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Abstract—Motion and noise artifacts (MNA) are a serious
obstacle in utilizing photoplethysmogram (PPG) signals for
real-time monitoring of vital signs. We present a MNA
detection method which can provide a clean vs. corrupted
decision on each successive PPG segment. For motion
artifact detection, we compute four time-domain parameters:
(1) standard deviation of peak-to-peak intervals (2) standard
deviation of peak-to-peak amplitudes (3) standard deviation
of systolic and diastolic interval ratios, and (4) mean
standard deviation of pulse shape. We have adopted a
support vector machine (SVM) which takes these parameters
from clean and corrupted PPG signals and builds a decision
boundary to classify them. We apply several distinct features
of the PPG data to enhance classification performance. The
algorithm we developed was verified on PPG data segments
recorded by simulation, laboratory-controlled and walking/
stair-climbing experiments, respectively, and we compared
several well-established MNA detection methods to our
proposed algorithm. All compared detection algorithms were
evaluated in terms of motion artifact detection accuracy,
heart rate (HR) error, and oxygen saturation (SpO2) error.
For laboratory controlled finger, forehead recorded PPG
data and daily-activity movement data, our proposed algo-
rithm gives 94.4, 93.4, and 93.7% accuracies, respectively.
Significant reductions in HR and SpO2 errors (2.3 bpm and
2.7%) were noted when the artifacts that were identified by
SVM-MNA were removed from the original signal than
without (17.3 bpm and 5.4%). The accuracy and error values
of our proposed method were significantly higher and lower,
respectively, than all other detection methods. Another

advantage of our method is its ability to provide highly
accurate onset and offset detection times of MNAs. This
capability is important for an automated approach to signal
reconstruction of only those data points that need to be
reconstructed, which is the subject of the companion paper to
this article. Finally, our MNA detection algorithm is real-
time realizable as the computational speed on the 7-s PPG
data segment was found to be only 7 ms with a Matlab code.

Keywords—Motion and noise artifacts, Photoplethysmogra-

phy, Support vector machine.

INTRODUCTION

PPG is a non-invasive and low cost device to con-
tinuously monitor blood volume changes in peripheral
tissues.28 PPG is a useful technique since it is widely
used to monitor HR, SpO2, and can also be used to
measure respiratory rates.24 However, MNA can dis-
tort PPG recordings, causing erroneous estimation of
HR and SpO2.

28,32 It is because of the MNA that PPG
has not yet been widely adopted as a possible sensor
for mobile health applications. There are three distinct
sources of MNA that can distort PPG recordings:
environmental, physiological and experimental arti-
facts, which can be attributed to (1) electromagnetic
and power interference around the body; (2) cross talk
pickup of other physiological signals; and (3) instru-
mental noise, respectively.18,36,39 MNA, which are
comprised of all of the aforementioned noise sources,
are difficult to filter since they do not have a prede-
termined frequency band and their spectrum often
overlaps with that of the desired PPG signal. Despite
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these challenging scenarios, in our companion paper,
we describe a method that can reconstruct the MNA
contaminated data segments so that accurate heart
rates and SpO2 values can be estimated.

MNA in PPG readings are caused by (1) the
movement of venous blood as well as other non-pul-
satile components along with pulsatile arterial blood
and (2) variations in the optical coupling between the
sensor and the skin.2,28,37,38 Various approaches to
mitigate motion artifacts by improving sensor attach-
ment have been proposed.20,27 However, these design
improvements do not provide a significant reduction of
motion artifacts. Algorithm-based MNA reduction
methods were also proposed. These include time and
frequency domain filtering, power spectrum analysis,
and blind source separation techniques.12,15,19,29–31,40

However, these have high computational complexity
and more importantly, they operate even on clean PPG
portions where MNA reduction is not needed and
consequently may distort the clean signal.15–17,29

Hence, accurate MNA detection, which identifies clean
PPG recordings from corrupted portions, is essential
for the subsequent MNA reduction algorithm so that it
does not distort the non-corrupted data segments.16

Moreover, more computationally efficient MNA
algorithms can be designed since they can be tailored
only to the MNA contaminated data segments.

MNA detection methods are mostly based on a
signal quality index (SQI) which quantifies the severity
of the artifacts. Some approaches quantify SQI using
waveform morphology21,22,35 or filtered output,14

while other derive SQI with the help of additional
hardware such as accelerometer and electrocardiogram
sensing.7,17 Statistical measures, such as skewness,
kurtosis, Shannon entropy, and Renyi’s entropy, have
been shown to be helpful in determining a SQI.5,41

However, these techniques require manual threshold
settings for each parameter to classify if the PPG signal
is clean or corrupted. Although a support vector ma-
chine (SVM)-based classification method addresses the
need of threshold setting,41 this approach considers
limited and controlled types of motions. The authors
are not aware of any detailed studies providing repre-
sentative and comprehensive features distinguishing
clean from corrupted PPG signals under various types
of motions.

In this paper, we propose an accurate and compre-
hensive MNA detection algorithm which detects MNA
in PPG under various types of motion. We first
introduce time-domain parameters quantifying MNA
in the recorded PPG signal. We then consider their
statistical measures as input variables for a machine
learning-based MNA detection algorithm. Our MNA
detection algorithm is self-trained by the SVM with
clean and corrupted PPG data sets, and then the

trained SVM tests the unknown PPG data. We tested
the efficacy of our proposed algorithm on PPG data
sets recorded from the finger and forehead pulse oxi-
meters in simulations, laboratory-controlled and
walking/stair-climbing experiments, respectively.

MATERIALS AND METHOD

Experimental Protocol and Preprocessing

PPG signals were obtained from custom reflectance-
mode prototype pulse oximeters. PPG data with lab-
oratory-controlled head and finger movement, daily-
activity movement, or simulated movement were col-
lected respectively from healthy subjects recruited from
the student community of Worcester Polytechnic
Institute (WPI). This study was approved by WPI’s
IRB and all subjects were given informed consent prior
to data recording.

In laboratory-controlled head movement data, mo-
tion artifacts were induced by head movements for
specific time intervals in both horizontal and vertical
directions. Eleven healthy volunteers were asked to
wear a forehead reflectance pulse oximeter along with a
reference Masimo Radical (Masimo SET�, Masimo
Corporation, CA, USA) finger type transmittance
pulse oximeter. After baseline recording for 5 min
without any movement, subjects were instructed to
introduce motion artifacts for specific time intervals
varying from 10 to 50% within a 1 min segment as
shown in Fig. 1a. For example, if a subject was in-
structed to perform left–right movements for 6 s, a
1 min segment of data would contain 10% noise.
MNA amplitudes varied for each subject as shown in
Fig. 1b. Specifically, mean amplitude ratios and the
deviation ratios (between 75th mean and 25th percen-
tile values) between corrupted and clean signals are in
the ranges of [0.9935 3.0092] and [1.3375 11.1250],
respectively. The right middle finger with the sensor
attached to the Masimo pulse oximeter was kept sta-
tionary. HR and SpO2 signals were acquired by the
Masimo pulse oximeter at 80 and 1 Hz, respectively,
and were acquired synchronously with the PPG signals
recorded from the forehead sensor.

In laboratory-controlled finger movement data, mo-
tion artifacts were induced by left–right movements of
the index finger. Nine healthy volunteers were asked to
sit and wear two reflection type PPG pulse oximeters
(TSD200, BIOPAC Systems Inc., CA, USA) on their
index and middle fingers, respectively. After baseline
recording for 5 min without any movement to acquire
clean data, motion artifacts were induced by left–right
movements of the index finger while the middle finger
was kept stationary as a reference. Similar to the head
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movement data, motion was induced at specific time
intervals corresponding to 10–50% duration in an
1 min segment. Such controlled movement was re-
peated five times per subject. MNA amplitudes varied
for each subject as shown in Fig. 1c. The mean

amplitude ratios and deviation ratios (between 75th
mean and 25th percentile values) between corrupted
and clean signals are in the range of [0.9360 4.0226]
and [1.3892 32.2647], respectively. The pulse oximeters
were connected to a biopotential amplifier (PPG100,
BIOPAC Systems Inc., CA, USA) having a gain of 100
and cut-off frequencies of 0.05–10 Hz. The MP1000
(BIOPAC Systems Inc., CA, USA) was used to acquire
finger PPG signals at 100 Hz. The daily-activity
movement PPG data were recorded while subjects were
walking straight or climbing stairs for 45 min. Nine
subjects were asked to walk or climb stairs after
wearing a forehead reflectance pulse oximeter along
with a Holter electrocardiogram (ECG) monitor
(Rozinn RZ153+, Rozinn Electronics, Inc., NY,
USA) at 180 Hz and a Masimo Rad-57 pulse oximeter
(Masimo Corporation, CA, USA) at 0.5 Hz. The ref-
erence ECG was obtained from the Holter ECG
monitor while HR and SpO2 readings were measured
from the Masimo pulse oximeter connected to the
subject’s right index finger, which was held against the
chest to minimize motion artifacts. Finally, the simu-
lation movement PPG data were generated by the
addition of white noise to the clean PPG data. PPG
data were preprocessed by a 6th order infinite impulse
response (IIR) band pass filter with cut-off frequencies
of 0.5 and 12 Hz. Zero-phase forward and reverse fil-
tering was applied to account for the non-linear phase
of the IIR filter. After these preprocessing, the fol-
lowing parameters for classifying clean and corruption
were derived.

Parameters from PPG Signals

Motion-corrupted PPG signals are observed to have
noticeably different pulse amplitudes, pulse widths and
trough depths when compared to clean PPG signals.35

Moreover, morphology and amplitude ratios of cor-
rupted PPG signals differ from those of clean signals.
It was found that most PPG signals show strong sim-
ilarity among noise-free pulses, but large variation
among successive poor and bad quality pulses.35 Based
on our observations on measured clean and corrupted
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FIGURE 1. PPG signals recorded during voluntary motion
artifact conducted in a laboratory setting. (a) A representative
clean forehead-PPG signal recorded during voluntary motion
artifact conducted in a laboratory setting (1st row). The mixed
(up–down and left–right) movement of the forehead to which
the PPG probe was attached for predetermined time interval
induced 10–50% noise (2nd–6th row) within a 60 s PPG seg-
ment (b) amplitudes of clean (left) and MNA-corrupted (right)
finger-PPG signals of 9 subjects, and (c) amplitudes of clean
(left) and MNA-corrupted (right) forehead-PPG signals of 11
subjects. The central line on each box corresponds to the
median; the edges of the box correspond to the 25th and 75th
percentiles, the whiskers extend to the most extreme data
points not considered as outliers, and outliers are plotted
individually.

b
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PPG signals shown in Fig. 1 as well as previous
work,35 we considered standard deviation values of the
pulse amplitude, pulse width and pulse shape to
quantify differences among these features. We also
considered systolic and diastolic ratios since they are
observed to be within a well-defined range for clean
PPG pulses.23 The following four parameters were se-
lected since they represent the variability present in
corrupted PPG signals as shown in Fig. 1.

Standard Deviation of Peak-to-Peak Interval (STDHR)

The STDHR;n of the nth segment is defined by:

STDHR;n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

i¼1
Dn;i �Dn

� �2

v

u

u

t ð1Þ

where Dn,i is peak-to-peak interval at the ith pulse of
the nth segment and Dn is mean peak-to-peak interval
of the nth segment. The Dn,i is calculated by the dif-
ference Tpeak;n;i � Tpeak;n; i�1 between two successive
peak times.

Standard Deviation of Peak-to-Peak Amplitude
(STDAMP)

The STDAMP;n is calculated by substituting Dn,i and
Dn in (Eq. 1) with An,i and An, respectively, where An,i

is peak amplitude at the ith pulse of the nth segment
and An is mean peak-to-peak interval of the nth seg-
ment. The An,i is defined by the difference between the
ith peak and the forthcoming iþ 1ð Þth trough ampli-
tude values.

Standard Deviation of Systolic and Diastolic Ratio
(STDSD)

The STDSD;n of the nth segment is derived by
replacing Dn,i and Dn in (Eq. 1) by RSD;n;i and RSD;n,
respectively, where RSD,n,i is systolic and diastolic time
interval ratio at the ith pulse of the nth segment and
RSD;n is the mean systolic and diastolic time interval
ratio of the nth segment. The RSD,n,i is calculated by

RSD;n;i ¼ Ttrough;n;i � Tpeak;n;i

� �

= Tpeak;n;i � Ttrough;n�1;i
� �

ð2Þ

where Ttrough;n;i denotes the trough times (or lowest
point) at the ith pulse of the nth segment.

Mean-Standard Deviation of Pulse Shape (STDWAV)

To derive pulse shape, we take Nsamp sample points
of a pulse. The STDWAV;n of the nth segment is derived
by taking average of the standard deviation at each
sample point as follows:

STDWAV;n ¼ E½STDWAV;n;m� ð3Þ

where STDWAV;n;m is calculated by substituting Dn,i

and Dn in (Eq. 1) with qn; iðmÞ and qnðmÞ, respectively,
where qn;iðmÞ is the mth sample at the ith pulse of the
nth segment and qnðmÞ the mean at the mth sample of
the nth segment.

SVM-BASED DETECTION OF MOTION/NOISE

ARTIFACTS

Classification by Support Vector Machine (SVM)

SVM was applied to build a decision boundary
classifying motion corruption from clean PPG signals.
SVM is widely used in classification and regression due
to its accuracy and robustness to noise.25 The SVM
consists of training and test phases described in the
following sections.

Training Phase

A flow chart of the training phase in the SVM-based
MNA detection algorithm is shown in Fig. 2. The
SVM first derives the parameter values from clean and
corrupted PPG training segments which are labeled
separately (clean: 0, corrupted: 1). The SVM then
trains itself with the labeled parameter values and finds
the support vectors among the parameter values which
maximize the margin (or the distance) between differ-
ent classes. Finally, the SVM builds a decision
boundary from the support vectors. If the estimated
decision from the decision boundary is different from
its known label, the decision is regarded as a training
error. We consider a soft-margin SVM which can set
the boundary even when the data sets are mixed
and cannot be separated. In the soft-margin SVM

FIGURE 2. Training phase of the proposed SVM-based mo-
tion detection algorithm. Four time-domain features corre-
sponding to (1) standard deviation of peak-to-peak intervals
(2) standard deviation of peak-to-peak amplitudes (3) standard
deviation of systolic and diastolic interval ratio, and (4) mean
standard deviation of pulse shape, are candidate input vari-
ables to the SVM.

Motion and Noise Artifact Detection 2241



algorithm, slack variables are introduced to minimize
the training error while maximizing the margin. Soft-
margin SVM uses the following equation to find the
support vectors.13

Minimize C
X

N

sv¼1
dsv þ

1

2
ws;wsh i;

Subject toTsv ws; ysvh i þ bsð Þ � 1 ¼ dsv for

sv ¼ 1; 2; . . . ;N ¼ 1; 2; . . . ;N; and dsv � 0
ð4Þ

where C is regulation parameter, N is the number of
vectors, dsv is the slack variable, wsis the weight vector
and <�; �> is the inner product operation. The Tsvis
the svth target variable, ysv are the svth input vector
data, and bs is the bias. The SVM decision boundary
Fsv is derived as

Fsv ¼ w�s ; y
� �

þ b�s ¼ 0 ð5Þ

where w�s and b�s are weight factor and bias, respec-
tively, obtained from Eq. (4), and y is the input point.

By transforming the ysv and y term to ysv ! ysvð Þ
and y! yð Þ, the non-linear SVM can be transformed
to a linear SVM. For nonlinear SVM, Eq. (4) is
modified as

Tsv ws; ysvð Þh i þ bsð Þ � 1 ð6Þ

To facilitate the operation on nonlinear SVM, a
kernel function Ks �; �ð Þ, which is a dot-product in the
transformed feature space as follows, is used,

Ks ysv; ysv0
� �

¼ ysvð Þ; ysv0
� �� �

ð7Þ

where sv0 ¼ 1; 2; . . . ;N.

Test Phase

Figure 3 shows a flow chart of the test phase in the
SVM-based MNA detection algorithm. We partition
PPG data into many 7-s segments, and derive param-
eters from each PPG portion to examine if it is cor-
rupted by motion artifacts or not.

Enhancement of MNA Detection by Major Votes

To enhance MNA detection performance, the pro-
posed algorithm incorporates multiple decisions on a
set of neighbor segments in deciding whether a ‘‘tar-
get’’ segment is clean or corrupted. A neighbor seg-
ment is defined as a segment surrounding a target
segment within ±Tneighbor seconds. A decision on a
neighbor segment is highly likely to be the same as the
decision on a target segment since PPG pulses in the
neighbor segments are most likely to exhibit similar
dynamics to the target segment.

The algorithm gathers the decisions of neighbor
segments as well as target segment (see Fig. 4) and
makes a final decision on the target segment based on a
majority vote concept.

RESULTS

We evaluated the performance of the MNA detec-
tion algorithm for various types (simulated, laboratory
controlled, and daily activities) of motion-corrupted
PPGs to validate its performance in a wide range of
scenarios. For all types of motions, the PPG recordings
were divided into 7-s segments since this was deter-
mined to be the optimal size among the data length
tested from 3 to 11 s (see Section IV-B). Another
study41 has also found the optimal segment size to be
7-s, hence, this allowed direct comparison between the
two algorithms. We compared the proposed algorithm
with four recently published MNA detection algo-
rithms based on kurtosis (K), Shannon entropy (SE),
Hjorth 1 (H1), and Hjorth 2 (H2) metrics,9,34,41

respectively. As performance metrics, we considered
classification accuracy, sensitivity and specificity. We
also investigated mean HR and SpO2 errors as well as
detection error ratio.

FIGURE 3. Test phase of the proposed SVM-based motion
detection algorithm. The hidden layers correspond to kernel
function of the SVM. The function between hidden layer and
output layer is a linear operator.

FIGURE 4. Enhancement of MNA detection by diversity.
Neighbor segments are the segments surrounding a target
segment within 62 s. Decisions on the target segment are
based on a majority vote from the decisions of neighbor
segments as well as the one of the target segment (red).
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Reference: Clean vs. corrupted

The following are criteria which we adopted to
reference PPG segments (clean or corrupted) for each
experiment. A visual reference was excluded to avoid
subjective decisions by visual inspectors; for subtle
MNA there were large disagreements among visual
inspectors. Instead, we performed objective decisions
based on controlled corruption start (Tcorr,start) and
end (Tcorr,end) time points, ECG-derived heart rate
(HRECG), PPG-derived heart rate (HRPPG), and SpO2

(SpO2PPG) from PPG signals. HRs from ECG signals
and pulse rates (PRs) from PPG signals are shown to
have high agreement when the subjects do not move.3

Specifically, the difference between HRs and PRs for
10 subjects is within approximately 5 beats/min on
average. Even during heavy exercise, sudden increases
or decreases in HR between successive beats are within
20 beats/min6 while sudden SpO2 increases or de-
creases between successive beats are around 2%.1 Since
subjects’ movements in this work are less severe than
heavy exercise, we expect sudden HR and SpO2

changes to be smaller than the numbers noted above.
Based on these experimental observations, we set the
clean vs. motion-corrupted data classification criteria
for PPG segments as follows.

Laboratory controlled data (forehead and finger)

– If more than 85% of a segment is outside of
[Tcorr,start, Tcorr,end], the segment was considered
clean. Otherwise, the segment was referenced to
be corrupted.

– If SpO2PPG deviates by 10% from the mean of
SpO2PPG in a segment, then the segment was
referenced to be corrupted.

– Successive difference,
|diff(HRPPG(i + 1) 2 HRPPG(i))|, from PPG
signals is larger than 20 bpm for at least one
pulse during a segment, then the segment was
referenced to be corrupted.

Daily activity data (walking and stair-climbing)

– Successive difference, |diff(HRECG(i + 1) 2

HRECG(i))|, from ECG signals is larger than

TABLE 1. Numbers of subjects and numbers of clean and
corrupted segments per each motion artifact.

Type Subtype

# of

subjects

# of

clean

# of

corrupted

Simulation Simulation N/A N/A N/A

Laboratory

controlled

Finger 13 195 105

Forehead 11 190 110

Daily-activity Walking/

stair-climbing

9 125 175
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20 bpm for at least one pulse during a segment,
then the segment was excluded.

– If SpO2PPG deviates by 10% from the mean of
SpO2PPG in a segment, then the segment was
referenced to be corrupted.

– If |diff(HRPPG(i + 1) 2 HRPPG(i))| is larger
than 20 bpm for at least one pulse during a
segment, then the segment was referenced to be
corrupted.

– If |HRECG 2 HRPPG|< 5 bpm during more
than 85% of a segment, the segment was con-
sidered clean. Otherwise, the segment was ref-
erenced to be corrupted.

Table 1 describes the number of clean and cor-
rupted PPG segments for each motion type used in the
experiment as determined by the criteria defined above

Classification Accuracy

A sample forehead PPG signal and its correspond-
ing 56–85 s have larger parameter values compared to
clean segments between 1–56 s and 85–112 s. We
sampled 17 points (Nsamp = 17) of each pulse using the
spline interpolation irrespective of test subjects and
conditions to derive pulse shapes as shown in Fig. 5f.
This enabled pulse shape comparisons within and
among test subjects.

Figures 6a and 6b show ðSTDHR;STDAMPÞand
ðSTDSD;STDWAVÞ of clean (circle) and corrupted
(star) forehead signals, respectively, with correspond-
ing SVM boundaries (black line). To lower computa-
tional complexity, a linear kernel was considered for
the SVM in the experiment. We adopted inverse k-fold
cross-validation which selects one-fold for training and
the remaining k – 1-folds for testing.33 We trained

FIGURE 5. A sample forehead recorded PPG signal (a) along
with the (b) standard deviation of P–P intervals (c) standard
deviation of P–P amplitudes (d) standard deviation of systolic
and diastolic time ratio, and (e) mean standard deviation of
pulse shape, computed for each segment. The normalized
sampled corrupt and clean PPGs for mean standard deviation
of pulse shape (Nsamp 5 17) are given in (f).
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FIGURE 6. Trained SVM classification with a sample training
finger recorded PPG signal is given with (a)–(b) pairs of two
parameters. The SVM decision and margin boundaries are
marked by black and green lines, respectively.
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SVM with data from one subject after removing out-
liers and tested with data from 10 subjects. While there
were small differences in the test errors among differ-
ent k-fold cross-validation cases, we selected the least
test-error case as the training data for each subject. Re-
training was not performed since each subject’s data
consisted of a sufficient number of clean and corrupted
PPG signals and the signal-to-noise ratios of the clean
PPG signals were usually higher than the algorithm’s
sensitivity level. We optimized regularization parame-
ter value (C) of the linear kernel SVM in terms of
minimizing the training error rate. We adopted a 11-
fold cross-validation and grid search (C ¼ f10�3; 10�2;
10�1; 1; 101; 102; 103g) which is widely used to deter-
mine C.4 Figure 7 shows classification results by the
SVM boundaries obtained from Fig. 6. Figure 8 shows
a representative PPG signal with detected peaks (red)
along with the corresponding statistical parameter
values. Note the corrupted PPG signal interval
between 21 to 31 s. The discrepancy between corrupted
and clean portions is reflected by parameters
STDHR; STDAMP; STDSD and STDWAV. The param-
eter values from the corrupted PPG segments exhibit
larger variability and consequently have higher stan-
dard deviation value compared to those from clean
data segments. The STDHR, STDAMP and STDWAV

have large values between 21 and 35 s (see Figs. 8b, 8c,

and 8d), while STDSD has large value only between 21
and 28 s (see Fig. 8e). Using SVM with these param-
eter values, the proposed algorithm correctly discrim-
inated MNA corrupted segment between 21 and 35 s
(see Fig. 8f). Table 2 presents C for finger, forehead,
and walking/stair-climbing data. We tested our algo-
rithm to different segment lengths varying from 3 to
11 s and calculated their mean classification accura-
cies, which are provided in Table 3. Among the dif-
ferent data segment lengths tested, the 7-s segment
provided the highest classification accuracies for all
data: finger, forehead and walking/stair-climbing PPG
signals. Accuracy, specificity, and sensitivity for each
dataset are presented in Table 4. On average, the
SVM performance using the 7-s segment showed a
93.9% accuracy, 92.4% specificity, and 94.3% sensi-
tivity. To derive the lower bound of our algorithm’s
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FIGURE 8. A representative PPG signal with detected peaks (red) (a) along with the (b) standard deviation of P–P intervals (c)
standard deviation of P–P amplitudes (d) mean standard deviation of pulse shape and (e) standard deviation of systolic and
diastolic time ratio, computed for each segment.

TABLE 2. C obtained by ninefold cross-validation and grid
search method.

Type Subtype C

Simulation Simulation 100

Laboratory controlled Finger 1000

Forehead 1

Daily-activity Walking/stair-climbing 0.01
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performance8 as well as to evaluate the sensitivity of
our MNA detection algorithm, we added Gaussian
white noise (GWN) of varying signal-to-noise (SNR)
levels to a representative non-MNA corrupted PPG
signal. For each SNR, 50 independent realizations of
clean PPG signal with GWN are generated. As shown
in Fig. 9, the PPG signals with a SNR below 210 dB
are detected as corrupted data with our algorithm. For
a SNR of 220 dB, every segment was detected as
corrupted.

Performance Comparison of MNA detection Algorithms

Our algorithm was compared with other artifact
detection methods based on H1, H2, K and SE since

these methods have been shown to provide good
detection accuracies.9–11 The H1 and H2 parameters
represent the central frequency and half of bandwidth,
respectively, and are defined as follows:

H1 ¼

ffiffiffiffiffiffiffiffiffiffiffi

v2ðnÞ
v0ðnÞ

s

and H2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v4ðnÞ
v2ðnÞ

� v2ðnÞ
v0ðnÞ

s

ð8Þ

where �viðnÞ ¼
R p
�p v

iSypDCðeJvÞdv. Here, SypDCðeJvÞ is
the power spectrum of signal ypDCðnÞ.

For a fair comparison, all detection methods used
7 s data segments. Figures 10a, 10b, and 10c compare
the medians and 25th and 75th percentiles of detection
accuracy, sensitivity, and specificity, which are
obtained from each subject, for all five detection
methods for the finger, head and walking/stair-climb-
ing data sets. In general, our SVM method consistently
yielded higher performance with a mean accuracy of
94%, sensitivity of 97%, and a specificity of 92%;
whereas other methods showed fluctuations depending
on which datasets were used. In the finger recorded
data, H1 yielded a slightly higher accuracy than all
other methods due to higher specificity, but the
detection sensitivity was lower.

HR and SpO2 Estimation

Figure 11a compares the mean HR error and
detection error fraction from five MNA detection
methods for walking/stair-climbing data. The HR er-
rors were defined by the difference between the esti-
mated HR derived from the PPG and the reference HR
readings; the detection error fraction is defined as a
ratio of the number of erroneous detection events to
that of total detection events. Low mean HR error and
low detection error fraction would reflect an effective
artifact detection algorithm. Our algorithm yielded the
lowest HR error and detection error fraction among

TABLE 3. Detection accuracy (mean 6 SD) for varying window length.

Type

Window length

3 5 7 9 11

Finger 0.883 ± 0.042 0.906 ± 0.035 0.944 ± 0.033 0.944 ± 0.033 0.875 ± 0.042

Forehead 0.883 ± 0.023 0.880 ± 0.027 0.934 ± 0.035 0.856 ± 0.045 0.805 ± 0.044

Walk-stair climbing 0.813 ± 0.033 0.871 ± 0.039 0.937 ± 0.026 0.867 ± 0.052 0.856 ± 0.056

TABLE 4. Detection accuracy, specificity and sensitivity (mean 6 SD) for 7-s segment.

Type Accuracy Specificity Sensitivity

Finger 94.4 ± 3.3 94.7 ± 4.5 94.7 ± 3.4

Forehead 93.4 ± 3.5 96.7 ± 3.0 88.8 ± 7.9

Walking/stair-climbing 93.7 ± 2.7 91.4 ± 2.0 93.9 ± 5.0
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FIGURE 9. Detection probability of corruption by additive
white Gaussian noise (AWGN) for varying SNR from 220 to
0 dB. 50 AWGN realizations for each SNR level are separately
added to a non-MNA corrupted PPG. Each realization is tested
by the proposed MNA detection algorithm to compute the
detection probability of corruption.
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the other MNA methods we compared. Figure 11b
compares mean SpO2 error and detection error frac-
tion from five MNA detection methods. The SE based

detection method showed a lower mean SpO2 error
than our algorithm, but its detection error fraction was
very high (>70%), indicating that the error was
computed based on only 30% of clean data. On the
other hand, the proposed SVM algorithm resulted in a
mean SpO2 error of 2.7 with a detection error of only
6.3%. Figure 12 compares five MNA detection meth-
ods in terms of paired t test results of HR and SpO2

estimation and detection accuracy. On average, the
SVM algorithm outperformed the K, SE, H1 and H2
methods with HR errors of 2.3 bpm, SpO2 errors of
2.7% and detection error fraction of 6.3%.

DISCUSSION

Robust real-time MNA detection algorithms for
raw PPG signals have been elusive to date. In this
study, an SVM-based method is introduced to detect
MNA-corrupted PPG data. Reconstruction of MNA-
corrupted PPG segments is described in the companion
paper. The aim of the current paper is to detect the
MNA-corrupted PPG segments as accurately as pos-
sible. The question is how to detect MNA in an
adaptive way to maximize detection accuracy so that
PPG signal distortions is minimized. To address this
question, we used four parameters derived from the
PPG data: (a) standard deviation of peak-to-peak
intervals (b) standard deviation of peak-to-peak
amplitudes (c) standard deviation of systolic and dia-
stolic time ratios, and (d) mean-standard deviation of
pulse shapes. These four parameters are then used as
inputs to an SVM-based MNA detection method with
a sliding window with a major vote concept. We use
these parameters since motion corrupted PPG signals
are observed to have noticeably different amplitude
values and have large variations for successive pulses
when compared to the clean PPG signals.35 We are
currently working on finding more PPG relevant
parameters to enhance detection performance on di-
verse types of MNA-corrupted PPG signals.

Many detection algorithms have been proposed to
detect MNAs or quantify signal quality of PPG pulses.
Various approaches use a set of several PPG-derived
parameters to detect MNA, but the test data was
confined to limited types of motions.7,14,17,21,22,35,41

Given that most methods provide adequate MNA
detection performance, we evaluated our proposed
algorithm by comparing it to them.

The results demonstrated that our proposed SVM-
based MNA detection algorithm provided higher
classification accuracy as well as lower HR and SpO2

errors compared to the conventional detection meth-
ods. The paired t test was performed to determine if
there is significant difference between classification
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FIGURE 10. Classification performance comparison
between our SVM algorithm, Hjorth (H1, H2), Kurtorsis and
Shanon Entropy (K, SE) parameters. (a) Accuracy; (b) Sensi-
tivity; (c) Specificity. The central mark on each box corre-
sponds to the median; the edges of the box correspond to the
25th and 75th percentiles, the whiskers extend to the most
extreme data points not considered outliers, and outliers are
plotted individually. (*) indicate the mean is significantly dif-
ferent (p < 0.05 at 95% CI) between SVM and other methods
used for comparison.
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errors obtained from our SVM approach compared
with other published methods. For the finger recorded
PPG segments, Fig. 10a indicates that the mean clas-
sification accuracy is significantly different (p< 0.05 at
95% CI) between our SVM and K, SE and H2 meth-
ods (except for H1). K, SE, H1 and H2 methods were
significantly different from our SVM method for
forehead and walking/stair-climbing PPG data. Kur-
tosis and Shannon entropy based detection methods’
low performance may be caused by clean PPG signals’
variations in amplitude and pulse. These variations can
be induced unintentionally during the measurement
due to minimal movement or physiological artifacts
which are not severe but vary between test subjects or
test conditions. Since H1 is based on estimating central
frequency, the H1 method is expected to have high
performance as the clean PPG signal gets more stable
in the frequency domain. Hence, H1 shows high per-
formance for finger movement when clean PPG signals
are measured in the most stable conditions for finger,
head and walking/stair-climbing PPG measurements
as shown in Fig. 10a, 10b, and 10c. H1 performs the
worst for head and walking/stair-climbing PPG data
when slight movement and physiological artifacts
become more prominent. Similarly, the H2 method
which estimates the half of the bandwidth of H1 shows
comparable performance for finger PPG signals as
shown in Fig. 10a, 10b, and 10c. However, H2 per-
forms worse for head and walking/stair-climbing
PPGs. Figure 12a, 12b, and 12c summarizes paired-t
test results of HR and SpO2 estimations as well as
detection accuracy for walking/stair-climbing data. As
shown in Fig. 12a, 12b, and 12c, SVM is significantly
different from H1, H2, K, and SE in terms of HR
estimation and detection accuracy (see Figs. 11a and
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parameters. (a) heart rate; (b) SpO2; (c) detection error for
walk/stair-climbing data. The central mark on each box cor-
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11c), while SpO2 derived from the SVM method is
significantly different from only H1 (see Fig. 12b).

To enhance the decision accuracy of our MNA
detection algorithm, we adopted a major vote concept
which is widely used in other engineering fields to fuse
the decisions from multiple entities.26 The major vote
concept in our algorithm took a role in providing a
decision on a target PPG segment after fusing the
decisions of neighbor PPG segments as well as that of
the target segment. This is based on the observation
that the decision on the target segment (clean or cor-
rupted) is highly correlated to those of neighbor seg-
ments.

The advantage of our MNA detection algorithm is
that it can classify MNA-corrupted PPG from clean
PPG in an adaptive manner. Hence, it can be applied
to either controlled or daily-activity moving scenarios.
The MNA detection algorithm coded with Matlab
(2012a) takes only 7 ms on an Intel Xeon 3.6 GHz
computer for the 7-s data segment. Hence, the algo-
rithm is real-time realizable especially when it is coded
in either C or C++. Our proposed MNA algorithm,
when incorporated with the reconstruction algorithm
as detailed in our companion paper (ref), can also
provide information on whether the signal is clean,
relatively noise-free after reconstruction (detected as
corrupted but succeeded in reconstruction) or MNA-
corrupted (detected as noisy and failed in reconstruc-
tion). In conclusion, the potential for the method
proposed in this work to have practical applications is
high, and the integration of the algorithm described
with a pulse oximeter device may have significant
implications for real-time clinical applications and
especially for ambulatory or smart phone monitoring
of vital signs.
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