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A 290 mV Sub- ASIC for Real-Time
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Abstract—A real-time detector for episodes of atrial fibrillation
is fabricated as an application specific integrated circuit (ASIC).
The basis for detection is a set of three parameters for character-
izing the RR interval series, i.e., turning point ratio, root mean
square of successive differences, and Shannon entropy. The devel-
oped hardware architecture targets ultra-low voltage operation,
suitable for implantable loop recorders with ultra-low energy
requirements. Algorithmic and architectural optimizations are
performed to minimize area and energy dissipation, with a total
area footprint reduction of 44%. The design is fabricated in 65-nm
CMOS low-leakage high-threshold technology. Measurements
with aggressively scaled supply voltage ( ) in the subthreshold
(sub- ) region show energy savings of up to 41 X when operating
at 1kHzwitha of300mVcompared toanominal of 1.2V.
Index Terms—Atrial fibrillation, loop recorder, low-power, sub-

threshold, ultra-low voltage.

I. INTRODUCTION

N ONINVASIVE methods for detection of atrial fibrillation
(AF) have a long history which began several decades ago

[1]–[8]. The vast majority of proposed detectors rely on infor-
mation conveyed by the ventricular response, i.e., the RR in-
terval series. The main reason for relying on ventricular infor-
mation only is evidently that the atrial activity exhibits a much
lower amplitude than does the ventricular activity, and therefore
accurate atrial measurements are more difficult to produce. The
analysis of atrial activity becomes particularly problematic in
ambulatory recordings because of a noise level which generally
is much higher than that of recordings made at rest.
The use of a handheld device or a smartphone for AF de-

tection has recently received much attention since it facilitates
home-based screening at low or no extra cost [9]–[12]. For ex-
ample, the detector considered in the present study was previ-
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ously implemented in software operating on the processor of a
smartphone, the detector input being the pulsatile signal mea-
sured on the human fingertip using the built-in camera and flash
[9]. This type of device provides valuable intermittent informa-
tion on AF occurrence which may be acquired on a regular basis
during the day or when symptoms are experienced.
The length of an ambulatory ECG recording is usually

limited to 24 hours, and consequently, only limited knowledge
is provided on the progression of AF when considering that the
time course of AF from silent to a sustained form may span
several years [13]. Furthermore, concerning length, ambula-
tory recordings are not particularly effective for assessing the
outcome of different therapies, e.g., cardioversion and antiar-
rhythmic drugs. With the use of implantable loop recorders,
however, it is possible to continuously monitor the burden
of AF during extended time periods, using an algorithm that
performs AF detection.
While an AF detector, originally developed for use in a non-

invasive environment, may be a candidate for implementation
in an implantable loop recorder, the energy requirements asso-
ciated with the detector are likely to be incompatible with avail-
able battery capacity. Therefore, the starting point for detector
development depends on the operating environment: an “inva-
sive” AF detector has a structure which, from a computational
viewpoint, need to be less costly than that of a “noninvasive”
detector. It has recently been pointed out that further improve-
ment of AF detection in implantable loop recorders is needed
since existing ones do not offer satisfactory performance with
respect to sensitivity/specificity, or are limited by their compu-
tational complexity [14].
The implementation of an invasive AF detector not only in-

volves high requirements on detection performance, but it is
equally important to minimize energy dissipation in both idle
and active mode. Idle energy is dominated by the leakage drawn
by memories retaining data, and active energy is minimized by
reducing complexity of computations. For AF detectors oper-
ating on the RR intervals series, and thus, have a low incoming
data rate, computational complexity is less of a concern than the
minimization of required memory.
Since a key requirement of this study is to minimize memory

cost, the detector by Dash et al. [5] is chosen for implementa-
tion since it does not require storage of training data. The RR
intervals are characterized by the turning point ratio, the root
mean square of successive differences, as well as the Shannon
entropy. Inspired by the good performance reported in [5], an
investigation at the algorithmic and architectural levels was car-
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ried out with the goal to develop an appropriate design for hard-
ware (H/W) implementation.
Detectors suitable for implementation in a chronic im-

plantable monitor include the ones proposed by Sarkar et al.
[15], see also [14] and [16]. These detectors explore either
the series of differenced, successive RR intervals, or both
the original and differenced RR interval series. Aspects on
H/W implementation appear not to have been treated in any
subsequent publication.
The RR interval series, used as input to the AF detector, can

be delivered from an cardiac event detector, e.g., [17] or [18].
These two approaches differ in terms of flexibility, where the
approach in [17] offers a flexible solution to process a complex
detection algorithm at a cost of higher power consumption and
area footprint. In contrast, the proposed design in [18] offers a
highly energy efficient solution but lacks flexibility in terms of
signal processing. Both implementations are suitable candidates
to be used with the proposed AF detector, as they can be oper-
ated at ultra-low voltages (ULV).
Contribution: An AF detector architecture was optimized

for ULV operation. Algorithmic and architectural improve-
ments are performed, i.e., resource sharing of arithmetic units,
and adoption of an advantageous preprocessing scheme that
reduces the memory capacity requirement. An ASIC was fab-
ricated and measurements confirm simulation results. To the
best of the authors' knowledge, this paper is the first to detail
aspects of H/W implementation and measurements from an AF
detector.
This paper is organized as follows. Section II gives a brief

summary of the AF detector structure, and its performance is
compared to that of other detectors. Section III describes the
hardware architecture of the system, including different opti-
mization issues. Hardware performance in terms of area, speed,
and energy dissipation is presented in Section IV, and followed
by a discussion in Section V. Conclusions are found in Sec-
tion VI.

II. METHODS

The AF detector developed by Dash et al. is here considered
for ASIC implementation, and is therefore briefly described in
the following; a detailed description is found in [5]. The de-
tector processes successive, contiguous segments of the RR in-
terval series, where the RR intervals of a segment are denoted

.
Prior to AF detection, ectopic beats are eliminated by prepro-

cessing using a simple interval-based criteria. An ectopic
beat is detected when the ratio belongs to the
shortest 1% of all ratios and the interval ratio be-
longs to the longest 1%. The two intervals adjacent to the ectopic
beat are excluded from . Similar percentile criteria are em-
ployed for excluding long RR intervals. The preprocessed RR
intervals are denoted as .
In [5], the 25th percentile was also analyzed, however, com-

putation of this percentile requires extra memory, and was there-
fore omitted in the final implementation of the present study;
this omission did not lead to any degradation in detection per-
formance.

A. Detector Structure
The detector structure embraces three parameters for charac-

terizing a segment of the RR interval series, namely, the turning
point ratio (TPR), the root mean square of successive differ-
ences (RMSSD), and the Shannon entropy (SE). The three pa-
rameters are subjected to threshold detection.
A turning point in the RR interval series is said to occur at

whenever

(1)

where denotes the preprocessed RR intervals. The TPR is
defined as

(2)

where indicates the number of turning points in a seg-
ment. A nonparametric statistical test is employed in which the
number of turning points is compared to the confidence interval
of the expected number of turning points, serving as a means
to quantify the degree of randomness of the RR interval series.
The RMSSD is defined by

(3)

The Shannon entropy is defined by

(4)

where is a probability estimated from a RR interval his-
togram once outliers have been excluded; outliers are defined
as the longest and shortest intervals. The histogram is
constructed from the remaining RR intervals by sorting them
into equally spaced bins, with limits defined by the shortest
and longest RR intervals. The probability is estimated by

(5)

where denotes the number of RR intervals in the bin.
The same values as in [5] were used, i.e., , .
Atrial fibrillation is detected in a segment when the following

three conditions are jointly fulfilled:

(6)

(7)

(8)

where , and denote fixed
thresholds, and denotes the mean RR interval length.
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TABLE I
DATABASES USED FOR DETECTOR EVALUATION, CONTAINING AF AND OTHER

ARRHYTHMIAS [19]

TABLE II
RECOMMENDED THRESHOLD VALUES FOR THE DETECTOR

B. Update of Preprocessing Parameters

In the present study, preprocessing of is considered in
two variants:
• one in which the percentile limits are both computed from
and applied to the current segment (CurrSeg), and

• another computed from the preceding segment and applied
to the current segment (PrecSeg).

The latter variant is proposed and investigated since it leads to
substantial memory savings. In its original description, the en-
tire RR interval series was preprocessed off-line prior to AF
detection [5], whereas the present approach performs prepro-
cessing in almost real-time, i.e., with a delay of one segment.

C. Detector Evaluation

The performance of the AF detector is studied with a bit-
accurate fixed-point implementation, and validated using the
same ECG databases as those in [5], see Table I. The perfor-
mance measures sensitivity (Se) and specificity (Sp) are defined
as

(9)

and

(10)

where denotes the number of correctly detected AF
episodes (“true positives”), the number of correctly
detected non-AF episodes (“true negatives”), the number
of falsely detected AF episodes (“false positives”), and
the number of falsely detected non-AF episodes (“false nega-
tives”).
The four thresholds , and the

segment length were all varied over a grid identical to that
used in [5], to determine those values which produced a speci-
ficity equal to or better than that in [5]. The grid search was
performed for both CurrSeg- and PrecSeg-based percentiles.

TABLE III
AF DETECTOR PERFORMANCE. SENSITIVITY IS NOT COMPUTED FOR THE

100-SERIES DUE TO THE ABSENCE OF AF EPISODES

Fig. 1. Detector architecture in the context of AF classification. The AF
detector uses the three statistical measures: TPR, RMSSD, and SE. The FIFO
stores new RR intervals that arrive while the RMSSD and SE are operating.
All three measures need to indicate positive for AF.

The resulting parameter values are referred to as “recommended
values;” see Table II.
The sensitivity and specificity results are presented in

Table III, showing that the present implementation offers a
slight improvement over [5]. This improvement is observed
for all three databases, and is due to a minor alteration in
the preprocessing and the re-evaluation of threshold values.
Both sensitivity and specificity increase when PrecSeg is used,
whereas an increase in specificity and a decrease in sensitivity
is observed for CurrSeg.

III. HARDWARE ARCHITECTURE

The algorithm is designed with a focus on low energy
dissipation, and the architecture is optimized with knowledge
learnt from detector evaluation. Design choices are taken to
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Fig. 2. Conceptual architectural implementation that illustrates how the blocks of the preprocessing module interact while using the PrecSeg scheme. There exists
one instance of each element which is reused over time, i.e., time-multiplexed. The ratios of the previous segment are used to compute and . The first segment
of RR intervals is discarded in the PrecSeg preprocessing scheme as and are not initialized yet. Delay element is indicated with D.

achieve a small area footprint and reduced memory capacity.
The memory is facilitated using a random-access memory
(RAM) implemented with standard cells in order to allow for
aggressive supply voltage scaling down to the subthreshold
region [20].
The detector architecture is displayed in Fig. 1. Once avail-

able, RR intervals are preprocessed for ectopic beats. There-
after, RR intervals are used for computing the detection param-
eter TPR, as well as stored in the RAM, for use in the other de-
tection parameters, i.e., RMSSD and SE. If TPR indicates AF,
the RMSSD computation is started, which in turn triggers SE,
if AF is detected. RR intervals, which become available during
RMSSD or SE processing, are stored in a first-in first-out (FIFO)
memory and sent to the RAM afterwards. The three detection
parameters rely on a time-multiplexed CORDIC divider, shared
multiplier (SM) and a time-multiplexed implementation
(LOG-2). The different thresholds are applied in order to de-
termine whether an AF episode is present.

A. Preprocessing

As described in Section II, ectopic beats need to be removed
from the RR interval series . Furthermore, two prepro-
cessing methods are proposed, CurrSeg and PrecSeg, that differ
with respect to the segment from which percentiles used for
filtering are computed. The architecture of the implementation
using the PrecSeg scheme is shown in Fig. 2. The two ratios

and are computed in the pro-
cessing block ‘Ratios’ using the ‘Divider’ block. These ratios
are compared with the 1% ( ) and 99% ( ) percentiles (of
the previous segment) in the ‘Ectopic Filter’ block, to approve
or discard . In order to approve already when
has arrived (i.e., perform on-the-fly processing), the values
of and are computed from the ratios of the previous
segment. Therefore, the two largest and smallest ratios of a
segment are stored and used to compute and for the next
segment. To clarify, the steps performed whenever a sample
arrives are:
• and are computed.

Fig. 3. Architectural overview of Turning Point Ratio, which characterizes the
randomness of the RR interval series. The shared multiplier is denoted SM, and
a delay element with D.

• The two largest and smallest ratios are updated.
• is classified using and of the previous
segment.

• When 128 samples of have arrived, and are
updated.

Consequently, the ratio is no longer needed (dis-
carded) once is classified, and thus, no memory is needed
to store these ratios.
In the second variant of the preprocessing scheme CurrSeg,

the ‘Ectopic Filter’ compares the ratios of with the per-
centiles ( and ) of the current segment. This requires that
the computed ratios of of an entire segment are stored in an
additional RAM as the ratios are first used to compute the per-
centiles ( and ) and afterwards used in the ‘Ectopic Filter’
to filter . The preprocessing scheme PrecSeg does not re-
quire any extra storage and is therefore chosen.

B. Turning Point Ratio
The TPR is computed by comparing , , and

to each other; see Fig. 3. The three RR intervals are
stored in delay elements ( flip-flops). The accumulated value
is divided with , where denotes the segment size, using a
shared multiplier described below.

C. Root Mean Square of Successive Differences
The implementation of the RMSSD is costly in terms of area

footprint due to the square root and division operations are ex-
pensive in H/W implementation. Therefore, to simplify hard-
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Fig. 4. Architectural overview of Root Mean Square of Successive Differ-
ences, which flags for AF when a high variability is present.

Fig. 5. Shannon Entropy architecture, which flags positive when a low degree
of periodicity is found.

ware implementation, the square root operation is eliminated by
squaring both sides of (7), and thus, yielding

(11)

The terms and are both accumulated using
partial sums and normalized by and , respec-
tively. indicates the segment size. Partial sums and normal-
ization is utilized in order to restrict the required word length;
see Fig. 4. The normalized values are then accumulated and is
squared to form (11).

D. Shannon Entropy
The SE computation is accomplished by three different mod-

ules, illustrated in Fig. 5: removal of outliers, computation of
the RR interval histogram, and computation of the sum in (4).
The block ‘Outlier Removal’ identifies the longest and
shortest RR intervals of the current segment, and uses the re-
sulting values to determine the upper and lower limits of the
histogram. The outliers are detected by iterating through the cur-
rent segment, which is stored in the RAM. The RAM addresses
of the outlier candidates are stored in a shift register of size

7 bits, thus a total of memory posi-
tions are used, which each require 7 bits. A number of is
required as the longest and shortest intervals are needed
to determine the boundaries of the histogram.
The block ‘Histogram Computation’ constructs a histogram

using the limits determined by the first module. The histogram
requires a storage capacity of 8 bits to account for the pos-
sible outcomes of the histogram computation. RR intervals are
placed in their appropriate bin by iterating through the RAM
and increasing the comparison in steps of the distance between
bins. H/W optimization is performed in terms of memory mini-
mization by reusing the storage (Outlier & Histogram Storage)

Fig. 6. Logarithm architecture, used within the Shannon Entropy module. Shift
register is denoted as SR.

used by the first module, after modification into the biggest re-
quirement for both, i.e., positions of size
8 bits. Re-usage is possible as the boundaries of the histogram
are defined from the excluded outliers. Therefore, all outliers
will reside in the boundary bins, and are easily subtracted, i.e.,
excluded from SE computation. This is performed instead of
tracking all outlier addresses which would need an additional
storage of 112 bits. The block ‘SE Computation’ computes the
SE by iterating over the bins and determining the estimated
probabilities in (5), through inverse multiplication as the de-
nominator is constant. These estimated probabilities are used to
compute (4) using multiplication and a LOG-2 component, de-
scribed below. Multiplications are performed in a shared mul-
tiplier. Division with can be replaced by a logic shift
since .

E. Logarithm Computation (LOG-2)
For the logarithm function a time-multiplexed algorithm is

chosen to avoid the use of a look-up table (LUT), and thus, re-
duces memory cost [21]. This avoidance is permissible since
the requirement on computational speed of the AF detector is
low. The original algorithm operates on floating-point numbers,
however, for a H/W implementation fixed-point representation
is preferred. Thus, the incoming fixed-point number is trans-
formed into an exponent and normalized mantissa within
the range . Multiplication and division with power of two
is implemented as logic shift and truncation, respectively. This
transformation is illustrated in the upper part of Fig. 6; the lower
part account for the computation of , i.e., realization of
(15) and (16) in the Appendix. The multiplication required for
squaring is realized using a shared multiplier. The intermediate
result, i.e., , is stored in a shift register and added to the
exponent to produce the result of the logarithm computation,
i.e., , see (12).

F. Shared Multiplier
A total of 8 multiplications are needed for the computation of

the TPR, RMSSD, SE, and LOG-2. In order to reduce area cost,
a time-multiplexing scheme that facilitates a generic multiplier
is chosen. A relaxed timing constraint makes resource sharing
of a single multiplier feasible, see Fig. 7. The output data is
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Fig. 7. Multiplexing network for the shared multiplier unit, used in all three
measures.

rounded to the same word length as the input data, and overflow
can be avoided since the input data is known.

G. Hardware Optimizations
The detector is optimized on both algorithmic and architec-

tural levels to minimize area footprint and energy dissipation.
This is achieved by minimizing memory cost, reducing internal
word length, and adopting resource sharing and time-mul-
tiplexing for arithmetic operations. The total amount of
processing is reduced by exploring the property that AF is
only detected if all criteria are jointly fulfilled, i.e., SE is only
computed if the RMSSD exceeds , and the RMSSD
only computed if the TPR is within the interval defined by

and .
1) Memory Minimization Technique: Table III shows that

the best detection performance is obtained for PrecSeg, which
therefore is adopted in the present implementation. By com-
puting percentiles from the preceding segment, ratios are not
stored but rather compared to the percentiles computed of
the preceding segment and used to compute new percentiles.
Avoiding storage of these ratios eliminates the need for storing
an entire segment of ratios, i.e., bits, where denotes
word length. This is the same size as the RAM needed to store
the RR intervals of one segment, i.e., RAM storage is reduced
by 50% by including only one of the RAMs.
2) Resource Sharing and Time-Multiplexing: With several

multiplications required in the modules for TPR, RMSSD, SE,
and LOG-2, a shared multiplier leads to reduced area footprint.
Furthermore, the adoption of a time-multiplexed algorithm
for the divisions required in the preprocessor will reduce the
area footprint relative to straightforward division. As afore-
mentioned, the logarithm function is implemented using an
area efficient time multiplexing and does not rely on a LUT,
which further reduces the area footprint. The speed penalty due
to time-multiplexing and resource sharing does not degrade
detector performance in terms of sensitivity and specificity due
to the low rate of incoming samples, i.e., RR intervals.
3) Internal Word Length Reduction: The word length is se-

lected by studying detection performance for different fractional
bits in a bit-accurate fixed-point implementation; see Fig. 8. It
is observed that the performance is largely constant for 12 or
more fractional bits, whereas it deteriorates for fewer bits due
to precision mismatch. Hence, the word length is chosen to be
12 fractional bits. The rational part of the word is internally from

Fig. 8. Word length evaluation (for MIT-BIH databases), with the chosen
precision encircled, diminishing returns after 12 bits, where Se denotes
sensitivity and Sp denotes specificity.

TABLE IV
AREA COST AFTER GATE MAPPING (SYNTHESIS) IN 65-NM LOW-LEAKAGE

HIGH-THRESHOLD CMOS TECHNOLOGY

1 to 5 bits, and the data storage for an RR interval is 1 rational
bit; see RAM in Fig. 1. Using , 12 instead of 16 frac-
tional bits, and 1 rational bit, the RAM capacity reduces from
2176 to 1664 bits, i.e., a reduction of 23.5%.

IV. HARDWARE IMPLEMENTATION

The proposed architecture operates at a clock frequency of
1 kHz, and consequently, energy dissipation is dominated by
leakage currents. Therefore, design considerations to reduce
leakage are carried out while mapping the H/W architecture
to silicon for manufacturing, e.g., clock-tree buffer sizing,
gates with low fanout, and regular buffer sizing. The proposed
architecture is implemented using 65-nm CMOS low-leakage
high-threshold technology. The design constraints are on re-
duced leakage current cost and area footprint, while timing
constraints are relaxed. The area cost reported after gate-level
synthesis of using either PrecSeg or CurrSeg is presented
in Table IV, together with the area gain of sharing a single
multiplier. For comparison the NAND2 equivalents are stated
as well. The H/W optimization results in a reduction of 43%,
by combining the shared multiplier and PrecSeg.

A. Silicon Measurements
The chip is manufactured with separate supply voltages

( s) for the RAM and the remaining AF detector (Core).
Thereby, it is possible to investigate individual shares on the
power consumption; the measurement results are presented in
Table V. The total power consumption of the core is measured
as , where leakage power , at nominal

(1.2 V), accounts for . Similarly, of the
memory's total power consumption is leakage
power. Consequently, to efficiently reduce the power consump-
tion, the issue of leakage power needs to be seriously addressed.
The most effective method to reduce both dynamic- and leakage
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TABLE V
MEASURED ENERGY DISSIPATION WITH A FIXED FREQUENCY OF 1 KHZ AND A SCALED , TOGETHER WITH GAIN COMPARED TO NOMINAL

Fig. 9. Chip microphotograph of the fabricated AF detector. Area footprint is
0.1 (excluding pads).

power consumption is to lower to ultra-low voltages
(ULV), and operate in the near-threshold voltage (NTV) region
or the subthreshold (sub- ) region, where is the threshold
voltage. The NTV region is referred to as the region in the
vicinity of the of the transistor, around 500–700 mV in this
technology. The sub- region is the operation domain below
500 mV. Operating in these regions has the drawback of a
reduced maximum operational frequency, down to tens of MHz
(NTV region) or hundreds of kHz (sub- region).
Advantageously, the operational frequency of the AF detector

is 1 kHz, and thus, this design is a suitable candidate for voltage
scaling all the way down to sub- operation. Design consid-
erations result in a large slack on the critical path, and thus,
process variations seen at aggressively scaled do not en-
danger timing. Furthermore, regular static random-access mem-
ories (SRAMs) are not operational at a scaled . Therefore,
the RAM is implemented using standard cells that are opera-
tional in the NTV to sub- regions, as shown in [22], [23].
By lowering the down to the sub- region, i.e., 300 mV,
a gain of up to 41 is seen; see Table V. Furthermore, the
optimized preprocessing scheme PrecSeg, which reduces the
memory capacity, results in power savings of if
operated at nominal or 300 mV.

B. On-Chip Verification

Fig. 9 shows amicrophotograph of the fabricated chip. Due to
the small core area only a limited amount of pads were available
for this design, (which was part of a multi-project die). There-
fore, an on-chip peripheral circuit was incorporated, performing
the asynchronous serial (single-bit) input and output communi-
cation, and converting parallel input for the AF detector. The
on-chip peripheral circuit is operating at a of 140 mV
higher than of the AF detector, acting as a level shifter and
a buffer for the output signals. The chip is stimulated with the
same test patterns used for detector evaluation, i.e., the RR in-
tervals of the ECG databases in Table I. In order to observe the

Fig. 10. Post-processed measured chip output: the arrows indicate when the
statistical measures are turned on/off. One output value is received per segment
of 128 RR intervals.

Fig. 11. Oscilloscope screenshot illustrating input stimuli together with output.
Peripheral serial communication is shown at the bottom.

functionality of the system, intermediate data signals (i.e., ap-
proved RR intervals, TPR, RMSSD and SE results) are sent over
the serial interface. Post-processing of the intermediate data is
shown in Fig. 10. Additionally, an oscilloscope screenshot to-
gether with the peripheral interface is shown in Fig. 11, where
RR intervals are supplied as input while the circuit sends out
approved RR intervals. The screenshot was taken when the AF
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detector operated at the lowest of 290 mV. The total sil-
icon area, including the peripheral circuit, is 0.10 , seen in
Fig. 9. The increase in area compared to after gate-level syn-
thesis is due to a high congestion when routing signal wires.

C. System Perspective

To quantify the power consumption of the detector, the re-
quirements of an implantable pulse generating pacemaker are
considered [24]. The battery used in such a device has a typical
rating of 2 Ah in energy capacity and delivers 2.5 V, which trans-
lates to a total energy capacity of 18 kJ [24]. With the assump-
tion that this device is operated for a total of 10 years, an av-
erage energy budget of 57 (57 ) is available. Assuming
that efficient DC-DC converters are available (to reduce to
1.2 V or 0.3 V) the power consumption of the detector is calcu-
lated to 0.58% and 0.014% of the total power consumption for
a of 1.2 V and 0.3 V, respectively. Thus, this represents a
minor contribution compared to other more power consuming
components of the system, such as analog sensing devices, A/D
converters and radio transmitters. As a result, the AF detector
can become a supplement to a health monitoring system, adding
relatively small area and power overhead.

V. DISCUSSION

The present study provides detailed information on the imple-
mentation of an AF detector, and demonstrates that a detector
with a rather complex structure can be considered for use in an
implantable loop recorder, e.g., a complete system on an appli-
cation specific integrated circuit (ASIC) or field programmable
gate array (FPGA), depending on application requirements. The
results suggest that the energy required for long-term operation
of the detector, i.e., for several years, is well within what is pro-
vided by the battery of an implantable device.
The performance of the present block-based RR interval anal-

ysis was also compared to that of sliding window analysis (not
presented). Since detection performance was found to be about
the same for the two types of segmenting in RR interval analysis,
block-based analysis (PrecSeg) was preferred as it is associated
with fewer computations and thus lower power consumption.
From an algorithmic viewpoint, it is experimentally estab-

lished that RMSSD is the more powerful parameter in deter-
mining whether an AF episode has occurred or not. From a low
power H/W viewpoint, however, TPR is the least expensive in
terms of power, and therefore TPR is computed first to reduce
the amount of RMSSD computations.

VI. CONCLUSION
An ultra-low energy ASIC for real-time AF detection is pre-

sented. Certain alterations of the preprocessing are proposed
that improve detection performance and reduce area cost by re-
ducingmemory footprint. Functional units are time-multiplexed
to enable sharing of commonly-used resources, i.e., multipli-
cation, division, and logarithm. The optimized detector is fab-
ricated in 65-nm low-leakage high-threshold CMOS process.
Measurements at aggressively scaled supply voltage down to
ultra-low voltages, i.e., subthreshold (sub- ), show substan-
tial energy savings compared to nominal supply voltage.

APPENDIX
COMPUTATION OF THE LOGARITHM

Logarithms in H/W are often implemented using LUT tomin-
imize computation time. However, due to the relaxed time re-
quirements and memory limitations of the present implemen-
tation, another approach is adopted which avoids LUT [21].
This approach operates on a normalized mantissa from a
floating-point number in the range . The exponent of the
floating-point number is not needed to process according to the
rule

(12)

where is a real number. Since is within , the result of
the logarithm operations resides within , expressed as

(13)

where indicates a bit position in a word, and is the word
length. Rewriting (13), the corresponding anti-logarithm is

(14)

To compute the value of , the mantissa is squared, and
henceforth, referred to as , which after restructuring (14) be-
comes

(15)

From (15) it is obvious that if and only if . To
compute removal of is necessary, by dividing by 2, in
case , otherwise no division is required. Hence

(16)

after which

(17)

The pattern of (17) is identical to (14), except that it starts with
, thus processing will continue until the desired precision is

achieved.

ACKNOWLEDGMENT

The authors would like to thank STMicroelectronics for
chip manufacturing, and they are grateful to D. Rehman and
M. López Picazo for their contributions to the study at an early
stage.

REFERENCES
[1] G. Moody and R. Mark, “A new method for detecting atrial fibrilla-

tion using R-R intervals,” in Computers in Cardiology 1983, Volume
10. Aachen, Germany: IEEE Computer Soc. Press, 1983, vol. 10, pp.
227–230.

[2] K. Tateno and L. Glass, “Automatic detection of atrial fibrillation using
the coefficient of variation and density histograms of RR and
intervals,” Med. Biol. Eng. Comput., no. 39, pp. 664–671, 2001.



ANDERSSON et al.: A 290 mV SUB- ASIC FOR REAL-TIME ATRIAL FIBRILLATION DETECTION 385

[3] D. Duverney, J.-M. Gaspoz, V. Pichot, F. Roche, R. Brion, and A. A.
J.-C. Barthélémy, “High accuracy of automatic detection of atrial fib-
rillation using wavelet transform of heart rate intervals,” Pacing Clin.
Electrophysiol., vol. 25, pp. 457–462, 2002.

[4] A. Bollmann, D. Husser, L. Mainardi, F. Lombardi, P. Langley,
A. Murray, J. J. Rieta, J. Millet, S. B. Olsson, M. Stridh, and L.
Sörnmo, “Analysis of surface electrocardiograms in atrial fibrillation:
Techniques, research, and clinical applications,” Europace, vol. 8, pp.
911–926, 2006.

[5] S. Dash, K. Chon, S. Lu, and E. Raeder, “Automatic real time detection
of atrial fibrillation,” Ann. Biomed. Eng., vol. 37, pp. 1701–1709, 2009.

[6] J. Park, S. Lee, and M. Jeon, “Atrial fibrillation detection by heart rate
variability in Poincaré plot,” Biomed. Eng. Online, vol. 8, p. 38, 2009.

[7] K. J. Jang, G. Balakrishnan, Z. Syed, and N. Verma, “Scalable cus-
tomization of atrial fibrillation detection in cardiac monitoring devices:
Increasing detection accuracy through personalizedmonitoring in large
patient populations,” in Proc. Annu. Int. Conf. IEEE Engineering in
Medicine and Biology Soc., 2011, vol. 33, pp. 2184–2187.

[8] R. B. Shouldice, C. Heneghan, and P. de Chazal, “Automatic detection
of paroxysmal atrial fibrillation,” in Atrial Fibrillation-Basic Research
and Clinical Applications, J. Choi, Ed. Rijeka, Croatia: Intech, 2012,
ch. 7, pp. 125–146.

[9] J. Lee, B. Reyes, D. McManus, O. Mathias, and K. Chon, “Atrial fibril-
lation detection using an iPhone 4S,” IEEE Trans. Biomed. Eng., vol.
60, pp. 203–206, Jan. 2013.

[10] C. G. Scully, J. Lee, J. Meyer, A. M. Gorbach, D. Granquist-Fraser,
Y. Mendelson, and K. H. Chon, “Physiological parameter monitoring
from optical recordings with a mobile phone,” IEEE Trans. Biomed.
Eng., vol. 59, pp. 303–306, 2012.

[11] C.-W. Tseng, G.-H. Lin, C.-H. Chang, H.-Y. Chan, C.-L. Tsai, Y.-D.
Lin, and K.-P. Lin, “Automatic detection of atrial fibrillation based
on handheld ECG device,” in Proc. 5th Eur. Conf. Int. Federation for
Medical and Biological Engineering, 2012, vol. 37, pp. 506–509.

[12] M. Stridh andM. Rosenqvist, “Automatic screening of atrial fibrillation
in thumb-ECG recordings,” in Proc. Computing in Cardiology Conf.,
Sep. 2012, pp. 193–196.

[13] “Guidelines for the management of atrial fibrillation,” Europace, vol.
12, pp. 1360–1420, 2010, The Task Force for theManagement of Atrial
Fibrillation of the European Society of Cardiology (ESC).

[14] J. Lian, L. Wang, and D. Muessig, “A simple method to detect atrial
fibrillation using RR intervals,” Amer. J. Cardiol., vol. 107, pp.
1494–1497, 2011.

[15] S. Sarkar, D. Ritscher, and R. Mehra, “A detector for a chronic im-
plantable atrial tachyarrhythmia monitor,” IEEE Trans. Biomed. Eng.,
vol. 55, pp. 1219–1224, 2008.

[16] R. Mehra, J. Gillberg, P. Ziegler, and S. Sarkar, “Algorithms for atrial
tachyarrhythmia detection for long-term monitoring with implantable
devices,” in Understanding Atrial Fibrillation: The Signal Processing
Contribution, L. Mainardi, L. Sörnmo, and S. Cerutti, Eds. San
Rafael, CA, USA: Morgan Claypool, 2008, ch. 8, pp. 175–214.

[17] J. Hulzink, M. Konijnenburg, M. Ashouei, A. Breeschoten, T. Berset,
J. Huisken, J. Stuyt, H. de Groot, F. Barat, J. David, and J. Van Gin-
derdeuren, “An ultra low energy biomedical signal processing system
operating at near-threshold,” IEEE Trans. Biomed. Circuits Syst., vol.
5, no. 6, pp. 546–554, Dec. 2011.

[18] J. Rodrigues, O. Akgun, and V. Öwall, “A sub- cardiac
event detector in 65 nm LL-HVT CMOS,” in Proc. 18th IEEE/IFIP
VLSI System on Chip Conf., 2010, pp. 253–258.

[19] A. L. Goldberger, L. A. Amaral, L. Glass, J.M. Hausdorff, P. C. Ivanov,
R. G. Mark, J. E. Mietus, G. B. Moody, C. K. Peng, and H. E. Stanley,
“PhysioBank, PhysioToolkit, and PhysioNet: Components of a new
research resource for complex physiologic signals,” Circulation, vol.
101, pp. E215–220, 2000.

[20] M. Alioto, “Ultra-low power VLSI circuit design demystified and ex-
plained: A tutorial,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59,
pp. 3–29, Jan. 2012.

[21] Y. F. Ho, Fast Logarithm Converter for Fixed-Point Numbers without
Look-Up Table, 2004 [Online]. Available: http://www.winnyefanho.
net/research/Log2.pdf

[22] P. Meinerzhagen, S. Sherazi, A. Burg, and J. Rodrigues, “Bench-
marking of standard-cell based memories in the sub- domain in
65-nm CMOS technology,” IEEE J. Emerg. Sel. Topic Circuits Syst.,
vol. 1, pp. 173–182, Jun. 2011.

[23] P. Meinerzhagen, O. Andersson, B. Mohammadi, Y. Sherazi, A. Burg,
and J. Rodrigues, “A 500 fW/bit 14 fJ/bit-access 4 kb standard-cell
based sub- memory in 65 nm CMOS,” in Proc. Eur. Solid-State
Circuits Conf., 2012, pp. 321–324.

[24] V. S. Mallela, V. Ilankumaran, and N. S. Rao, “Trends in cardiac pace-
maker batteries,” Indian Pacing Electrophysiol. J., vol. 4, pp. 201–212,
2004.

Oskar Andersson (S'11) received the M.Sc. degree
in computer science and engineering from Lund Uni-
versity, Lund, Sweden, in 2010.
Currently, he is working toward the Ph. D. degree

in the digital ASIC research group in the Electrical
and Information Technology Department, Lund
University. His research interests include power
optimization of ultra-low voltage circuits, power-ef-
ficient circuits techniques, and biomedical circuits
for implantable devices.

Ki H. Chon (SM'08) received the B.S. degree
in electrical engineering from the University of
Connecticut, Storrs, CT, USA, the M.S. degree
in biomedical engineering from the University of
Iowa, Iowa City, IA, USA, and the M.S. degree
in electrical engineering and the Ph.D. degree in
biomedical engineering from the University of
Southern California, Los Angeles, CA, USA.
He spent three years as an NIH Postdoctoral

Fellow at the Harvard-MIT Division of Health
Science and Technology, one year as a Research

Assistant Professor in the Department of Molecular Pharmacology, Physiology,
and Biotechnology at Brown University, Providence, RI, USA, and four
years as an Assistant Professor and Associate Professor in the Department of
Electrical Engineering at the City College of the City University of New York,
NY, USA. He was Professor in the Department of Biomedical Engineering
at SUNY Stony Brook, Stony Brook, NY, USA. Most recently, he was a
Professor and Chair of Biomedical Engineering at Worcester Polytechnic
Institute, Worcester, MA, USA, for four years. Currently, he is a Professor and
Founding Head of Biomedical Engineering at the University of Connecticut.
His current research interests include medical instrumentation, biomedical
signal processing, biomedical instrumentation, mobile health diagnostics,
wearable sensors and identification, and modeling of physiological systems.
Dr. Chon was an Associate Editor of the IEEE TRANSACTIONS ON

BIOMEDICAL ENGINEERING from 2007–2013. He has chaired many inter-
national conferences, including the role of Program Co-Chair for the IEEE
Engineering in Medicine and Biology Society (EMBS) Conference in New
York City in 2006.

Leif Sörnmo (S'80–M'85–SM'02) received the
M.Sc. and Ph.D. degrees in electrical engineering
from Lund University, Lund, Sweden, in 1978 and
1984, respectively.
From 1983 to 1995, he was a Research Fellow in

the Department of Clinical Physiology, Lund Univer-
sity, where he was involved with research on ECG
signal processing. Since 1990, he has been with the
Signal Processing Group, Department of Biomedical
Engineering, Lund University, where he is currently
a Professor of biomedical signal processing and re-

sponsible for the BME program. He is the author of Bioelectrical Signal Pro-
cessing in Cardiac and Neurological Applications (New York, NY, USA: El-
sevier, 2005). His research interests include statistical signal processing, mod-
eling of biomedical signals, methods for analysis of atrial fibrillation, multi-
modal signal processing in hemodialysis, and power-efficient signal processing
in implantable devices.
Dr. Sörnmo is an elected Fellow of International Academy of Medical and

Biological Engineering. He is an Associate Editor of IEEE TRANSACTIONS ON
BIOMEDICAL ENGINEERING, Journal of Electrocardiology, andMedical and Bi-
ological Engineering&Computing. He is on the editorial board of the Journal of
Biomedical Engineering. He was an Associate Editor of Computers in Biomed-
ical Research (1997–2000).



386 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 9, NO. 3, JUNE 2015

Joachim Neves Rodrigues (S'00–M'05–SM'11) re-
ceived the Ph.D. degree in electroscience from Lund
University, Lund, Sweden, in 2005.
Currently, he is an Associate Professor in the De-

partment of Electrical and Information Technology,
Lund University. From 2005 to 2008, he acted as
ASIC process lead in the Digital ASIC Department
at Ericsson Mobile Platforms, Lund, Sweden. He
rejoined his current department in 2008, and is
currently the Program Director for System-on-Chip.
His main research interests are modeling and imple-

mentation of digital and mixed-mode microelectronics, architectures for high
performance ultra-low voltage designs, with a focus on biomedical circuits and
systems.
Dr. Rodrigues is a technical committee member of the Biomedical Circuits

and Systems Society since 2010, and Vice-Chair of the Swedish SSC chapter.


