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C
alculation of approximate entropy (ApEn) requires
a priori determination of two unknown parameters,
m and r. While the recommended values of r, in the
range of 0.1–0.2 times the standard deviation of the

signal, have been shown to be applicable for a wide variety of
signals, in certain cases, r values within this prescribed range
can lead to an incorrect assessment of the complexity of a
given signal. To circumvent this limitation, we recently advo-
cated finding the maximum ApEn value by assessing all val-
ues of r from 0 to 1 and found that the maximum ApEn does
not always occur within the prescribed range of r values. Our
results indicate that finding the maximum ApEn leads to the
correct interpretation of a signal’s complexity. One major
limitation, however, is that the calculation of all choices of r
values is often impractical because of the computational
burden. Our new method, based on a heuristic stochastic
model, overcomes this computational burden and leads to the
automatic selection of the maximum ApEn value for any
given signal. On the basis of Monte Carlo simulations, we
derive general equations that can be used to estimate the maxi-
mum ApEn with high accuracy for a given value of m. Appli-
cation to both synthetic and experimental data confirmed the
advantages claimed with the proposed approach.

ApEn is a widely used method to provide a general under-
standing of the complexity of data [1]. Its popularity stems
from the fact that it can be applied to both short- and long-term
data recordings, and it is relatively easy to use. Consequently,
it has found applications in many disciplines [2], [3].

ApEn determines the conditional probability of similarity
between a chosen data segment of a given duration and the
next set of segments of the same duration; the higher the
probability the smaller the ApEn value, indicating less com-
plexity of the data.

Given a time series with N data points, the calculation of
ApEn requires a priori determination of two unknown parame-
ters, m and r. The parameter m determines the length of the
sequences to be compared, and its selection can be estimated
by calculating the false nearest neighbor [4]. The second
parameter, r, is the tolerance threshold for accepting similar
patterns between two segments and has been recommended to

be within 0.1–0.2 times the standard deviation of the data [1].
This recommendation was largely based on its application to
relatively slow dynamic signals such as heart rate [2], [3] and
hormonal release data [5]. Our recent work suggests that these
recommended values are not always appropriate for fast
dynamic neural signals [6]. Furthermore, for a Brownian
motion time series, with the selection of r ¼ 0.15 times the
standard deviation, ApEn value can be low as deterministic sig-
nals, which erroneously suggest low complexity of the signal.

Recently introduced variants of ApEn methods, sample
entropy (SampEn) [7] and multiscale entropy [8], were devel-
oped to overcome the self match problem associated with
ApEn and to provide a time-scale-dependent ApEn, respec-
tively. However, these two methods also rely on the choices of
both m and r. Therefore, these alternate methods are not
immune to the sensitivity of the choice of r.

To this end, our recent work has provided the valuable
insight that the most appropriate threshold value is the one that
provides the maximum ApEn value [6]. In this study, computer
simulation examples consisting of various signals with differ-
ent complexity were compared. It was found that neither ApEn
nor SampEn methods was accurate in measuring signals’ com-
plexity when the recommended values (e.g., m ¼ 2 and r ¼
0.1–0.2 times the standard deviation of the signal) were strictly
adhered to. However, when we selected the maximum ApEn
value as determined by considering many different r values,
we were able to correctly discern a signal’s complexity for both
synthetic and experimental data. However, this requires that
many different choices of r values need to be considered. This
is a very cumbersome and time-consuming process. Thus, the
primary goal of the present work is to illustrate our recently
developed method [9] that can automatically select the appro-
priate threshold value r, which corresponds to the maximum
ApEn value, without resorting to the calculation of ApEn for
each of the threshold values selected in the range of zero and
one times the standard deviation.

Methodology
The details on ApEn algorithm are summarized in [1]. The
calculation of ApEn requires a priori specification of two
unknown parameters: m, the embedding dimension (ED) and
r, a tolerance value. The value of m can be estimated using the
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calculation of false nearest neighbor [4]. However, theoretical
and varied clinical applications, especially for slow dynamics
[e.g., heart-rate variability (HRV) and growth hormone
release], have shown that either m ¼ 1 or 2 and r between 0.1
and 0.2 of the standard deviation of the data provide good
statistical validity of ApEn.

Automatic Selection of R That Corresponds
to the Maximum ApEn Value

Justification for Choosing
the Maximum ApEn Value
To illustrate our reasoning for choosing the maximum ApEn
value rather than strictly heeding the recommendation that r be
between 0.1 and 0.2 times the standard deviation of the signal,
we show ApEn values as a function of r for three different time
series with decreasing complexity: white noise (WN), cross
chirp, and sinusoidal signals (Figure 1). We note that for all
three signals, increasing r at first results in a concomitant
increase in ApEn with the maximum ApEn (denoted as
ApEnmax) found at different r values for all three signals. There-
after, ApEn decreases with increasing r. If we choose ApEnmax

for all three signals, there is no ambiguity as to which signal is
more complex. However, if we were to choose ApEnmax based
on the recommended r value being between 0.1 and 0.2 times
the standard deviation of the signal, the cross-chirp signal
(CCS) has a higher ApEn value than the WN signal. Certainly,
this is a misleading result. Therefore, this simple example illus-
trates the pitfalls of the recommended r value selection process,
and as an alternative, the most appropriate threshold value, r,
can be simply determined by selecting the true ApEnmax value.
Further, examples demonstrating the appropriateness of select-
ing ApEnmax value, instead of the recommended r value in the
range of 0.1–0.2 times the standard deviation of the signal, are
provided in our recent study [6]. A recent work using our
approach has also confirmed that the threshold value r is critical
in human HRV studies [10]. For example, it was found that a
selection of r ¼ 0.25 resulted in 12% decrease of ApEn value,
whereas r ¼ 0.1 resulted in 9% increase as subjects changed
their body positions from supine to upright. Further, it was
found that ApEnmax value estimated in human HRV data were
consistent within the recommended r values of 0.1–0.2 times
the signal standard deviation.

The significance of ApEnmax is that it denotes the largest
information difference between data length m and m þ 1 for
any given r; thereby, it signifies the maximum complexity. We
advocate the use of ApEnmax since it is less arbitrary than select-
ing the recommended r value between 0.1 and 0.2 of the stan-
dard deviation of the signal. Furthermore, as shown in Figure 1,
even within these suggested r values, there are wide variations
in the ApEn values for all three signals, and the results can lead

to the incorrect interpretation of complexities between these
three signals. However, using ApEnmax, we obtain the correct
information complexities for all three signals. Henceforth, we
denote the r value to obtain the ApEnmax as the rmax.

Automatic Selection of rmax Value
To automatically select ApEnmax without resorting to the calcu-
lation of every possible r value, our method is based on a theory
about the behavior of the threshold value. We will show in the
subsequent paragraph that the rmax value is dependent on the
data record length and the square root of the ratio between short-
and long-term variability of the signal. To exploit these relation-
ships, the theory begins with a model of a bounded random
process (BRP). Most biological signals exhibit both short- and
long-term behaviors that can have wide ranges of complexity.
The model of the BRP is defined by the following equation:

y(i)� y(i� 1) ¼ e(i),

b� < y(i) < bþ, (1)

where the time series, y(i) in (1), is the integrated WN signal.
Note that the time series y(i) differs from Brownian noise
because of the boundaries b defined in the second line of (1).
The top expression of (1) describes the short-term variability,
in which differences between successive points are assumed
to be random processes with the resultant time series, e(i),
having zero mean. The standard deviation of e(i) is denoted as
sd1. We use sd2 to denote the standard deviation of y(i) in (1),
which can be thought of as long-term variability of the signal.
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Fig. 1. ApEn values of WN, CCS, and SS with various thresh-
olds (r) are shown.

The proposed approach provides a more

accurate estimate of ApEnmax than the

conventional method since the difference as

denoted by d is smaller.
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To simulate wide ranges of complexity, we used Monte
Carlo simulations to generate 100 realizations of integrated
independent and identically distributed Gaussian WN signals
(e(i)�N(0,1)), with each realization having different bound [b�

is randomly selected from (�2 to�20)]. Thus, 100 realizations
resulted in 100 different bounds. For each time series with dif-
ferent data lengths, starting from 200 to 1,000 at an increment
of 100, ApEn values corresponding to threshold values ranging
from 0.01 to 1, incrementing by 0.01, were computed for differ-
ent ED values. Only the threshold value that provides the
ApEnmax for a particular ED was selected based on examining
all ApEn values resulting from the set of threshold values.

A plot of the optimal r as a function of sd1/sd2 and data
length, for EDs two and three, is shown in Figure 2. Figure
2(b) and (d) shows two-dimensional (2-D) illustration of the
Figure 2(a) and (c) for data lengths of 200, 600, and 1,000 for
the corresponding dimension. While the ApEn is based on
choosing r between 0.1 and 0.2 of the standard deviation of the
data, we emphasize the use of r as a function of the short-term
variability, sd1, normalized by the long-term variability, sd2,
for our method. We note a quasilinear relationship for both
EDs. Thus, either a general linear or nonlinear equation can be
derived for each ED. The general equations derived based on

fitting multiple nonlinear least squares on the curves shown in
Figure 2 are provided below for each ED:

m ¼ 2 : r̂max ¼ �0:036þ 0:26
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sd1=sd2

p� �
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=1,0004

p
,

m ¼ 3 : r̂max ¼ �0:08þ 0:46
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sd1=sd2

p� �
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=1,0004

p
,

m ¼ 4 : r̂max ¼ �0:12þ 0:62
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sd1=sd2

p� �
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=1,0004

p
,

m ¼ 5 : r̂max ¼ �0:16þ 0:78
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sd1=sd2

p� �
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=1,0004

p
,

m ¼ 6 : r̂max ¼ �0:19þ 0:91
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sd1=sd2

p� �
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=1,0004

p
,

m ¼ 7 : r̂max ¼ �0:2þ 1:0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sd1=sd2

p� �
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=1,0004

p
: (2)

The aforementioned equations differ slightly from those of
our previous study [9] largely because of the differences in the
random number generators. In addition, we now include new
general equations for ED larger than four. We did not consider
EDs higher than seven because they are rarely used in practice,
as most ApEn users heed to the recommended ED value of two.
Higher ED values (>7) can be estimated using the approach we
have outlined for interested readers.
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Fig. 2. A Monte-Carlo simulation plot of rmax as a function of sd1/sd2 and data length for two different EDs are shown. (b) and
(d): 2-D illustrations of (a) and (c) for data lengths of 200, 600, and 1,000 for the corresponding dimension shown. The time
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For the aforementioned
equations, the estimated rmax

value approaches a value of
zero as N increases to infinity.
This should not be of concern
since ApEn is not usually cal-
culated for data lengths larger
than a few thousand points.
An example result, the plot of
the optimal r as a function of
sd1/sd2 for EDs two and three
for the data length of 1,000
points, is shown as closed
circles and closed inverted tri-
angles in Figure 3. Using (2)
and (3), we obtain estimated
rmax values as a function of
sd1/sd2, and they are shown as
open circles and open in-
verted triangles in Figure 3.
In general, we observe excel-
lent agreement between the
actual and estimated rmax val-
ues although the accuracy
degrades a little as the ratio
of sd1/sd2 increases. Note that
the difference between the
true and estimated rmax does not translate into a large discrep-
ancy between the true and estimated ApEnmax values; support-
ing evidence will be provided in the next section.

For experimental data, the ED is estimated first, followed
by calculation of sd1 [standard deviation of e(i) in (1)] and
sd2 [standard deviation of y(i)] from which the optimal
threshold value is determined
from the equations provided
for a particular ED.

The solid circle points in
Figure 1 represent the actual
ApEnmax values. For all three
signals, m was set to three.
The estimated ApEnmax val-
ues were 1.157 for WN (true
ApEnmax = 1.163), 0.637 for
CCS (true ApEnmax = 0.659),
and 0.015 for the SS (trueA-
pEnmax = 0.061).

Results

Synthetic Simulation
Example Consisting
of WN, Brownian Motion,
Henon, and Logistic
Map Series
The results shown are largely
derived from our recently
published study [9]. To dem-
onstrate the efficacy of our
approach in automatically
determining the rmax value,
we generated ten independent
realizations each for Gaussian

WN, Brownian noise, the logistic map, and Henon map time
series. The logistic map is described by the following equation:

y(n)� 3:6y(n� 1)

� 3:6y2(n� 1):
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Fig. 3. The plot of the rmax as a function of sd1/sd2 for two different EDs for the data length of
1,000 points is shown as closed circles (m ¼ 2) and closed inverted triangles (m ¼ 3). Open
inverted triangles (m ¼ 3) and open circles (m ¼ 2) are estimated values by using (2) and (3).
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The Henon map is described by:

y(n) ¼ 3:168y(n� 1)

þ 0:3y(n�2)

� y2(n�1):

Every realization of the four types of signals contained
1,000 data points. From each of these realizations, we gener-
ated nine new subrealizations of different data lengths by
starting from 200 and incrementing by 100, up to the total data
length of 1,000 data points. The purpose of the last step was to
examine the variability of the proposed and original ApEn
method on different data lengths. For every realization de-
scribed earlier, the exact ApEnmax values were determined for

every curve as a function of r value, which was successively
increased starting from 0.01 times the standard deviation up to
one time the standard deviation, at an increment of 0.01. In addi-
tion, for every realization, we also determined estimates of
ApEnmax using (2) as well as the conventional estimates of ApEn
values based on the arbitrary choice of m ¼ 2 and with r set to
0.15 times the standard deviation of the signal. To examine how
our proposed approach and the conventional approach compare
to the true ApEnmax values, we calculated the difference between
jApEnmax � ApÊnmaxj and jApEnmax � ApÊn(2,0:15)j for the
nine subrealizations to obtain mean and standard deviation
values. This procedure was then repeated for each of the
remaining nine realizations and their nine subrealizations. The
outcome of this comparison is provided in Figure 4. For stochas-
tic signals, the proposed approach provides a more accurate

estimate of ApEnmax than the
conventional method since the
difference as denoted by d is
smaller. Even for deterministic
signals, the proposed method
provides a lower magnitude
standard deviation around the
true ApEnmax value than the
conventional approach. Fur-
ther, the proposed approach is
not affected by the varying
data lengths, since both error
and standard deviation val-
ues are negligible. The con-
ventional approach, however,
has higher error and variabil-
ity than the proposed ap-
proach, especially for the
stochastic signals.

HRV Signals
Biological time series used to
demonstrate the efficacy of
the automatic selection of
ApEnmax include HRV series
from ten healthy subjects
(data length N ¼ 600). HRV
data used in this study con-
sisted of the recordings of sur-
face electrocardiogram (S-ECG).
Measurements of S-ECG were
sampled at 250 Hz.

For each of these experi-
mental data sets, we performed
a similar procedure of gene-
rating nine subrealizations

Most biological signals exhibit both

short- and long-term behaviors that can have

wide ranges of complexity.
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error estimated by ApÊn(m, 0:15), where m ¼ 2 or 3. (b) and (d): Comparison of ApÊnmax
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ApEnmax (gray/third column bar) for the same ten subjects.
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starting from 200, with an increment of 100. We then cal-
culated the difference between jApEnmax � ApÊnmaxj and
jApEnmax � ApÊn(m, 0:15)j for the nine subrealizations. The
results from these comparisons are provided in Figure 5(a) and
(c) for HRV data. In Figure 5(b) and (d), comparison of
ApÊnmax and ApÊn(m, 0:15) to the true ApEnmax are provided.
For the conventional technique, we used m of either two or
three depending on the data set and r of 0.15 times the standard
deviation of the signal. For all data sets examined, whether
HRV, we noted a negligible difference between the true
ApEnmax and estimated ApEnmax using our proposed method.
Similar to the results obtained with the simulation example
above, the conventional ApEn approach resulted in larger
errors and greater variability than the proposed approach.
Further, even when r was changed to either 0.1 or 0.2 times the
standard deviation of the signal to estimate the difference
between jApEnmax � ApÊn(m, r ¼ 0:1 or 0:2)j, the conven-
tional ApEn resulted in greater variability than the proposed
approach. Also illustrated in Figure 5(b) and (d), the estimated
ApÊnmax values (second column bar of each subject) are much
closer to the true ApEnmax (first column bar of each subject)
than ApÊn(m, 0:15) (third column bar of each subject) for both
m ¼ 2 and m ¼ 3. The differences between the true ApEnmax

and ApÊn(m, 0:15) are much more pronounced especially with
m ¼ 3 for HRV, whereas they are negligible with ApÊnmax. It
should be noted that, for human data, the closest to the true
ApEnmax is obtained with m¼ 2.

Discussion
To date, determination of ApEn has been made using a recom-
mended r value within the range of 0.1–0.2 times the standard
deviation of the signal [1]. This recommendation was largely
derived for slow dynamics signals, and the user was left with
an arbitrary choice of r value within the range defined earlier
[1]. However, as we have shown in this study, ApEn values
vary significantly even within the defined range of r values.
Furthermore, WN signals have smaller ApEn than chirp signal
for some of the recommended r values (see Figure 1). A conse-
quence of this lower ApEn value for WN than Brownian noise
is that it leads one to make an incorrect interpretation that
the former is less complex than the latter. In an attempt to
resolve this inherent deficiency, our recent study suggested
that the most appropriate solution is to look for the ApEnmax

value [6]. However, an intractable side effect of finding the
ApEnmax value is the computation of ApEn for every possible
r value, which is computationally burdensome.

In this review, we highlight our recently developed method to
automatically determine the ApEnmax without resorting to calcu-
lation of ApEn for every possible r value [9]. The method is
based on a heuristic model termed the BRP, which is a stochastic
model that incorporates characteristics of both short- and long-
term variability inherent in the signal. Using Monte Carlo simu-
lations, we derived the general equations for determining the
ApEnmax m ¼ 2� 7. The derived equations also took into
account data length dependency of ApEn.

While the BRP model is a stochastic model, we have vali-
dated the accuracy of the proposed approach in finding the
ApEnmax values for many varieties of deterministic signals.
Figures 4 and 5 illustrate the efficacy of the proposed
approach as the difference between the actual ApEnmax, and
the estimated ApEnmax values are negligible for a wide variety

of signals (including deterministic signals), and the accuracy
remains unaffected by different data lengths. Thus, the burden
of automatically finding the ApEnmax has been averted by (2)–
(4). Furthermore, these equations lead to a more accurate
representation of the complexity than does the conventional
method for most deterministic and stochastic signals.
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