr ! F(ztr)
(Burges, 1998). In the nonlinear SVM, the constraint in
equation (4) is substituted into

ttr ws,F(ztr)h i+ bsð Þ � 1, for tr= 1, 2, . . . ,N ð7Þ

To facilitate the operation for a nonlinear SVM, a
kernel function Ks, which is a dot-product in the trans-
formed feature space, is used

Ks(ztr, ztr0 )= F(ztr),F(ztr0)h i ð8Þ

where tr0= 1, 2, . . . ,NT . The Gaussian radial basis
function is used in a variety of fields and its associated
kernel is expressed as

Ks(ztr, ztr0 )= exp � ztr � ztr0k k2

2s2

 !
ð9Þ

where s is the kernel variance. This nonlinear SVM is
applied to the multiclassification problem for damage
detection of nonlinear time-varying dynamic systems.

Multiclass SVM. There is a one-versus-one classifier as a
method for multiclass classification. It trains all the
possible pairs of classes. In other words, there exist
M(M � 1)=2 classifiers. Each discriminant function is
derived by training the data points from the Sk class as
positive and the data points from the Sj class as nega-
tive. With this training on each class, the one-versus-one
classifies the class of input point z to the class that has
the maximum votes (Maimon and Rokach, 2010).

Another possible approach for multiclass classifica-
tion is the one-versus-the-rest classifier. It trains the kth
discriminant function by labeling the data points from
Sk as positive, while the data points from the other
M21 classes (fS1, . . . , Sk�1, Sk + 1, . . . , SNS

g) as nega-
tive. With this training in each class Sk , the one-versus-
the-rest classifier predicts the class t of input point z as

t = argmax
U2fS1, ..., SNS

g

�
w�U , s, z

�
+ b�U , s ð10Þ

where w�U , s and b�U , s are the weight vector and bias for
class U , respectively, obtained from equation (4). In this
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article, the one-versus-the-rest classifier is adopted due
to the low complexity compared to the one-versus-one
classifier.

Statistical pattern

To generate the data for training the proposed multi-
class SVM, a systematic data normalization framework
is presented in this section. Figure 1 shows the concep-
tual configuration of the proposed SHM process. Note
that the proposed method is to extract dynamic charac-
teristics of a structure–MR damper system, and thus,
the input signals that are applied to the integrated
structure–MR damper system need to be random. To
this end, the MR damper is operated by a random

current signal generator and not a controller with spe-
cific band-limited frequencies. The applied disturbance
signal is created by a random earthquake generator.
First, the discrete wavelet transform (DWT) is applied
to dynamic responses of the targeted structure under
the random earthquake disturbance and random cur-
rent signals. The DWT reduces the computational loads
and filters noise from the measured data. Then, the
wavelet-filtered responses are estimated using AR time
series models. Once the wavelet-based AR (WAR) is
constructed, the AR coefficients from the WAR model
are extracted to identify structural damages. Finally,
the extracted features are input to the proposed multi-
class SVM algorithm. It is also noted that the MR dam-
per is a nonlinear time-varying dynamic system. Once
the MR damper is installed on the structure, the inte-
grated structure–MR damper system behaves nonli-
nearly even though the structure itself remains linear.
Hence, the time-varying stiffness and damping capaci-
ties produced by the MR damper that provides a feed-
back to structures will influence the behavior of
structures, resulting in changes in the WAR model.
Therefore, many experimental tests need to be con-
ducted. Another important issue to be addressed is that
it is critical to maintain the MR damper temperature
because the dissipative energy by the MR damper oper-
ation increases significantly with increasing tempera-
ture of MR fluids during testing. More detailed
description can be found in Yun and Masri (2008).

DWT

As a time–frequency analysis method, the DWT can be
defined as

Ws1, s2
= 2�s1=2

X
s1

X
s2

f (n)c(2�s1 n� s2) ð11Þ

where f(n), s1, and s2 are an arbitrary time series signal,
the scaling factor, and the translation factor, respec-
tively. The DWT decomposes the time series signals
obtained from the smart structure into both low- and
high-frequency components at different resolutions.
The newly decomposed signals consist of approxima-
tion (low frequency) and detailed components (high
frequency). The approximation and detailed signals are
represented with scale and wavelet functions. The scal-
ing function f(n) and the wavelet function c(n) can be
defined as dilation equations

fs1, s2
= 2�s1=2f(2�s1 n� s2) ð12Þ

cs1, s2
= 2�s1=2c(2�s1 n� s2) ð13Þ

As a low-pass filter, the scaling function provides an
approximate time series in the AR modeling process,
while the corresponding wavelet acts as a high-pass fil-
ter, providing the detailed information. In this study, a

Figure 1. Architecture of the proposed SHM scheme for
smart structures.
SHM: structural health monitoring; RMSE: root mean square error; DSF:

damage-sensitive feature.
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second-level wavelet filter using the Daubechie scaling
function is applied to time series data for noise reduc-
tion and data compression. Several levels and types of
wavelets were considered. Of those various scaling func-
tions considered, the second-level wavelet decomposi-
tion using the Daubechie scaling function appeared to
be most effective. The filtered data are used in our AR
model.

AR model

A general expression describing the AR model may be
written as

yt =
XP

kr = 0

akr
yt�kr

+ et ð14Þ

where yt�kr
, P, and et are output signals, the maximum

AR model order, and a noise source or prediction error
term, respectively. The coefficient akr

is estimated using
the least squares algorithm

yt = uT
l H+ et ð15Þ

where ul is the coefficient matrix estimate of the AR
model. The solution can be found by a minimum error
formulation in the least squares sense

Min JN (ul)= ½yt � uT
l H�

2 ð16Þ

where H= ½h0, h1, . . . , hR� and ul = ½g0, g1, . . . , gR�T . H
is composed of R vectors of different delays, and R is
the number of selected linearly independent vectors
and gi is the optimal estimate of the AR model coeffi-
cients. A more detailed description is provided in Lu et
al. (2001). The quadratic objective function in equation
(16) is minimized analytically with respect to ul

ûl = ½HHT ��1
Hyt ð17Þ

As previously discussed, to improve the efficiency of
AR modeling using big data sets, the DWT is integrated
with the AR modeling framework. The integration of the
DWT with the AR modeling process increases the model-
ing efficiency as well as reduces the amount of data noise.

WAR model

When the DWT is integrated with the AR model, the
efficiency of the time series modeling process is
enhanced because the DWT is useful to decompose
large data sets into subcomponents in terms of both
time and frequency (Mitchell et al., 2013). The WAR
can be derived as

ŷt =
XP

kr = 0

akr
Ws1, s2, t�kr

+ et ð18Þ

In this study, the WAR model uses level 2 wavelet-
filtered signals. As previously discussed, several level
wavelets were considered. Of those various scaling
functions considered, the second-level wavelet-filtered
signals appeared to be most effective. The WAR coeffi-
cients are transformed into a set of frequencies or
poles.

In general, any damage to a structure will lead to
changes in the stiffness and damping of the smart struc-
tural system. The changes can be detected by observing
the migration patterns of the system frequencies. A sta-
tistical decision-making model that can classify the
damage can be developed when the AR parameters of
both the damaged and undamaged dynamic systems
are available because the AR coefficients correspond to
frequencies of structures (Nair et al., 2006; Nair and
Kiremidjian, 2007). However, the use of the first few
AR coefficients would not be effective in detecting any
damage to the nonlinear time-varying dynamic systems
such as structures equipped with nonlinear hysteretic
control devices. With this in mind, a new DSF is
extracted from the AR parameters estimated from the
velocity responses of the smart structure.

DSF extraction

In this article, a DSF is extracted by normalizing the
WAR coefficients. Through various simulations on sen-
sitivity of damage features, normalization of the WAR
coefficients using a pseudo-energy expression with velo-
city responses appeared to be the most effective. The
proposed DSF is given by

DSF=

PP
q

1
2

m V E
q

��� ���2

max
PP

q

1
2

m V E
q

��� ���2
( ) ð19Þ

where m is the structural mass and V E
q is the qth WAR

coefficient obtained from the velocity responses. In this
study, 1100 DSFs are obtained using the 1100 WAR
models from the healthy and smart structures with
damage of 5%, 10%, 15%, 30%, and 50% at either the
first or second floor. The proposed NMSVM is used to
classify the measured data into undamaged and dam-
aged (based on 5%, 10%, 15%, 30%, and 50% stiff-
ness degradation).

Case study: smart structures

MR damper

In recent years, smart control systems have been pro-
posed for large civil structures because they combine
the best features of both active and passive control sys-
tems (Kim et al., 2010a, 2010b, 2010c; Nagarajaiah and
Spencer, 2003). In particular, one of the controllable
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fluid dampers, an MR damper as shown in Figure 2,
has attracted considerable attention in recent years due
to its appealing characteristics: reliable operation, fast
response time, low power requirements, broad tempera-
ture range, adjustable operating points, and low manu-
facturing cost (Hurlebaus and Gaul, 2006; Spencer
et al., 1997).

To fully use the best features of the MR damper,
Spencer et al. (1997) proposed a Bouc–Wen type model,
as shown in Figure 3.

The MR damper force fMR(t) is given by

fMR = d1 _y+ s1(x� x0) ð20Þ

_zBW = � g _x� _yj jzBW zBWj jn�1 � b( _x� _y) zBWj jn +A( _x� _y)

ð21Þ

_y=
1

(d0 + d1)
azBW + d0 _x+ s0(x� y)f g ð22Þ

a=aa +abu ð23Þ

d1 = d1a + d1bu ð24Þ

d0 = d0a + d0bu ð25Þ

_u= � h(u� v) ð26Þ

where zBW and a, called evolutionary variables,
describe the hysteretic behavior of the MR damper; d0
is the viscous damping parameter at high velocities; d1
is the viscous damping parameter for the force roll-off
at low velocities; aa, ab, d0a, d0b, d1a, and d1b are para-
meters that account for the dependence of the MR
damper force on the voltage applied to the current
driver; s0 controls the stiffness at large velocities; s1 rep-
resents the accumulator stiffness; x0 is the initial displa-
cement of the spring stiffness s1; g, b, n, and A are
adjustable shape parameters of the hysteresis loops, that
is, the linearity in the unloading and the transition
between pre-yielding and post-yielding regions; v and u
are input and output voltages of a first-order filter,
respectively; and h is the time constant of the first-order
filter. Note that nonlinear phenomena occur when
highly nonlinear MR dampers are applied to structural
systems for effective energy dissipation. Such an inte-
grated structure–MR damper system behaves nonli-
nearly although the structure itself is usually assumed to
behave linearly (Arsava et al., 2013a). Therefore, it is
challenging to detect structural damage using the migra-
tion of frequencies due to the characteristics of the non-
linear time-varying dynamic system. In other words,
frequencies of the nonlinear time-varying dynamic sys-
tem can change even though there is no damage in the
structural system.

A building equipped with an MR damper

Figure 4 shows a typical building equipped with an MR
damper.

The equation of motion of the integrated smart
structure is given by

M€ys +C _ys +Kys =GfMR(t, ysi, _ysi, v1)�ML€wg ð27Þ

where €wg is the earthquake disturbance; M, K, and C

are the mass, stiffness, and damping matrices, respec-
tively; ys, _ys, and €ys are the displacement, velocity, and
acceleration relative to the ground, respectively; ysi and
_ysi are the displacement and the velocity at the ith floor
level relative to the ground, respectively; v1 is the vol-
tage level to be applied; and G and L are the control
and disturbance location vectors, respectively. Figure 5
shows the conceptual configuration of the integrated
building–MR damper system.

The second-order differential equation is converted
into a first-order differential one

_zs =A�zs +B�fMR(t, zs1, zs4, v1)� E�€wg

y=C�zs +D�fMR(t, zs1, zs4, v1)+ n
ð28Þ

where

A�=
0 I

�M�1K �M�1C

� �
ð29Þ

Figure 3. Schematic representation of the mathematical model
for the MR damper.
MR: magnetorheological.

Figure 2. MR damper.
MR: magnetorheological.
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B�=
0

M�1F

� �
ð30Þ

C�=
I 0

0 I

�M�1K �M�1C

2
4

3
5 ð31Þ

D�=
0

0

M�1F

2
4

3
5 ð32Þ

E�=
0

F

� �
ð33Þ

where F is the Chevron bracing location matrix and n

is the measurement noise. The numerical values of the
parameters of the nonlinear time-varying dynamical
system are discussed in the following section.

Parameter setting

Damage scenario. A total of 11 damage scenarios are
considered in this article. First, two input signals are
applied to the structure employing an MR damper. The
first input signal is a random earthquake signal and the
second input is a random current signal (converted

Figure 4. Smart building equipped with MR dampers.
MR: magnetorheological.

Figure 5. Integrated building structure–MR damper system.
MR: magnetorheological.
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from the voltage). The measured quantities are velocity
responses of the first- and second-floor levels in the
smart building. Damage is simulated by the stiffness
decrease at the first- and second-floor levels. Although
a variety of damage scenarios need to be considered,
for example, stiffness, structural damping coefficients,
sensor faults (Sharifi et al., 2010), and damper faults
(Yun and Masri, 2008, 2009), we only considered the
stiffness degradation. Other factors will be taken into
account in our future studies. For each set of input sig-
nals, 11 damage scenarios are considered as shown in
Table 1. Damage case 0 corresponds to no damage.
The 5% damage located at the first floor, for example,
implies that the stiffness at the first floor of the smart
structure is decreased by 5%. All other damage cases
are similarly defined.

For each damage case, 100 simulations were per-
formed to generate a total of 100 sets of structural
responses. Consequently, a total of 1100 numerical
simulations are conducted (11 cases by 100 tests =
1100 simulations). For each data set, 50 data sets are
used for training the DSFs, while the other 50 data sets
are used for validating the trained models. Second, the
DWT is applied to the numerical data sets. The DWT
reduces the computational loads and filters noise from
the measured data. Then, the wavelet-filtered responses
are estimated using AR time series models. Once the
WAR is constructed, the AR coefficients from the
WAR model are extracted to identify structural dam-
age. Finally, the extracted features are inputted to the
proposed multiclass SVM algorithm.

Simulation parameters. The second-level wavelet signals
are used for estimating the AR models. The method
uses Daubechie wavelets for low-frequency decomposi-
tion in order to denoise and compress the response
data. The initial AR model order was selected to 100
after many trial and error simulations. The properties
of a three-story building structure are given as follows:
the mass of each floor m1= m2= m3 = 98.3 kg; the
stiffness of each story k1 = 516,000 N/m, k2 = 684,000
N/m, and k3 = 684,000 N/m; and damping coefficients

of each floor c1 = 125 N s/m, c2 = 50 N s/m, and
c3 = 50 N s/m. The properties of the SD-1000 MR
damper are given in Table 2. Based on this building–
MR damper system, a set of dynamic responses is col-
lected for use in developing the WAR model.

Classification results

Wavelet-compressed AR modeling. To construct the
wavelet-filtered AR models (WAR), displacements,
velocities, and acceleration responses are measured.
Figure 6 compares a sample WAR model with the mea-
sured velocity data obtained from the undamaged
structure. Figure 7 depicts the result of the WAR mod-
eling using the time history responses obtained from
the damaged smart structure.

It is shown from these figures that the proposed
WAR model effectively predicts the original data. To
quantify the estimation performance, a variety of eva-
luation indices are used. The first evaluation index is
the maximum error

Figure 6. Comparison of the WAR model and undamaged
smart structures.
WAR: wavelet-based autoregressive.

Table 1. Damage scenarios.

Damage case Damage location Damage severity (%)

0 N/A N/A
1 First floor 5
2 First floor 10
3 First floor 15
4 First floor 30
5 First floor 50
6 Second floor 5
7 Second floor 10
8 Second floor 15
9 Second floor 30
10 Second floor 50

Table 2. Parameters for SD-1000 MR damper model.

Parameter Value Parameter Value

c0a 21.0 N s/cm aa 140 N/cm
c0b 3.50 N s/cm V ab 695 N/cm V
k0 46.9 N/cm g 363 cm22

c1a 283 N s/cm b 363 cm22

c1b 2.95 N s/cm V A 301
k1 5.00 N/cm N 2
x0 14.3 cm h 190 s21

MR: magnetorheological.
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J1 = max ŷ� ~yj j ð34Þ

where ŷ is the estimation and ~y is the actual structural
response data. The second evaluation index is

J2 = min ŷ� ~yj j ð35Þ

As the third evaluation index, the root mean square
error (RMSE) is used

J3 =RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ŷ� ~yj j2

N

s
ð36Þ

where N is the number of data points. As the fourth
evaluation index, the fitting rate (FR) is adopted as

J4 =FR= 1� var(~y� ŷ)

var(~y)

� �
3 100 ð37Þ

where ‘‘var’’ represents variance of data. If a perfect
agreement exists between the trained model and the
original data, FR will be 100. The last evaluation index
is the computational load given by

J5 =CPUtime ð38Þ

Table 3 provides the training results, including the
error between the trained model and the actual response
of the smart structure using the AR model and WAR
model.

It is clearly observed from this table that the compu-
tational load of AR modeling is significantly reduced
by adopting the wavelet-filtering process without scari-
fying modeling accuracy, that is, the computation load
of the AR modeling is four times higher than the WAR
model’s training time. Thus, the WAR model is used in
developing the proposed SHM scheme for the smart
structures in this article. As previously discussed, there
are a variety of effective DSFs in the field of SHM, for
example, eigenvalues, eigenvectors, and influence lines,
to name a few. However, they are not appropriate for
damage detection of nonlinear dynamical systems. The
reason is that such approaches have been applied based
on the assumption that the structure under investiga-
tion is LTI. One of the most effective methods in detect-
ing damage in nonlinear dynamical systems is the RFM
(Yun and Masri, 2008, 2009). As a nonparametric iden-
tification technique, the RFM coefficients (in particu-
lar, orthogonal coefficients) can be used as an effective
change indicator in an MR damper. Although the effec-
tiveness of the RFM approach is promising, it requires
forces to be measured from MR dampers using load
cells. Certainly, it will be challenging to use the RFM
when the force measurement is not readily available.
Thus, central goal of this article is to detect dynamic
changes in nonlinear systems using only structural
response measurements. The proposed method can be
applied to nonlinear dynamical systems without infor-
mation about the input force signals by employing only
the AR time series models. The proposed approach is
also robust against measurement noise due to utiliza-
tion of the wavelet transform. At present, it is difficult
to interpret the physical meaning of the detected
changes. Such an issue could be addressed by integrat-
ing the proposed method with the RFM (Yun and
Masri, 2008, 2009).

Multiclassification. The multiclass SVM classifier with
one-versus-the-rest classification method (see section
‘‘Multiclass classification’’) is used in this article. On a

Table 3. Training results and their associated errors.

J1 J2 J3 J4 J5

WAR
Undamaged system 2.8760 1.154e24 1.2522 99.1574 1.5858
Damaged system 4.3929 3.054e24 3.1955 99.2441 1.6079

AR
Undamaged system 1.9586 0.0011 0.3693 99.6738 6.8998
Damaged system 3.1250 8.796e24 0.9218 99.7170 7.0238

WAR: wavelet-based autoregressive; AR: autoregressive.

Figure 7. Comparison of the WAR model and damaged smart
structures.
WAR: wavelet-based autoregressive.
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two-dimensional plot, drawing of DSF values of large
and small WAR coefficients in some cases produces a
circle or elliptical shape (see Figure 8). In pattern recog-
nition, the Gaussian or polynomial kernel is known to
be well suited for capturing circle or elliptical shapes
(Nguyen et al., 2005). Furthermore, the Gaussian ker-
nel SVM has an attractive feature of effective learning
capability (Wang et al., 2003). Hence, Gaussian kernels
with the parameter set (CSVM,s) are applied. First, the
multiclass SVM classifier is trained using the training
data to derive the decision boundaries that classify the
training data set with a concept of margin. The margin
is defined as the smallest distance between any of the
training data and the decision boundary in section
‘‘Multiclass classification.’’ Hence, each decision
boundary is formed by solving equations (4) and (5) in
a way such that it divides one class from the other
classes with the maximum margin. The parameter set
(CSVM,s) of the Gaussian kernel affects the formation
of the decision boundaries. The classification perfor-
mance is also affected by (CSVM,s). Hence, the optimal
parameter sets (C�SVM,s�) need to be found that mini-
mize misclassification errors, where the misclassification
error is defined as the difference between the classified
classes and the target classes. Cross-validation and the
grid search algorithm are adopted to find (C�SVM,s�)
(Hsu et al., 2010). The DSF values are normalized
by dividing them by the maximum DSF values in
lower and higher WAR coefficients. Using fivefold
cross-validation within the grid pairs of
(CSVM= 2�5, . . . , 215 ands = 2�15, . . . , 215), C�SVM= 1

and s�= 25 are obtained.
Figure 8 shows the simulation results on the multi-

classification training of the nonlinear time-varying
structural system with various damage scenarios at the
first-floor level using the SVM (case 0–case 5). As
shown in Figure 8, almost all the samples remain

within the SVM boundaries, except for the undamaged
case. Figure 9 depicts the classification results of vari-
ous damage statuses at the second-floor level. It is
noted that the second-floor damage features are better
distinguished than the first-floor damage features from
the healthy case. The reason is that the MR damper is
installed on the first-floor level, and thus, the change in
the physical properties of the first floor (i.e. stiffness
and damping) is affected by the operation of the MR
damper as well as the structural damage. Boundaries
can be made tighter by increasing the value of
(CSVM,s), although doing so leads to more complex
boundaries, which results in degraded validation per-
formance. In this study, the trained models are
updated, based on the validation results.

The simulation results with validation data sets are
depicted in Figures 10 and 11. As shown in these fig-
ures, the trained SVM models effectively classify most

Figure 10. Validation: case 0–case 5.
DSF: damage-sensitive feature; AR: autoregressive.

Figure 8. Trained multiclassification: case 0–case 5.
DSF: damage-sensitive feature; WAR: wavelet-based autoregressive.

Figure 9. Trained multiclassification: case 6–case 10.
DSF: damage-sensitive feature; WAR: wavelet-based autoregressive.
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damage cases, except for some samples of the unda-
maged and 5% first-floor damage cases. In Figure 10,
it is observed that the distinction in the healthy and 5%
damaged classes is ambiguous because the DSF values
are normalized by the maximum DSF value (i.e.
Max_DSF). For example, the difference of 0.1 between
the healthy and 5% damaged DSF values represents
the difference between two normalized DSF values.
Hence, the actual difference that is corresponding to
the 0.1 value is equal to 0.1 3 Max_DSF, which is not
a small difference. To clearly visualize the distinction,
the 5% damage part is magnified. As shown in
Figure 10, all the data points obtained from the healthy
system belong/close to the healthy decision boundary,
except a single data sample. Two data samples among
the 5% damage data set do not belong/close to the 5%
damage decision boundary. It is noted that the classifi-
cation is determined by comparison of the distance
between a specific data point and decision boundaries:
the data samples out of six boundaries are assigned to
one of the classes having the maximum value in equa-
tion (10). For example, if the distance between a data
point and the healthy decision boundary is shorter than
the one between the data point and the 5% decision
boundary, the data sample is assigned to the healthy
class. The SVM model was trained with 78 data sam-
ples (6 classes 3 13 samples/class) as shown in Figure
8 and then tested with 248 data samples (6 classes 3

48 samples/class) as shown in Figure 10. Three data
samples (one undamaged and two 5% damaged data)
among the 248 data samples are misclassified, which
means the SVM shows the classification performance
with the accuracy of 98.96%. As the data samples for
training the SVM increase, the classification accuracy
increases as shown in Table 4. When the SVM is
trained with 120 data samples instead of 78 samples,
only two data samples are misclassified while the com-
putational complexity also increases.

However, as a matter of fact, it is very challenging
to detect the 5% change in the stiffness from smart
buildings because the stiffness and damping values
change over time due to the operation of the smart con-
trol devices. Furthermore, in practice, the 5% differ-
ence in the stiffness is too small to identify some
damages using vibration data. The statistical analysis
obtained from the field testing and extensive simula-
tions shows that the normal environmental change (e.g.
temperature fluctuation) accounts for variations in fre-
quencies with variance from 0.20% to 5%. These noise
effects may mask the frequency changes caused by
structural damage (Doebling and Farrar, 1997; Ko and
Ni, 2005; Ni et al., 2005; Sohn et al., 1998; Sohn et al.,
2000). Hence, it is recommended by field engineers that
the stiffness reduction below 10% is considered too low
to be distinguished (Bulut et al., 2005). In the authors’
opinion, such issues could be partially addressed by the
following: (1) Changing the multiclassification into bin-
ary classification—for instance, the healthy features
and the 5% damage features can be assigned as 0 and
1, respectively. (2) Increasing the number of data
samples—increasing sample size would boost the statis-
tical power of the decision-making, for example, as the
feature samples increase, the misclassification errors
will decrease. (3) Utilizing different normalization
schemes—in general, normalization schemes play an
important role in feature extractions for SHM (Sohn
and Farrar, 2000). (4) Selecting different combinations
of the lower and higher WAR coefficients—for
instance, the first 5 WAR coefficients can be used for
selecting the lower WAR coefficients, instead of the
first 10 coefficients. Such a different selection would
lead to reduction in the ambiguous distinctions between
the 5% damage and healthy classes, although the per-
formance of other classes could degrade. In other
words, the performance of a specific classification (e.g.
5% damage) can be significantly improved by sacrifi-
cing other classes. (5) Applying data fusion scheme—
for instance, by adding a Z-axis (torsional modes) into
the X–Y axis (lower and higher WAR coefficients
obtained from the translational modes), a better
decision-making model could be constructed. As
another example, the lower DSF values (damage fea-
tures) can be divided into two groups, then the SVM
can use three damage features, including lower DSFs,

Figure 11. Validation: case 6–10.

Table 4. Validation errors.

Number of training data Number of errors

Naive Bayes NMSVM

36 (= 6 data/class 3 6 classes) 10 4
78 (= 12 data/class 3 6 classes) 5 3
120 (= 20 data/class 3 6 classes) 4 2

NMSVM: nonlinear multiclass support vector machine.
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medium DSFs, and higher DSFs. Such additional fea-
ture would enhance the performance of the SVM-based
classification algorithm while also increase the cost of
higher computational complexity. Thus, the authors of
this article considered to use only two features in order
to reduce the computational complexity while maintain
the classification performance. (6) Adopting different
measurements—for instance, the use of the Lamb waves
instead of vibration signals would reduce the environ-
mental conditions (Park et al., 2006; 2007).

In addition, to demonstrate the effectiveness of the
proposed SVM approach, the validation errors are
compared with the results from the NB as shown in
Table 4. As shown in this table, the proposed approach
has fewer errors than the NB method. In particular, it
is shown that the performance of the proposed SVM is
more robust than that of the NB approach when many
data points are not available.

Conclusion

This article proposes the use of a NMSVM for SHM of
nonlinear time-varying structures. The SHM frame-
work is developed through the integration of the
NMSVM, DWT, AR models, and DSFs: (1) Dynamic
responses of a structure equipped with a highly non-
linear hysteretic smart control device are identified
using the WAR time series models. (2) DSFs are
extracted from the WAR models derived from both
damaged and undamaged smart structures. The DSF is
expressed in terms of the AR coefficients, which are
related to the frequencies (or eigenvalues) of smart
structures. (3) The damage is detected by observing the
migration of the extracted AR coefficients and
NMSVM. To demonstrate the effectiveness of the pro-
posed WAR-NMSVM approach, a three-story building
equipped with an MR damper is investigated. In addi-
tion, the performance of the proposed NMSVM is com-
pared with that of the NB classification technique as a
baseline. It is demonstrated from the simulation that
the proposed SHM framework is effective in identifying
the damage of smart structural systems equipped with
time-varying nonlinear MR dampers.

Declaration of conflicting interests

The authors declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

This research received no specific grant from any funding
agency in the public, commercial, or not-for-profit sectors.

References

Adeli H and Saleh A (1999) Control, Optimization, and Smart

Structures: High-Performance Bridges and Buildings of the

Future. New York: John Wiley & Sons, Inc.

Ankireddi S and Yang HTY (1999) Neural networks for sen-
sor fault correction in structural control. ASCE Journal of

Structural Engineering 125: 1056–1064.
Arsava SK, Kim Y, El-Korchi T and Park HS (2013a) Identi-

fication of high impact responses in smart structures. Jour-

nal of Smart Materials and Structures 22(5): 1–30.
Bulut A, Singh AK, Shin P, et al. (2005) Real-time nondes-

tructive structural health monitoring using support vector

machines and wavelets. Proceedings of SPIE 5770:
180–189.

Burges CJC (1998) A tutorial on support vector machines for
pattern recognition. Data Mining and Knowledge Discovery

2: 121–167.
Carden PE and Brownjohn JMW (2007) ARMA

modelled time series classification for structural health

monitoring. Mechanical Systems and Signal Processing 22:
295–314.

Chen PH, Shen HK, Lei CY, et al. (2012) Support vector

machine-based method for automated steel bridge rust
assessment. Automation in Construction 23: 9–19.

Dyke SJ, Spencer BF Jr, Sain MK, et al. (1996) Modeling

and control of magnetorheological dampers for seismic
response reduction. Smart Materials and Structures 5:
565–575.

Hayano H and Mita A (2005) Structural health monitoring

system using FBG sensor for simultaneous detection of
acceleration and strain. Proceedings of SPIE 5765: 624–633.

He HX and Yan WM (2007) Structural damage detection

with wavelet support vector machine: introduction and
applications. Structural Control and Health Monitoring 14:

162–176.
Hsu C-W, Chang C-C and Lin C-J (2010) A Practical Guide

to Support Vector Classification (technical report). Taipei,
Taiwan: Department of Computer Science, National

Taiwan University.
Hurlebaus S and Gaul L (2006) Smart structure dynamics.

Mechanical Systems and Signal Processing 20: 255–281.
Kim Y, Hurlebaus S, Sharifi R, et al. (2009a) Nonlinear iden-

tification of MIMO smart structures. In: ASME dynamic

systems and control conference, Hollywood, CA, 12–14

October.
Kim Y, Langari R and Hurlebaus S (2009b) Semiactive non-

linear control of a building structure equipped with a mag-

netorheological damper system. Mechanical Systems and

Signal Processing 23: 300–315.
Kim Y, Langari R and Hurlebaus S (2011) MIMO fuzzy iden-

tification of building-MR damper systems. International

Journal of Intelligent and Fuzzy Systems 22: 185–205.
Kim Y, Kim C and Langari (2010a) Novel bio-inspired smart

control for hazard mitigation of civil structures. Journal of

Smart Materials and Structures 19(11): 1–12.
Kim Y, Langari R and Hurlebaus S (2010b) Model-based

multi-input, multi-output supervisory semiactive nonlinear

fuzzy controller. Computer-Aided and Infrastructure Engi-

neering 25: 387–393.
Kim Y, Hurlebaus S, and Langari R (2010c) Control of a seis-

mically excited benchmark building using linear matrix

inequality-based semiactive nonlinear fuzzy control ASCE.
Journal of Structural Engineering 136: 1023–1026.

Kim Y, Chong JW, Con K and Kim JM (2013b) Wavelet-

based AR-SVM for health monitoring of smart structures.
Journal of Smart Materials and Structures 22(1): 1–12.

Chong et al. 1467



Ko JM and Ni YQ (2005) Technology developments in struc-
tural health monitoring of large-scale bridges. Engineering
Structures 27: 1715–1725.

Li Z, Koh BH and Nagarajaiah S (2007) Detecting sensor
failure via decoupled error function and inverse input-
output model. ASCE Journal of Engineering Mechanics

133: 1222–1228.
Lu KC, Loh CH, Yang YS, et al. (2008) Real-time structural

damage detection using wireless sensing and monitoring
system. Smart Structures and Systems 4: 759–778.

Mainmon O and Rokach L (2010) Data Mining and Knowl-

edge Discovery Handbook. New York: Springer.
Mita A and Hagiwara H (2003) Quantitative damage diagno-

sis of shear structures using support vector machine. KSCE
Journal of Civil Engineering 7: 683–689.

Mita A and Taniguchi R (2004) Active damage detection
method using support vector machine and amplitude mod-

ulation. Proceedings of SPIE 5391: 21–29.
Mitchell R, Kim Y, and El-Korchi T (2012) System identifica-

tion of smart structures using a wavelet neuro-fuzzy model.
Journal of Smart Materials and Structures 21(11): 1–12.

Mitchell R, Kim Y, El-Korchi T, et al (2012) Wavelet-neuro-
fuzzy control of hybrid building-active tuned mass damper
system under seismic excitations. Journal of Vibration and

Control 19(12): 1881–1894.
Nagarajaiah S and Spencer BF Jr (2003) State of the art of

structural control. ASCE Journal of Structural Engineering

129: 845–856.
Nair KK and Kiremidjian AS (2007) Time series based struc-

tural damage detection algorithm using Gaussian mixtures
modeling. Transactions of the ASME: Journal of Dynamic

Systems Measurement and Control 129: 285–293.
Nair KK, Kiremidjian AS and Law KH (2006) Time series-

based damage detection and localization algorithm with
application to the ASCE benchmark structure. Journal of
Sound and Vibration 291: 349–368.

Nguyen X, Jordan MI and Sinopoli B (2005) A kernel-based
learning approach to ad hoc sensor network localization.
ACM Transaction on Sensor Networks 1: 134–152.

Ni YQ, Hua XG, Fan KQ, et al. (2005) Correlating modal
properties with temperature using long-term monitoring
data and support vector machine technique. Engineering
Structures 27: 1762–1773.

Oh CK and Sohn H (2009) Damage diagnosis under environ-
mental and operational variations using unsupervised sup-
port vector machine. Journal of Sound and Vibration 325:
224–239.

Park S, Lee JJ, Yun CB, et al. (2007) A built-in active sensing
system-based structural health monitoring technique using
statistical pattern recognition. Journal of Mechanical Sci-

ence and Technology 21: 896–902.
Park S, Yun CB, Roh Y, et al. (2006) PZT-based active

damage detection techniques for steel bridge components.
Journal of Smart Materials and Structures 15: 957–966.

Sharifi R, Kim Y and Langari R (2010) Sensor fault isolation
and detection of smart structures. Smart Materials and

Structures 19: 105001.
Shimada M and Mita A (2005) Damage assessment of bend-

ing structures using support vector machine. Proceedings
of SPIE 5765(923): 923–930.

Shimada M, Mita A and Feng MQ (2006) Damage detection
of structures using support vector machines under various
boundary conditions. Proceedings of SPIE 6174: 6174K1–
6174K9.

Sohn H and Farrar CR (2000) Statistical process control and
projection techniques for structural health monitoring. In:
European COST F3 conference on system identification &

structural health monitoring, Madrid, 6–9 June.
Sohn H, Czarnecki JA and Farrar CR (2000) Structural

health monitoring using statistical process control. ASCE
Journal of Structural Engineering 126: 1356–1363.

Sohn H, Dzwonczyk M, Straser EG, et al. (1998) Adaptive
modeling of environmental effects in modal parameters for
damage detection in civil structures. In: Smart systems for

bridges, structures, and highways (proceedings of SPIE),
vol. 3325, San Diego, CA, 4–5 March, pp. 127–138. Bel-
lingham, WA: SPIE.

Spencer BF Jr, Dyke SJ, Sain MK, et al. (1997) Phenomeno-
logical model for magnetorheological dampers. ASCE

Journal of Engineering Mechanics 123: 230–238.
Vines-Cavanaugh D, Cao Y and Wang ML (2010) Support

vector machine for abnormality detection on a cable-
stayed bridge. Proceedings of SPIE 7647: 76471T1–
76471T11.

Wang W, Xu Z, Lu W, et al. (2003) Determination of the
spread parameter in the Gaussian kernel for classification
and regression. Neurocomputing 55: 643–663.

Yun HB and Masri SF (2008) Stochastic change detection in
uncertain nonlinear systems using reduced-order models:
system identification. Journal of Smart Materials and

Structures 17: 015040.
Yun HB and Masri SF (2009) Stochastic change detection in

uncertain nonlinear systems using reduced-order models: classi-
fication. Journal of Smart Materials and Structures 18: 015004.

1468 Journal of Intelligent Material Systems and Structures 25(12)


