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Abstract—Atrial fibrillation (AF) is the most common
sustained arrhythmia and is associated with significant
morbidity and mortality. Timely diagnosis of the arrhythmia,
particularly transient episodes, can be difficult since patients
may be asymptomatic. In this study, we describe a robust
algorithm for automatic detection of AF based on the
randomness, variability and complexity of the heart beat
interval (RR) time series. Specifically, we employ a new
statistic, the Turning Points Ratio, in combination with the
Root Mean Square of Successive RR Differences and
Shannon Entropy to characterize this arrhythmia. The
detection algorithm was tested on two databases, namely
the MIT-BIH Atrial Fibrillation Database and the MIT-BIH
Arrhythmia Database. These databases contain several long
RR interval series from a multitude of patients with and
without AF and some of the data contain various forms of
ectopic beats. Using thresholds and data segment lengths
determined by Receiver Operating Characteristic (ROC)
curves we achieved a high sensitivity and specificity (94.4%
and 95.1%, respectively, for the MIT-BIH Atrial Fibrillation
Database). The algorithm performed well even when tested
against AF mixed with several other potentially confounding
arrhythmias in the MIT-BIH Arrhythmia Database (Sensi-
tivity = 90.2%, Specificity = 91.2%).
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INTRODUCTION

Atrial fibrillation (AF) is the most common clinical
arrhythmia affecting approximately 3 million Ameri-
cans. It has a prevalence of 17.8% and an incidence
of 20.7/1000 patient years in individuals older than
85. At age 55 the lifetime risk of developing AF is
approximately 23%.11 Atrial fibrillation is an inde-
pendent risk factor for death (relative risk in men 1.5
and in women 1.9)2 and a major cause of ischemic
stroke whose impact increases with age, reaching
23.5% in patients older than 80 years.28 Accurate

detection of AF is crucial since treatment options
such as chronic anticoagulation, antiarrhythmic
therapy and radiofrequency ablation offer significant
benefits but also carry potentially serious risks.
Despite the ubiquity of this arrhythmia, its diagnosis
rests largely on the presence of symptoms (e.g., rapid
and irregular heart rate) and on serendipity. Unfor-
tunately, since patients are sometimes unaware of
their irregular pulse13,19 the diagnosis may only be
established during a fortuitous doctor visit. The
challenge is even greater when episodes of AF are
asymptomatic and intermittent.

The prevalence of asymptomatic AF found inci-
dentally on clinical examination is ~20%,12,14 even
higher with Holter or event recorders.15,23 One study of
patients with implantable pacemakers for AF detection
found an incidence of 50% of asymptomatic AF.4

Given the significant risk of mortality and morbidity
and the fact that asymptomatic AF is not detected
unless specifically looked for, there is a strong impetus
for ambulatory monitoring. With the greater need for
ambulatory monitoring, accurate and automated
detection of asymptomatic AF becomes an important
task. It is impractical for a trained technician to sift
through ~100,000 beats of data in order to identify the
presence of AF on a daily basis.

Several algorithms have been developed to
detect AF which either rely on the absence of
P-waves1,3,5,7,8,16,18,20,22 or are based on RR variabil-
ity.6,17,22,24,26,27 Since there is no uniform depolariza-
tion of the atria during AF and consequently no
discernible P-waves in the ECG, their absence has been
utilized in the detection of AF. However, locating the
P-wave fiducial point is very difficult because the low
amplitude of the P-wave makes it susceptible to cor-
ruption by noise. The methods in the second category
are based on RR interval dynamics and do not require
identification of the P-wave. However, few algo-
rithms in this category show high predictive value
for clinical application.6,24,26,27 Notable exceptions
include Duverney et al.,6 Sarkar et al.24 and Tateno
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and Glass.26,27 Duverney et al.6 used wavelet transform
of the RR time series while the latter used the
Kolmogorov–Smirnov test to compare the density
histogram of the test RR (and DRR) segment with
previously compiled standard density histograms of
RR (and DRR) segments during AF. Sarkar et al.24

used the Lorenz distribution of a time series of RR
intervals for AF and tachycardia detection for its use
in a chronic implantable monitor. Tateno and Glass
reported a sensitivity of 94.4% and specificity of 97.2%
for the MIT BIH Atrial Fibrillation database.9,10

Although the accuracy of the study by Duverney et al.
was high, their results were based on a small database.6

The main drawback of these algorithms is that they are
dependent on the robustness of the training data. For
example, if the characteristics of AF are different from
those learned in the training data, the accuracy of AF
detection is compromised.

In the current study, we use a combination of three
different statistical methods capable of detecting the
presence of randomness in a signal. Our expectation is
that using such an approach will minimize the need for
extensive storage capacity (as in the case of histogram
comparisons) while preserving the accuracy of the
detection. A beat-by-beat analysis of the detection
results is presented and accuracy is shown through
a ROC curve analysis. In addition we also used an
ectopic beat filtering scheme to prevent misdetection of
ectopic rhythms as AF. The ROC analysis revealed
that the optimal segment length is 128 RR intervals
with at least 50% AF to ensure correct classification of
the segment as AF.

METHODS

The approach we present here is based on the
generally accepted characteristic of AF as a random
sequence of heart beat intervals with markedly
increased beat-to-beat variability and complexity. We
have developed an algorithm combining three statisti-
cal techniques to exploit these characteristics, namely
the Root Mean Square of Successive RR Differences to
quantify variability (RMSSD), the Turning Points
Ratio to test for randomness of the time series (TPR)
and Shannon entropy to characterize its complexity
(SE). In addition, in contrast to the Tateno–Glass
method,26,27 which relies on training data histograms,
the current method is purely statistical in nature and
thus less dependent on the diversity of training data.
Once the thresholds for maximum sensitivity and
specificity are determined for each of the three
algorithms using the ROC curve analysis, no further
heuristic tuning of the threshold values is required.

Turning Point Ratio (TPR)

To determine whether a RR time series is random
we apply a nonparametric statistical test29 comparing
the value of each RR relative to its neighbors. Given
three random numbers a1, a2, a3, where a1 > a2 > a3,
there are six possible combinations to generate a series.
Among them, (a1a3a2), (a2a3a1), (a2a1a3) and (a3a1a2)
include turning points while (a1a2a3) and (a3a2a1) do not.
Thus if the time series is random the probability of a
RR being surrounded by either two longer or two
shorter intervals (‘‘Turning Point’’) is equal to 2/3. In a
random series of length l the expected number of

turning points is found to be 2l�4
3 ; and the standard

deviation is
ffiffiffiffiffiffiffiffiffiffiffi
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.29 One can also

define confidence limits of this ratio around the mean
and standard deviation just described (assuming the
TPR values for all l-length random segments to be
normally distributed) to estimate the boundaries of
randomness. A series with a ratio below and above the
95% confidence interval exhibits periodicity (e.g. sinus
rhythm) whereas a TPR within the 95% confidence
limit signifies random characteristics. Of course, one
can optimize the confidence interval threshold to
achieve best results with regard to sensitivity and
specificity calculations, as explained under ‘‘Detector
Optimization’’. The confidence interval threshold is
denoted by TprThresh.

Root Mean Square of Successive Differences (RMSSD)

The second component of the algorithm, beat-to-
beat variability, is estimated by the RMSSD. Since AF
exhibits higher variability than regular rhythms such as
sinus rhythm, the RMSSD is expected to be higher.
For a given segment a(i) of RR intervals of some
length l, the RMSSD is given by:

RMSSD ¼
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During optimization, the selection of the threshold
value for RMSSD was compared against the mean
value of the RR interval (MeanRR) rather than the
individual RR interval series. This strategy is used to
compensate against possible outliers (e.g. premature
ventricular contraction) which can lead to false
detection of AF. Consequently, the numerical value
of the RMSSD threshold changes with each segment,
but the threshold for the ratio (RMSSD/MeanRR)
remains constant. This threshold is denoted by
RmsThresh.
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Shannon Entropy (SE)

Shannon entropy provides a quantitative measure
of uncertainty for a random variable. Specifically, the
SE quantifies the likelihood that runs of patterns
exhibiting regularity over some duration of data also
exhibit similar regular patterns over the next incre-
mental duration of data. For example, a random white
noise signal (data are independent) is expected to have
the highest SE value (1.0) since it shows maximum
uncertainty in predicting the pattern of the signal
whereas a simple sinusoidal signal (data are not inde-
pendent) has a very low SE value approaching 0. Thus,
the SE of normal sinus rhythm is expected to be sig-
nificantly lower than in AF. To calculate SE of the RR
time series, we first construct a histogram of the seg-
ment considered. The eight longest and eight shortest
RR values in the segment are considered outliers and
are removed from consideration. The remaining RRs
are sorted into equally spaced bins whose limits are
defined by the shortest and longest R after removing
outliers. To obtain a reasonably accurate measure of
the SE, at least 16 such bins are required. The proba-
bility distribution is computed for each bin as the
number of beats in that bin divided by the total
number of beats in the segment (after removing outli-
ers), i.e.,

pðiÞ ¼
NbinðiÞ

l�Noutliers
ð2Þ

where NbinðiÞ is the number of beats in the ith bin,
l is the total number of beats in the segment and
Noutliers is the number of outliers in that segment (16 in
this case).

Finally, the Shannon Entropy is calculated as
follows:

SE ¼ �
X

16

i¼1
pðiÞlogðpðiÞÞ

log 1
16

� � ð3Þ

For optimization purposes, we compare sensitivity
and specificity of the algorithm by varying the
threshold of the SE (denoted by SeThresh).

Filtering of Ectopic Beats

Ectopic beats during regular sinus rhythm are a
potential cause of false detection of AF since they
confound all components of the algorithm. Premature
beats can be recognized by their signature short-long
RR sequence (ectopic coupling interval and compen-
satory pause, respectively) wedged between normal
RRs. Thus, if RR[i] is premature and followed by the
compensatory pause RR[i + 1], then RR[i � 1]>

RR[i]<RR[i+1] andRR[i]<RR[i + 1]> RR[i + 2]

yielding at least two additional turning points and
three if RR[i + 1]>RR[i + 2]<RR[i + 3]. In order
to recognize the characteristic short-long pattern we
compute the ratio RR[i]/RR[i � 1] for each RR in the
time series. During sinus rhythm this ratio is close to
unity with small fluctuations reflecting physiologic
variability. In the case of an ectopic beat the sequence
of ratios approximates RR[i]/RR[i � 1] £ 0.8, RR[i+1]/
RR[i] ‡ 1.3, and RR[i + 2]/RR[i + 1] £ 0.9 depend-
ing on the type of ectopic beat (e.g. supraventricular vs.
ventricular and unifocal vs. multifocal). Hence, rather
than relying on these arbitrary fixed ratios we identify
diverse ectopic beats with varying coupling intervals by
searching for RR sequences which satisfy the condi-
tions RR[i]/RR[i � 1]<Perc1 and RR[i + 1]/RR[i]>

Perc99 and RR[i + 1]/RR[i + 2]>Perc25 where
Perc1, Perc99 and Perc25 denote the first, 99th and 25th
percentiles, respectively. Thus, we label a beat as ecto-
pic when the preceding RR interval ratio belongs to the
shortest 1% and the RR ratio following it belongs to
the longest 1% of all RR interval ratios. When an
ectopic beat is encountered, it is excluded from further
analysis along with its compensatory pause, thereby
creating a ‘‘clean’’ time series largely devoid of ectopic
beats. In addition, ambulatory recordings often contain
undetected R waves causing dropouts in the beat series.
We use the above approach to eliminate these artifacts.
Specifically, if RR[i] comprises one or more undetected
RR, then RR[i]/RR[i � 1]>Perc99 and RR[i + 1]/
RR[i]<Perc1. The percentile threshold values, though
chosen empirically, were found to be fairly robust
across both databases. Figure 1 illustrates an example
of the filtering scheme, where panel (a) shows the ori-
ginal RR series contaminated with ectopic beats, panel
(b) and (c) show the sequence of ratios as defined above
along with the thresholds, and panel (d) shows the RR
sequence after removal of the ectopic beats.

Detector Optimization

After removal of ectopic beats, the complete RR
interval series is linked together yielding a continuous
RR interval sequence free of ectopic beats on which the
analysis is carried out. It must be noted that the true
temporal location of each segment is preserved, so that
after completion of the detection process the time of
onset of AF and non-AF is not distorted. The condi-
tion for AF classification of an ectopy-free RR seg-
ment of length l is now given by a simple logical AND
condition:

� if ((RMS/MeanRR>RmsThresh) AND (TPR
within TprThresh confidence interval) AND
(SE> SeThresh)) then classify segment as AF
� else classify segment as non-AF.

Automatic Real Time Detection of Atrial Fibrillation 1703



Our algorithm is based on statistics calculated from
l-beat segments, and consequently it would not be fair
to compare the result of this algorithm with beat-
to-beat annotations, because of the inherent l-beat
uncertainty in the calculation. A more useful technique
would be to convert the original beat-to-beat annota-
tions to l-beat resolution such that a particular l-beat
segment is classified as a true AF segment only if the
number of true AF beats (as annotated in the database)
is more than a minimum threshold number or percent-
age. We denote this minimum threshold as PercThresh.
The detection result for each l-beat segment can then be
compared to the new annotation. Note that the
objective here is not to classify whether each beat is
AF, but whether every l-beat RR segment is AF or not,
and hence this conversion of annotations is valid. The
ROC analyses are used to find l and PercThresh for
optimal results. A similar annotation conversion pro-
cedure has been employed in Sarkar et al.24

In addition to l and PercThresh, the thresholds for
the three statistics we have used are also tuned for
optimum sensitivity and specificity. In summary, the
algorithm parameters considered for this optimization
problem are:

1. RR interval segment length l, varied from 32
(minimum number of beats must be 16 for
outlier conditions) to 480 at intervals of 32
beats.

2. PercThresh (varied from 0 to 100%) at inter-
vals of 10%.

3. RMSSD
MeanRR threshold (RmsThresh) which is varied
from 0 to 1 at intervals of 0.02.

4. TPR threshold (TprThresh), varied from a
99.99% confidence interval to 50% confidence
interval at intervals of 0.01%.

5. SE threshold (SeThresh), varied from 0 to 1 at
intervals of 0.01.

FIGURE 1. (a) A sample beat sequence from file 8219 in MIT BIH AFIB database containing normal sinus rhythm (NSR) punctuated
by ectopy; (b) the ratio of each RR interval to the one preceding it. Lower and upper dashed lines correspond to Perc1 and Perc99
thresholds respectively. Ectopic beat candidates were those beats for which this ratio was <Perc1 and the ratio value at the
subsequent location was >Perc99. (c) The ratio of each RR interval to the one occurring just after it. For the ectopy candidates in
(b) this ratio was calculated for beats occurring 2 beats after the candidate. If it exceeded the Perc25 threshold (dashed line: value
of 0.9), the beat was confirmed as an ectopic beat. (d) The final clean RR segment from which all such ectopic beats and
compensatory pauses were deleted.
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We can now define a 5-element vector of algorithm
parameters a as

a ¼ ½l; PercThresh, RmsThresh, TprThresh, SeThresh]T

ð4Þ

This vector parameter can now be varied according to
the ranges defined above. For each particular value of
the vector ak, we find the number of True Positives
(TPk), True Negatives (TNk), False Positives (FPk) and
False Negatives (FNk) in the detection results using
ak as the threshold. We use the sensitivity (TPk/
(TPk + FNk)) and specificity (TNk/(TNk + FPk))
metrics in order to quantify accuracy of the detection
for the vector parameter ak. Sensitivity and specificity
thus quantify the ability of the algorithm to correctly
detect AF and to correctly identify non-AF segments.
We used the MIT BIH9,10 Atrial Fibrillation database
to optimize the thresholds for the algorithm, after
which the detection algorithm was tested on the MIT
BIH Arrhythmia database.

MIT BIH Atrial Fibrillation Database

This database contains 25 fully annotated ECG
recordings containing a total of 299 AF episodes. Each
ECG recording is approximately 10 h long and is
sampled at 250 Hz. It also contains some cases of atrial
flutter and Normal Sinus Rhythm. Data sets 4936 and
5091 were excluded from our study because some RR
intervals were incorrectly annotated.

MIT BIH Arrhythmia Database

This database consists of 48 half-hour annotated
ECG recordings sampled at 360 Hz. Of these, 23 are in
the 100 series and the rest are in the 200 series. The
recordings in the 100 series contain sinus rhythm and
arrhythmias but no AF episodes. The 200 series con-
tains AF, various arrhythmias and sinus rhythm.

An example calculation of the aforementioned sta-
tistics along with the final detection using the corre-
sponding thresholds for a sample recording from the
MIT BIH Atrial Fibrillation database is shown in
Fig. 2.

RESULTS

The a value for optimum sensitivity and specificity
was found to be (compare to Eq. (4)):

aopt = [128, 50%, 0:1; 99:9%, 0:7�T ð5Þ

These threshold values have also been summarized in
Table 1. For a ¼ aopt, we obtained a sensitivity =

94.4%, specificity = 95.1% for the MIT-BIH Atrial

Fibrillation database and sensitivity = 90.2%, speci-
ficity = 91.2% for the MIT BIH Arrhythmia database
(200 series).

For the 100 series in the same database, the speci-
ficity was 99.52%, and since this series contains no true
AF beats, the sensitivity cannot be quantified. These
results are tabulated in Table 2.

The optimization parameter a is a 5-dimensional
vector, thus, it is difficult to plot the accuracy metrics
as a function of all the elements of the vector. For
ease of visualization, we have shown only the ROC
curves (sensitivity vs. specificity) obtained by varying
SeThresh while keeping the other elements of the
parameter a constant. Figure 3a shows these ROC
curves obtained for different segment lengths and
Fig. 3b shows similar ROC curves obtained for dif-
ferent values of PercThresh. The values for RmsThresh
and TprThresh were kept equal to the optimum values
obtained. It should be noted that the actual optimi-
zation was performed for the entire range of each
parameter, and not just for the SeThresh range.

DISCUSSION

There is an extensive body of literature on the
characteristics of AF and whether its RR sequence is
deterministic21 or random.25 The prevailing view
considers AF to be random25 and this assumption
underlies our algorithm for AF detection which
employs a nonparametric statistic to test for ran-
domness of the RR time series.29 In order to enhance
its robustness, the algorithm also analyzes RR vari-
ability and complexity. Our ability to detect AF with
high sensitivity and specificity in two large well doc-
umented databases is consistent with the notion that
AF is indeed random. Prior studies have differentiated
AF from other rhythms by examining the distribution
of RR intervals, successive RR differences,26,27 or
ratios of successive RR. Compared with the results
reported by Tateno and Glass26,27 in the MIT-BIH
Atrial Fibrillation Database our algorithm was
equally sensitive (94.4% vs. 94.4%) but slightly less
specific (95.1% vs. 97.2%). For the 200 series of the
MIT-BIH Arrhythmia Database, both sensitivity
(90.2% vs. 88.2% obtained by Tateno and Glass) and
specificity (91.2% vs. 87.2%) were higher, most likely
due to the elimination of ectopic beats by our filtering
scheme. The MIT-BIH AF database results by Sarkar
et al.24 are promising. However, their results on MIT-
BIH Arrhythmia Database have not been reported. It
should be noted that the accuracy of the algorithm by
Tateno and Glass,27 and Sarkar et al.24 depends on
the richness of the training data. If a new AF dataset
has characteristics that are different from those of the
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MIT-BIH9,10 database, their accuracy is likely to be
diminished. While our method’s threshold values were
also trained on the MIT-BIH Database, it is less
dependent on the diversity of the training data since
the three algorithms are well-established statistical

TABLE 1. Parameters used to classify an l-beat RR interval
segment as AF.

Parameter Meaning

Range of parameter

values for classifying

segment as AF

RMSSD Root mean square of

successive differences

RMSSD > 0.1 * meanRR

TPR Turning point ratio 0.54 < TPR < 0.77

SE Shannon entropy SE > 0.7

l Segment length in beats 128

FIGURE 2. (a) Original RR interval time series from a section of file 4048 of the MIT BIH Atrial Fibrillation database along with the
true annotation. Onset of AF can be seen. Calculation of the (b) RMSSD/MeanRR, (c) TPR, (d) Shannon Entropy is shown along with
the optimum thresholds (dashed lines). (e) The final detection results based on whether these statistics cross their respective
thresholds.

TABLE 2. Sensitivity and specificity values for all databases
tested, for the optimal parameter vector a = aopt = [128, 50%,

0.1, 99.9%, 0.7]T.

Name of

database

AF beats
AF episodes

Sensitivity Specificity Accuracy

MIT BIH atrial fibrillation

database

94.4% 95.1% 99.1%

MIT BIH arrhythmia (100-series) database

With ectopy NA 96.2% NA

Without ectopy NA 99.5% NA

MIT BIH arrhythmia (200-series) database

With ectopy 96.5% 69.4% 100%

Without ectopy 90.2% 91.2% 100%

Results for before and after removal of all PVCs have been

shown in the case of the Arrhythmia databases. The Arrhythmia

100-series database did not have any true AF beats and so only

specificity can be calculated for this database.
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methods. The algorithms by Tateno and Glass,27 and
Sarkar et al.24 also require a memory bank of histo-
gram characteristics of AF while our method only
requires three threshold values. Furthermore, the
computational speed of our method is faster than
Tateno and Glass. The computation time of a
128-beat data segment is of the order of 2 ms, whereas
the Tateno–Glass method takes around 30 ms for a
100-beat segment (programs run on MATLAB).
Hence, automatic real time detection of AF in a
clinical setting would be computationally less expen-
sive. The computation time for each 128-beat segment
can be further lessened since we are dealing with a
logical AND condition, which means it is not neces-
sary to calculate all three statistics for each and every
RR segment. If even one of the statistics (e.g.,
RMSSD since it is the most computationally efficient)
fails to cross the corresponding threshold, one can
simply mark that segment as non-AF and skip to the
next RR segment.

The segment length of 128 beats blurs the transi-
tion between non-AF and AF, causing a transition
detection delay. For the MIT-BIH Atrial Fibrillation
Database, the average delay was 17 beats (non-AF
to AF) and 19 beats (AF to non-AF) and for the
MIT-BIH Arrhythmia Database, 13 and 17 beats,

respectively (Fig. 4). Hence, selection of this 128-beat
window delays the detection of AF by 10–15 s on
average. However, from a clinical perspective it is
important to note that AF beats do not exist in iso-
lation but only as part of AF episodes. Accordingly
we have converted the original beat-to-beat annota-
tions to l-beat resolution annotations as explained in
‘‘Detector Optimization’’. A cardiologist observing
real-time telemetry needs to observe a minimum
number of RR intervals in order to diagnose AF.
Moreover, the accuracy of this diagnosis increases
with the number of RR intervals. Thus, the window
size (128 beats in this study) represents a trade-off
between accuracy and speed of diagnosis. In the MIT-
BIH Atrial Fibrillation Database (excluding files 4936
and 5091), the total number of true AF episodes is
254 of which 224 were correctly detected by our
algorithm. The remaining 30 episodes were less than
75 beats in length. In the MIT-BIH Arrhythmia
Database, our algorithm detected 96/107 episodes in
the 200 series; the remaining 11 episodes were less
than 11 beats long which suggests that AF detection
is robust except for very short episodes. In keeping
with the optimization results, we choose the value of
64 beats (PercThresh = 0.5 for l = 128) as the
shortest AF episode that the algorithm can accurately
detect. It should be recognized that for clinical
applications, the most relevant objective is to detect
the presence of AF in a given recording, i.e. not
necessarily every single AF beat. Using this latter
criterion and excluding episodes that are less than 64
beats long, we achieved an episode-detection accuracy
of 99.1% and 100% for the MIT-BIH AF and
Arrhythmia (200 series) databases, respectively (see
Table 2).

Another potential issue is the possible decrease in
the detection accuracy because of the linking of pre-
viously temporally separated RR segments because of
ectopic beat removal. While it is plausible that such a
‘‘linking’’ process may produce some statistical arti-
facts, we have compensated for it by ‘‘de-linking’’ the
segments after detection was done on the ‘‘linked’’
series. In other words, the temporal location of the
detected AF segments is preserved throughout the
algorithm. Hence the only significant distortions
would be at the boundaries of the two ‘‘de-linked’’
segments. For example, consider an RR series in
which a short NSR segment is followed by some
ectopic rhythm and then by an AF segment. In this
case, removal of the ectopic segment would cause the
sinus rhythm and AF segments to be temporally
linked. The detection algorithm will now operate on a
series consisting of NSR followed by AF rhythms and
it is possible that some of the NSR beats might be
incorrectly marked as AF. It must however be noted

FIGURE 3. Receiver Operating Characteristic (ROC) curves
with RmsThresh 5 0.1, TprThresh 5 99.9th percentile and
(a) PercThresh 5 0.5, l varying, SeThresh varying; (b) l 5 128,
PercThresh and SeThresh varying.
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that exactly the same rationale would have been valid
had we not removed the ectopic segment. In that case,
some of the (non-AF) ectopic beats (instead of the
NSR beats) would have been incorrectly marked as
AF. However, the number of incorrect AF markings
would be greater in the case when the ectopy is not
removed because in general, ectopic rhythms exhibit
more randomness than NSR. The purpose of the
ectopic beat filtering scheme is simply to reduce the
number of ‘‘blurry’’ transitions from non-AF to AF
segments arising because of ectopic beats and their
compensatory pauses. After the detection is per-
formed on such ‘‘linked’’ series, the results are then
temporally ‘‘de-linked’’ so that they correspond cor-
rectly to the actual time of occurrence.

Note that the MIT-BIH database annotations for
cardiac rhythm were performed by experts but they
do have a component of subjectivity. While the
accuracy of annotation by experts depends on the
fidelity of RR intervals of the MIT-BIH database,9,10

we are fortunate to have such a databank to test the

performance of our algorithms in comparison to
other methods24,27 which have also used the same
database.

FUTURE DEVELOPMENT

The use of ROC curves allows tuning of thresholds
to suit specific applications, modifying the sensitivity
and specificity of the algorithm. For example, in
ambulatory monitoring a high sensitivity may be more
important than specificity when detection of rare AF
episodes is of paramount importance. On the other
hand, unnecessary alarms are undesirable in hospital
settings, favoring an emphasis on specificity. Future
development may lead to improvements of AF detec-
tion from RR sequences and decrease the transition
detection delay. The ultimate goal is to implement the
algorithm in portable non-invasive sensors which can
be used for screening of patients at risk for atrial
fibrillation.

FIGURE 4. (a) RR interval series segment from file 4043 of the MIT BIH Atrial Fibrillation database showing a very short AF
episode (around 20 beats) and a normal AF episode. (b) The solid line shows the true annotations of the RR intervals series and the
dotted line shows the detection using the current protocol. The figure shows the delay in detection of the normal episode which is
denoted as the Transition Detection Delay. Also shown is the failure to detect AF episodes that are too short.
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