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Estimation of Respiratory Rate From
Photoplethysmogram Data Using Time–Frequency

Spectral Estimation
Ki H. Chon∗, Senior Member, IEEE, Shishir Dash, and Kihwan Ju

Abstract—We present a new method that uses the pulse oximeter
signal to estimate the respiratory rate. The method uses a recently
developed time–frequency spectral estimation method, variable-
frequency complex demodulation (VFCDM), to identify frequency
modulation (FM) of the photoplethysmogram waveform. This FM
has a measurable periodicity, which provides an estimate of the
respiration period. We compared the performance of VFCDM
to the continuous wavelet transform (CWT) and autoregres-
sive (AR) model approaches. The CWT method also utilizes
the respiratory sinus arrhythmia effect as represented by either
FM or AM to estimate respiratory rates. Both CWT and AR
model methods have been previously shown to provide reason-
ably good estimates of breathing rates that are in the normal range
(12–26 breaths/min). However, to our knowledge, breathing rates
higher than 26 breaths/min and the real-time performance of these
algorithms are yet to be tested. Our analysis based on 15 healthy
subjects reveals that the VFCDM method provides the best re-
sults in terms of accuracy (smaller median error), consistency
(smaller interquartile range of the median value), and computa-
tional efficiency (less than 0.3 s on 1 min of data using a MATLAB
implementation) to extract breathing rates that varied from
12–36 breaths/min.

Index Terms—FM, pulse oximeter, respiratory sinus arrhyth-
mia, time–frequency analysis.

I. INTRODUCTION

FOR patients at risk of cardiorespiratory failure, it is impor-
tant to monitor the efficiency of gas exchange in the lungs,

i.e., how well the arterial blood is oxygenated [1]. A noninvasive
means to monitor arterial oxygen saturation (SaO2) on a con-
tinuous basis is pulse oximetry, a well-established technology
based on photoplethysmography (PPG) that has become one of
the most commonly used patient monitors during anesthesia and
in intensive care units. Its popularity stems from the fact that the
pulse oximeter can be used to noninvasively measure both SaO2
and basic cardiac function (e.g., heart rhythms). Furthermore, it
is simple to operate and does not discomfort patients.

Given the ubiquity and simplicity of pulse oximetry, it is desir-
able to maximize its potential by exploring additional measure-

Manuscript received November 24, 2008; revised February 9, 2009. First
published April 14, 2009; current version published July 15, 2009. This work
was supported in part by the Office of Naval Research Work Unit under Grant
N00014-08-1-0244. Asterisk indicates corresponding author.

∗K. H. Chon is with the Department of Biomedical Engineering, State Uni-
versity of New York (SUNY) at Stony Brook, Stony Brook, NY 11794 USA
(e-mail: ki.chon@sunysb.edu).

S. Dash and K. Ju are with the Department of Biomedical Engineering, State
University of New York (SUNY) at Stony Brook, Stony Brook, NY 11794 USA
(e-mail: sdash@ic.sunysb.edu; kihwanju@hotmail.com).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TBME.2009.2019766

ments that we can derive from the pulse oximeter. Extraction of
respiratory rate from pulse oximetry data is one example, as the
signal from the pulse oximeter contains not only the heart beat
but also a respiratory signal. Respiratory rate is important for
many clinical uses including detecting sleep apnea [2], sudden
infant death syndrome [3], and chronic obstructive pulmonary
disease [4], and measurements of respiratory rate are indicated
in many intensive care and operative settings. The current stan-
dard practice for the automatic measurement of respiration rate
requires monitoring of CO2 production using a capnograph,
which is an expensive device that requires a significant amount
of maintenance. In addition, it requires a mask or nasal cannula,
and is therefore obtrusive to the patient and cumbersome to use.
Obtaining accurate respiratory rates from a pulse oximeter in
addition to SaO2 and heart rate is very appealing from both
economic and patient comfort perspectives.

The reason why many researchers feel that it is possible to
obtain respiratory rate from the PPG signal is due to evidence
that the respiration rate modulates both amplitude and frequency
of the signal [5]–[8]. This phenomenon is similar to the respi-
ratory sinus arrhythmia modulating the heart rate signal. Thus,
this suggests that the respiratory rate can be obtained by detect-
ing the presence of AM and FM. However, detection of these
modulations is often difficult, due to myriad causes [9]–[11].
Three primary culprits stand out: 1) the time-varying (TV) na-
ture of these modulations; 2) both AM and FM are often subtle,
and thus, the highest possible time and frequency resolutions
are needed to detect them; and 3) the presence of motion and
noise artifacts can mask AM and FM.

To this end, many recent efforts using advanced signal pro-
cessing algorithms to overcome the aforementioned problems
have shown tantalizing potential. Using a series of adaptive low-
pass filters (LPFs) followed by high-pass filters with suitable
cutoff frequencies, Nakajima et al. [9] were able to show that
heart and respiratory signals can be distinguished in the PPG
signal. However, this technique’s accuracy degrades with mo-
tion artifacts, which are especially prevalent in the PPG signal
during exercise. Furthermore, the cutoff frequencies of the low-
and high-pass filters need to be tailored to individuals, which
preclude wide clinical use. With the recent introduction of new
techniques using estimation of time–frequency spectra (TFS)
for analyzing nonstationary signals, there is at last the promise
of succeeding at our goal. In this category, several studies have
utilized short-time Fourier transform (STFT) [8] and continuous
wavelet transform (CWT) [5]–[7], [12]–[14] to extract the respi-
ratory rate from the PPG signal. However, success is predicated
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on obtaining the highest possible time and frequency resolution,
which is impossible with either the STFT or the CWT. It is
widely known that the CWT cannot simultaneously provide
high resolution in time and high resolution in frequency. Gen-
erally, CWTs provide high resolution in frequency only at low
frequencies and high time resolution only at high frequencies.
For subjects with chronic obstructive pulmonary disease, reflec-
tion of respiratory rate via the AM and FM of the PPG signal is
often subtle as these subjects are physically limited from breath-
ing in a normal manner. It is unclear what is considered “LF”
because the LF range can vary depending on the dynamics of
the system. Furthermore, real-time implementation is especially
challenging for the CWT. The studies by Leonard et al. [5]–[7],
Addison and Watson [12], [13], and Clifton et al. [14] show rel-
atively good results; however, the CWT is impractical because
the extraction of respiratory rate is done in some cases with the
use of FM while in other cases with the AM of heart rate. This
is clearly a difficult situation since it would require additional
adaptive decision-making schemes to determine when to use ei-
ther FM or AM of the heart rate signal to extract respiratory rates.

Recently, a method based on autoregressive (AR) modeling
has been proposed, claiming to provide more accurate results
than the existing techniques [15]. While the method is easy to
implement, this approach is also problematic because the AR
model order needs to be tuned to an individual, or at best, to
specific age groups and/or for specific time periods studied.
For example, the AR model requires different sets of modeling
parameters for 5 min and 30 s data, respectively. Furthermore, a
separate threshold criterion is needed to identify poles with the
highest magnitude as there can be multiple poles meeting the
specifications.

To improve upon the limitations of current techniques, the
goal of this paper is the application of a new algorithm that we
have recently developed [16], which is able to accurately extract
continuous respiratory rate from noninvasive recordings of PPG
signals. The algorithm is based on one of the highest possible
time and frequency resolution approaches to estimating TFS and
associated amplitudes via the use of variable-frequency complex
demodulation (VFCDM) [16]. The VFCDM provides the best
time and frequency resolution and most accurate amplitude es-
timates when compared to the smoothed pseudo-Wigner–Ville,
CWT, and Hilbert–Huang transform methods [16]. Thus, it is ex-
pected that the VFCDM algorithm will be more accurate than the
power spectral density, CWT, and other time–frequency-based
methods for determining respiratory rate. Indeed, with this im-
plementation, we are able to accurately extract wide ranges of
respiratory rates from the raw PPG signals. The VFCDM method
was tested on 15 different subjects for breathing frequencies
ranging from 0.2 to 0.6 Hz. Results were compared to the CWT
method [5]–[7], [12]–[14] and an AR model method [15], which
have been shown to be among the best existing techniques for
extracting breathing rate information from PPG signals.

II. METHODS

A. Algorithm Development

The VFCDM method has been published and tested with dif-
ferent physiological signals [16]–[18], and thus, will be briefly

summarized. For further details than what is provided in this
section, see [16].

1) VFCDMs for Estimation of TFS: The VFCDM method
involves a two-step procedure. The first step is to use the
complex demodulation (CDM) or what we termed the fixed-
frequency CDM (FFCDM) to obtain an estimate of the TFS,
and the second step is to select only the dominant frequencies of
interest for further refinement of the time–frequency resolution
using the VFCDM approach. In the first step of the VFCDM
method, a bank of LPFs is used to decompose the signal into a
suite of band-limited signals. The analytic signals that are ob-
tained from these, through use of the Hilbert transform, then
provide estimates of instantaneous amplitude, frequency, and
phase within each frequency band. Consider a sinusoidal signal
x(t) to be a narrow-band oscillation with a center frequency f0 ,
instantaneous amplitude A(t), phase φ(t), and the direct current
component dc(t) defined as

x(t) = dc(t) + A(t) cos (2πf0t + φ(t)). (1)

For a given center frequency, we can extract the instanta-
neous amplitude information A(t) and phase information φ(t)
by multiplying (1) by e−j2πf0 t , which results in the following:

z(t) = x(t)e−j2πf0 t

= dc(t)e−j2πf0 t +
(

A(t)
2

)
ejφ(t)

+
(

A(t)
2

)
e−j (4πf0 t +φ(t)) . (2)

A leftward shift by e−j2πf0 t moves the center frequency f0 to
zero frequency in the spectrum of z(t). If z(t) in (2) is subjected
to an ideal LPF with a cutoff frequency fc < f0 , then the filtered
signal zlp(t) will contain only the component of interest, and
we obtain the following:

zlp(t) =
(

A(t)
2

)
ejφ(t) (3)

A(t) = 2 |zlp(t)| (4)

φ(t) = tan−1
(

Im(zlp (t))
Re(zlp(t))

)
. (5)

Consider a case when a modulating frequency is not fixed as
described before but varies as a function of time. In this case,
the signal x(t) can be written in the following form:

x(t) = dc(t) + A(t) cos
(∫ t

0
2πf(τ)dτ + φ(t)

)
. (6)

Similar to the operations in (1) and (2), multiplying (6) by

e
−j

∫ t

0
2πf (τ )dτ yields both instantaneous amplitude A(t) and

instantaneous phase φ(t), so that

z(t) = x(t)e−j
∫ t

0
2πf (τ )dτ

= dc(t)e−j
∫ t

0
2πf (τ )dτ +

(
A(t)

2

)
ejφ(t)

+
(

A(t)
2

)
e
−j

(∫ t

0
4πf (τ )dτ +φ(t)

)
. (7)
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From (7), if z(t) is filtered with an ideal LPF with a cutoff
frequency fc < f0 , then the filtered signal zlp (t) will be obtained
with the same instantaneous amplitude A(t) and phase φ(t) as
provided in (4) and (5). The instantaneous frequency is given
by [19] as

f(t) = f0 +
1
2π

dφ(t)
dt

. (8)

In the case of variable frequency, the center frequency f0
is replaced with a variable frequency. We first use a center
frequency to estimate the instantaneous frequency within the
arbitrarily set frequency band using (8). It is reasonable to ex-
pect instantaneous frequencies that are changing, especially if
the dynamics are highly TV. Thus, we utilize a subsequent vari-
able frequency approach, which accounts for the possible TV
nature of instantaneous frequency within the defined frequency
bands to obtain a more precise measurement of instantaneous
frequency.

By changing the center frequency followed by using the vari-
able frequency approach of (1) and (6), respectively, as well as
the LPF, the signal x(t) will be decomposed into the sinusoid
modulations by the CDM technique, as follows:

x(t) =
∑

i

Ai(t) cos
(∫ t

0
2πfi(τ)dτ + φi(t)

)
+ dc(t). (9)

The instantaneous frequency and amplitude of Ai can be cal-
culated using the Hilbert transform. The entire time–frequency
spectrum can be obtained by the calculation of the Hilbert trans-
form of (9) for all time points for the obtained low-pass-filtered
frequency components, as described in (3). Therefore, by the
combination of the CDM and Hilbert transform, a high TF res-
olution spectrum and accurate amplitude information can be
obtained.

The procedure for the implementation of the CDM or FFCDM
on a TFS is summarized next.

1) Design a finite-impulse response (FIR) LPF with the band-
width and the length of the filter set to Fω and Nω , respec-
tively. Set center frequencies as

f0i
= (i − 1)(2Fω ), i = 1, 2, . . . , int

(
fmax

2Fω

)
.

(10)
where the bandwidth between neighboring center fre-
quencies is 2Fω , and fmax represents the highest signal
frequency.

2) Use the FFCDM to extract the dominant frequency within
the confined bandwidth and repeat it over the entire fre-
quency band (by incrementing f0i

).
3) Decompose the signal into sinusoidal modulations via the

CDM.
4) Calculate the instantaneous frequencies using (8) based

on the phase (5) and the instantaneous amplitudes (4) of
each sinusoidal modulation component using the Hilbert
transform.

5) Obtain the TF representation of the signal using the esti-
mated instantaneous frequencies and amplitudes.

For the VFCDM method, only the center frequencies known
as the “backbones” of the FFCDM time–frequency spectrum
are considered in subsequent analysis. This approach allows a
considerable reduction in computation time since only a few
frequencies (those of interest) are analyzed. Once we have an
estimate of center frequencies, the LPF cutoff frequency can be
made even smaller than the first step of the VFCDM. Design
a FIR LPF in which the bandwidth of the filter is set to Fν =
Fω /2, and the length of the filter is set to Nν = Nω along the
estimated center frequencies fi(t). We have previously shown
that for the VFCDM, the aforementioned choices of the LPF
cutoff frequencies and the length of the filter provide good TFS
estimates [16].

Extract more refined amplitude and phase information via
steps 3–5. These procedures are used to further improve the
performance of the TFS.

B. Extraction of Respiratory Rate

In the following sections, we describe three different methods
for extracting respiratory rates. Our proposed method VFCDM
will be compared to the CWT and AR modeling approaches in
Section III.

1) Extraction of Respiratory Rate Using the VFCDM: Once
the TFS is obtained via the VFCDM method as described before,
respiratory rates are determined by extracting the frequency
component that has the largest amplitude for each time point at
the heart rate frequency band, since this component reflects the
FM. This is justified since the FM is a form of fluctuation that
is reflected in the subfrequency band of a carrier wave, which
in our case is the heart rate. To determine frequencies (e.g.,
respiratory rate) associated with these oscillations, the power
spectrum of the FM sequence is calculated and the frequency at
which the highest peak occurs is the desired respiratory rate. A
TV spectral method can be used in lieu of the power spectrum
if the FM time series is nonstationary. The same procedure is
also used for extraction of respiratory rate using the AM.

2) Extraction of Respiratory Rates Using CWTs: As recom-
mended by Leonard et al. [5]–[7], Addison and Watson [12],
[13], and Clifton et al. [14], we used a Morlet wavelet with
a half-length of five samples at the coarsest scale to estimate
the scalogram of the PPG signal. The procedure to extract
respiratory rates from the CWT is identical to the VFCDM,
as described previously. An important difference between the
CWT and CDM methods is that the CWT method employed
by Leonard et al. [5]–[7], Addison and Watson [12], [13], and
Clifton et al. [14] essentially selects the best estimate of the
breathing rate from the calculated AM and FM estimates. How-
ever, they do not explicitly detail how this selection is done.
Hence, for comparison purposes, we divided the results into
two separate categories: results from CWT-AM and results from
CWT-FM calculations.

3) Extraction of Respiratory Rates Using AR Modeling:
Fleming and Tarassenko have recently developed an AR model-
ing approach to respiratory rate estimation [15], which models
the PPG signal using the Burg algorithm [20]. As such, the PPG
signal x(n), where n denotes the number of samples, can be
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modeled as a weighted sum of past x(n) values in the following
manner:

x(t) = −
p∑

k=1

a(k)x(n − k) + e(n). (11)

The error e(n) is assumed to be normally distributed with
zero mean and a variance σ2 , and can be seen as a driving input
to the system, in which case the transfer function of the system
can be written as follows:

H(z) =
zp

(z − z1)(z − z2) · · · (z − zp)
. (12)

The aforementioned transfer function has p complex conju-
gate poles and no finite zeros. The resonant frequency of each
spectral peak is given by the phase angle of that pole as

f =
θ

2π∆t
. (13)

Here, ∆t is the sampling interval of the PPG signal. After
calculating the separate resonant frequencies corresponding to
every pole, the specific breathing pole is recognized by com-
paring the magnitudes of the poles, since it is expected that the
breathing poles have the highest magnitudes. Only those candi-
dates are chosen that have resonant frequencies in the possible
breathing range. Out of these, only that breathing pole is chosen
which has the smallest phase angle. For specific details of the
preconditioning and pole-selection algorithms, see [15].

C. Data Acquisition

Data were collected on 15 healthy subjects (seven female
and eight male, mean age 21± 1.2 years) using a MP506
pulse oximeter (Nellcor Oximax, Boulder, CO) reusable sen-
sor (Durasensor DS-100A), which incorporates a conditioning
circuit and has an analog output of 4.864 kHz. No subject had
cardiorespiratory or related pathologies. Data were collected in
the upright and supine positions, and the sensor was attached
to the subjects’ left index or middle finger. The subjects were
instructed to breathe at a constant rate according to a timed beep-
ing sound, i.e., to start an inspiration whenever they heard a beep
sound programmed at a chosen frequency. The data were col-
lected for breathing frequencies ranging from 0.2 to 0.6 Hz at an
increment of 0.1 Hz. The subjects were given some time to prac-
tice breathing at the beeping rate. Three minutes of data were
collected for each frequency for each subject, for both upright
and supine positions. A true breathing signal was also acquired
via the Respitrace system, which uses inductive plethysmogra-
phy to provide calibrated voltage outputs corresponding to rib
cage and abdominal compartment volume changes. The Respi-
trace system is cumbersome to use since inductive bands are
worn over the rib cage and abdomen, and the system requires
calibration for each subject and it is more expensive than a
pulse oximeter. Since in this study we are merely interested
in the rate of respiration and not the amplitude, a simple FFT
and/or manual counting of the number of peaks can be done on
the Respitrace signal to obtain the frequency of oscillation. Data
acquisition was done using the ADInstruments PowerLab/4Sp
data acquisition system and routed into the PC via a universal

serial bus (USB) port. Chart v4.2.2 software (ADInstruments,
Colorado Springs, CO) was used to sample the analog signal at
200 Hz.

D. Data Analysis

Three minutes of data sampled at 200 Hz were low-pass-
filtered to 10 Hz, and then downsampled to 20 Hz. We performed
the extraction of the respiratory rate on every 1-min segment of
PPG signal, and then the data were shifted by every 10 s for
the entire 3 min of recordings, i.e., each 1-min dataset had a
50 s overlap. Hence, for each 3-min segment, we had 13 1-min
segments to analyze for all methods to be compared. Thus, 3 min
of data were sufficiently long to test the efficacy of each method
but not too long in duration to fatigue the subjects as their task
was to breathe on cue with a metronome. For the CDM and CWT
methods, for every 1-min segment, the initial and final 5 s of the
TFS were not considered because the TFS has an inherent end
effect that could create false variability. The filter parameters of
the VFCDM were set to Fω = 0.03 Hz, Fν = 0.015 Hz (both are
normalized frequencies), and Nω = 64. Fig. 2 and Section III
illustrate how Fω = 0.03 Hz was derived. We have previously
shown that the parameter Fν = Fω /2, and that Nω is chosen to
be approximately half the data length [16].

III. RESULTS

An example of a representative 1-min segment of PPG data
and its VFCDM time–frequency spectrum when the subject
was breathing at a rate of 0.2 Hz (12 breaths/min) is shown
in Fig. 1(a) and (b), respectively. As shown in Fig. 1(a), the
periodic oscillations of the PPG signal are nearly periodic, and
thus, our use of the CDM approach to model the signal as per
(6) is appropriate. Note especially the primary FM seen around
1.5 Hz that corresponds to the heart rate (90 beats/min); other
higher frequency peaks (e.g., 3 Hz, 4.5 Hz, etc., are harmonics
of 1.5 Hz). Fig. 1(c) shows the extracted FM time series at each
time point from the TFS shown in Fig. 1(b), and its subsequent
power spectrum is shown in the Fig. 1(d). The largest peak in
this power spectrum is the 0.2 Hz, which corresponds correctly
to the breathing rate.

The Nyquist frequency in this case is 10 Hz, but we only
consider the frequency range from 0.15 to 0.7 Hz. In some
cases, peaks were seen at frequencies greater than 0.7 Hz, and
they were found to be mainly due to measurement artifacts
and harmonics of the f < 0.7 Hz dynamics. As a breathing
rate more than 0.7 Hz is unrealistic, we ignore the range of
frequencies (i.e., f > 0.7 Hz) when looking for the highest
peaks. Furthermore, no method was able to provide accurate
results when the true breathing frequencies were greater than
0.7 Hz. In addition, we excluded breathing rates that are lower
than 0.15 Hz since dynamics pertaining to the sympathetic tone
are known to be active in the frequency range between 0.04 and
0.15 Hz. For example, if a subject’s breathing rate is 0.3 Hz
with the sympathetic tone highly innervated, then the largest
peak may be located anywhere in the frequency band of 0.04–
0.15 Hz instead of the expected respiratory rate peak at 0.3 Hz. It
should be noted, however, that the VFCDM method is accurate
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Fig. 1. (a) Representative pulse oximeter signal. (b) Estimated instantaneous
frequencies using VFCDM with prominent frequency oscillations seen near
heart rate (1.5 Hz). (c) FM sequence extracted from the pulse ridge in the time–
frequency plot. (d) PSD of the FM signal. It is clear that the highest peak is
obtained at 0.2 Hz, which is same as the breathing frequency (12 beats/min).

even for respiratory rates lower than 0.15 Hz, but we do not
provide comprehensive results for breathing rates lower than
this since the peaks associated with sympathetic tone could
confound detection at higher breathing rates.

For a complete comparison of all these methods, it is nec-
essary to look at differences in results across subjects, across
time, across different body positions (supine and upright breath-
ing positions), and across true breathing rate. In order to do this
in an effective manner, we divide the results into two broad
categories, supine and upright. For each of these categories,
percentage detection errors were found for each frequency for
all subjects using the four different methods. The percentage
error is calculated as follows:

%Error =

(
R̂ − R

R

)
100. (14)

Where R̂ denotes the detected breathing rate and R is the
true breathing rate. For every subject, we obtained 13 detections
(from 3 min recordings with 1 min data analysis window shifted
in time by 10 s) for each breathing frequency. The median and

Fig. 2. Semilog plots showing trend of (a) median and (b) IQR of error per-
centage as a function of the resolution parameter for the VFCDM-FM method.
The best results were obtained with regard to both accuracy and spread of error
across subjects, frequencies, and positions using a parameter value of 0.03.

interquartile range (IQR) (difference between the 25th and 75th
percentile) of the percentage detection errors of these 13 detec-
tions were compiled for all four methods for every frequency
for every subject. The median value provides an estimate of
the accuracy of the method while the IQR gives an estimate of
the ability of the algorithm to track the frequency across time
(within the data duration of 3 min) for every subject. Hence, a
median value that is close to zero would indicate good accu-
racy of the method studied. Similarly, the smaller the IQR, the
better the rate tracking ability or repeatability of the method.
These two statistics were compared across the entire population
(15 subjects).

It is instructive to observe the change in accuracy and consis-
tency of detection with the variation of the principal resolution-
determining parameter for the VFCDM method, i.e., the Fω .
Fig. 2(a) shows the variation of the median detection error per-
centage as the Fω parameter is varied from 0.002 to 0.06 Hz for
the supine (dashed line) and upright (solid line) positions. It can
be seen that the median error starts from a high negative value
and gradual improves to a little above 0% for both body posi-
tions before increasing in magnitude again. Similarly, Fig. 2(b)
shows the variation of the spread (as measured by the IQR of
the percentage error) as the resolution parameter increases over
the same range as previously for the supine (solid line) and
upright (dotted) positions. Again, it can be seen that the most
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Fig. 3. (Left panels) Median errors and (right panels) IQR errors for the supine position. The top row (a) and (b) are for low breathing frequencies (0.2 and
0.3 Hz), and the bottom row (c) and (d) are for high frequencies (0.4–0.6 Hz). Filled circles above and below each bar graph represent the 95th and 5th percentiles,
respectively.

desirable IQR values are obtained for Fω values of 0.02–0.04
for both body positions. Note that the dramatic decrease in IQR
variables from Fω is 0.01–0.03 Hz more than compensates for
the slight decrease in median errors (a measure of the accuracy)
over the same range. For the sake of consistency, we chose a
value of Fω = 0.03 Hz for our method.

Figs. 3 and 4 show the accuracy and repeatability of each
method as a function of true breathing rate for the supine (Fig. 3)
and upright (Fig. 4) positions. For tabulating the results, we
grouped the results for 0.2–0.3 Hz together and designated them
as the LF breathing rates. Likewise, the results for 0.4–0.6 Hz
breathing rates were lumped together and designated as the HF
breathing rates. Statistical testing (using an ANOVA on ranks)
was done to see if there were significant differences between the
medians for the four different methods. In addition, a Brown–
Forsythe test was used to compare the variances across the
population. Since the percentage errors obtained were found to
be not normally distributed, we used median, IQR, and nonpara-
metric tests like ANOVA on ranks, and the Brown–Forsythe test
instead of the mean, standard error, and parametric tests such as
one-way ANOVA or Levene test (for variance).

Figs. 3 and 4 show the subjects’ variation of the median (left
panels) and IQR (right panels) of percentage detection error for
the supine and upright positions, respectively, in the form of
box plots. The top and bottom panels of Figs. 3 and 4 repre-
sent results for the LF and HF breathing rates, respectively. The
lower boundary of the box closest to zero indicates the 25th
percentile, a line within the box marks the median, and the up-
per boundary of the box farthest from zero indicates the 75th

percentile. Whiskers (error bars) above and below the box indi-
cate the 90th and 10th percentiles. Hence, the gray area of the
box is an indication of the spread, i.e., the variation in median
error (or IQR), across the population. These figures indicate
how well the algorithms perform across the entire population.
Solid circles represent the 5th and 95th percentiles. The top
panels of Tables I and II summarize these measures of accuracy
(median) and “repeatability across time” (IQR), respectively,
by tabulating the median and IQR of these statistics across the
population for both supine and upright positions. The bottom
panels of Tables I and II provide a summary of statistical anal-
ysis comparing the performance of the four methods to each
other.

The AR model approach is the least accurate followed by
CWT-AM, CWT-FM, and VFCDM when we consider all body
positions and all breathing frequencies. For LF breathing rates,
there was no significant difference in the median error between
all four methods for both body positions as they were all accu-
rate. However, the variances of the median values as determined
by the IQR of median error are significantly lower for both
VFCDM and CWT-FM than for either CWT-AM or AR model
approaches.

In general, the median error is larger in HF than LF breathing
rates. For HF breathing rates, the median error is lowest for
VFCDM, followed by CWT-FM, CWT-AM, and AR model for
both body positions. While there is no significant difference
in the variance between VFCDM and CWT-FM, both methods
have significantly less variance than either CWT-AM or AR
model. Thus, gauging the accuracy as defined by the median
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Fig. 4. (Left panels) Median errors and (right panels) IQR errors for the upright position. The top row (a) and (b) are for low breathing frequencies (0.2 and
0.3 Hz) and the bottom row (c) and (d) are for high frequencies (0.4–0.6 Hz). Filled circles above and below each bar graph represent the 95th and 5th percentiles,
respectively.

TABLE I
(TOP) ACCURACY AS DETERMINED BY MEDIAN ERRORS AND IQR OF MEDIAN ERRORS FOR BOTH BODY POSITIONS. (BOTTOM) STATISTICAL SIGNIFICANCE

AMONG THE FOUR METHODS FOR BOTH BODY POSITIONS

errors and their variances, as shown in the left panels of Figs. 3
and 4, and presented numerically in the top panel of Table I,
we observe that for both LF and HF breathing rates, VFCDM
consistently provides the lowest median errors and variance
values.

Repeatability or consistency of the four methods is shown
in the right panels of Figs. 3 and 4, and numerically in the top
panel of Table II. In general, the ability of the methods to provide
consistent results is especially excellent (highest) for both the
CWT-FM and VFCDM methods, for both LF and HF breathing
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TABLE II
(TOP) REPEATABILITY ACROSS TIME AS DETERMINED BY MEDIAN OF IQR ERRORS AND IQR OF IQR ERRORS FOR BOTH BODY POSITIONS. (BOTTOM)

STATISTICAL SIGNIFICANCE AMONG THE FOUR METHODS FOR BOTH BODY POSITIONS

rates and body positions. As with the accuracy results, the re-
peatability is also better for the LF than for the HF breathing
rates for all four methods. Both CWT-FM and VFCDM provide
significantly more repeatable results than either CWT-AM or
AR model.

IV. DISCUSSION

In this study, we demonstrated the accuracy of a novel ap-
proach to extract respiratory rates from pulse oximeter record-
ings. The method was shown to be accurate for widely varying
breathing rates, and can be implemented in real time. We com-
pared our method to both wavelet and AR-based approaches
since these two techniques are among the most accurate algo-
rithms to date [15]. Overall, our method based on the use of
VFCDM to extract FM signals followed by the power spectrum
to extract the respiratory rate is the most accurate and with the
fastest computational time than any of the methods compared
for both supine and upright positions. The continuous wavelet
approach using either the FM or AM signals fared better than
the AR method for both body positions at the expense of larger
computational time.

Estimation of respiratory rate is important in monitoring of
patients, whether at home or in a hospital facility. Due to the
highly labor-intensive and sometimes invasive nature of accurate
respiratory rate estimation, we aimed to develop an algorithm
to extract respiration rate from the pulse oximeter, a noninva-
sive, easy-to-use device intended for measurement of oxygen
saturation level. The work by Addison et al. [5]–[7], Shelley
et al. [8], Addison and Watson [12], [13], and Clifton et al. [14]
is noteworthy since it is one of the first studies to use a time–
frequency approach, as opposed to the time domain approaches
using filtering methods [9]–[11], [21], [22] to estimate respira-
tory rates using the pulse oximeter. A time–frequency method

is ideally suited for studying the pulse oximeter signal because
of the inherent nonstationarity in the respiratory rate. In addi-
tion, a filtering approach usually involves tuning of a number of
parameters that pose a problem when signal characteristics vary
from subject to subject. While Fleming and Tarassenko [15] do
mention a decrease in accuracy when the AR modeling approach
is used on 30-s segments (real-time implementation) instead of
5-min segments, we found that this decrease was far greater than
that obtained with time–frequency approaches.

Our method is similar to the work by Addison et al. [5]–[7],
Addison and Watson [12], [13], and Clifton et al. [14] in that
we also estimate the TFS of the PPG signal, but differs from
them since we only use the FM signals and not both AM and
FM signals, and a different TFS estimation method is used. The
reason why Addison et al. used both AM and FM signals is
that the accuracy of the extracted respiratory rate was better
with FM in some cases while the AM provided better results
in other instances [5]–[7], [12]–[14]. We also found that this
was the case with our results using the wavelet approach. They
suggested the use of an ad hoc approach to determine when
to select either the AM or FM results; however, the details on
implementation of this decision procedure are not available in
any of their published works.

Instead of a wavelet approach, we used our recently developed
VFCDM method that was shown to provide one of the highest
time–frequency resolutions [16]–[18]. Hence, we anticipated
that using this approach in estimating the TFS would yield
better results in respiratory rate estimation than the wavelet
approach used by Addison et al. [5]–[7], Addison and Watson
[12], [13], and Clifton et al. [14]. While we are also able to
extract respiratory rate from both AM and FM signals, we found
that the results on the AM signals were not as reliable as the
FM signals. In a way, this is a good news since we do not have
to use some complicated decision scheme to determine when
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to use the results of AM or FM. As shown in both Figs. 3 and
4, and Tables I and II, the respiratory rate detection using the
FM signals derived from the wavelet method provided better
results than AM signals in most cases for both body positions.
Thus, similar to our approach, a case can be made that the
wavelet method can also use only the FM signals to extract
the respiratory rates. Even with such a scheme, the VFCDM
approach provides better estimates of the respiratory rates in
most cases.

Another advantage of our algorithm is that the estimation of
TFS is considerably faster than the wavelet method. The average
time to calculate the respiration frequency using the VFCDM
method was found to be around 0.3 s, while using the Wavelet
method took 2 s on average (programs running on MATLAB
R2007b). This means that a real-time implementation of the
algorithm would be considerably faster and easier using the
VFCDM method. The AR spectral method was the fastest as
it took 0.1 s on average using MATLAB, and this computation
time includes the time needed to calculate the model order based
on an initial model order selection of 50.

In contrast to the findings by Leonard et al. [7], we did find the
existence of rate-dependent error in detection of breathing rate.
This is probably because Leonard et al. used longer segments
of the PPG signal in their study (180 s compared to 60 s for this
study). In addition, the study in [7] compared detection accura-
cies for breathing rates only as high as 27 breaths/min (0.45 Hz).
In this study, it was observed that for both wavelet and VFCDM
methods, and for both supine and upright conditions, detection
of the respiratory frequency became less accurate with increase
in actual breathing rate. However, for the upright condition, the
VFCDM method provides better respiration rate estimate than
the WT-FM or WT-AM methods. Note that the most accurate
results were obtained for respiration frequencies 0.2 and 0.3 Hz.
It should be noted that the normal range of breathing rate falls
in this range, and breathing rates higher than 0.5 Hz are rare.
Hence, we anticipate that this method of breathing frequency
extraction should perform quite well in most cases. In fact, for
very high breathing rates, the method would at least serve to
give a clear indication of deviation from normal frequency, even
if it is not able to estimate the frequency itself with very high
accuracy.

We can speculate about the reason for less accurate results
with higher respiratory rates seen in our study with all algorithms
tested. Detection of both AM and FM requires persistent oscil-
lations for several cycles, but with faster respiratory rates, this
condition may not hold. In addition, with faster breathing rates,
the amplitudes of AM or FM become less, and thus, it becomes
more difficult to detect them. Thus, a higher resolution-based
TFS method such as the VFCDM is required to work better with
higher respiratory rates; such was the case in our paper.

A. Limitations

We have limited our study to healthy subjects to demon-
strate the feasibility of the proposed approach. Detection of
accurate respiratory rates may not be optimal for subjects with
certain cardiovascular diseases that increase sympathetic tone.

For example, subjects with a pacemaker or on heart rhythm
changing medications may lead to less accurate respiratory rate
detection using our approach. For all other subjects, however,
we believe that the method proposed in this paper is feasible.

Literature also supports our claim. A work by Clifton
et al. [14] has reported accurate respiratory rate detection in
subjects with respiratory problems, as well as in subjects un-
der general anesthesia and recovering from it, using the same
CWT method as compared in our paper. In addition, a work by
Leonard et al. [7], and a work by Fleming and Tarassenko [15]
have reported accurate respiratory rate detection in children
with spontaneous breathing using the CWT and AR modeling
approaches, respectively. Thus, given the fact that we have used
the same CWT and AR modeling methods, as in the afore-
mentioned studies, for comparisons to our method, we believe
that our method will be as accurate in healthy young and adult
subjects with spontaneous breathing, subjects with respiratory
problems, and in patients during anesthesia and post anesthesia.
Furthermore, for most healthy and unhealthy subjects described
before, their spontaneous breathing rates fell within 0.2–0.4 Hz
[14], and given our accurate detection in these rates, it is not
unreasonable to assume that our method will be just as accurate
or better than the case of spontaneous breathing rates.

The Mayer wave oscillation often seen in spontaneous arterial
pressure has a characteristic frequency of ∼0.1 Hz in humans,
and is enhanced during the state of sympathetic activation [23].
For this reason, we did not provide results on respiratory rates
lower than 0.15 Hz, since the peaks associated with sympathetic
tone (0.04–0.15 Hz) could confound detection at higher breath-
ing rates. Note that spectral peaks in the range of 0.04–0.15 Hz
arise due to the actions of the sympathetic tone [24] or Mayer
waves at ∼0.1 Hz [23]; thus, detection of respiratory rates will
be suboptimal if a subject has events that elevate the sympa-
thetic activities or the presence of Mayer waves such that their
spectral peaks are larger than the respiratory peak.

In this paper, we tested the performance of the VFCDM
method against metronome breathing and not spontaneous
breathing. The metronome breathing allowed us to estimate
near real-time performance of the algorithm as our results are
based on 1-min data segments that are shifted every 10 s. In
our opinion, spontaneous breathing masks give the true perfor-
mance of the algorithms since the results in the literature are
often reported based on the averaged respiratory rates as they
vary over the duration of 3 min [5]–[7], [12]–[14]. Thus, rather
than comparing the results based on the averaged respiratory
rate over the entire duration of the data segment, we believe
that our choice of reporting the results based on each 10 s shift
provides better assessment of the algorithms as well as their
near real-time performances. In addition, we can better gauge
the true performance of the algorithms since the subjects are
breathing at a frequency equal to or very close to the “metro-
nomic” respiratory rate.

In summary, we demonstrated a real-time realizable and con-
sistently accurate approach to extract respiratory rates from di-
rect recordings of the pulse oximeter using the VFCDM ap-
proach. The CWT-FM method also provides good results but its
computational speed is about seven times slower than VFCDM.
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The novelty of either VFCDM or CWT-FM not only resides in
our ability to extract accurate respiratory rates, but also in the
fact that we can obtain an additional clinically important pa-
rameter from the pulse oximeter. Thus, with the pulse oximeter,
we can obtain not only the oxygen saturation levels and heart
rate, but also the respiratory rates. We believe that this is impor-
tant because the pulse oximeter is a proven technology that is
widely accepted in practice, and the ability to extract multiple
vital signs from a single sensor will facilitate enhancements not
only from a technical standpoint but, most importantly, from
the point of patients’ comfort, since they do not have to wear
multiple sensors to obtain the same vital sign information.
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