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ABSTRACT We have developed a novel method to accurately detect QRS complex peaks using the variable
frequency complex demodulation (VFCDM) method. The approach’s novelty stems from reconstructing
an ECG signal using only the frequency components associated with the QRS waveforms by VFCDM
decomposition. After signal reconstruction, both top and bottom sides of the signal are used for peak
detection, after which we compare the locations of the peaks detected from both sides to ensure that false
peaks are minimized. Finally, we impose position-dependent adaptive thresholds to remove any remaining
false peaks from the prior step. We applied the proposed method to the widely benchmarked MIT-BIH
arrhythmia dataset and obtained among the best results compared with many of the recently published
methods. Our approach resulted in 99.94% sensitivity, 99.95% positive predictive value, and a 0.11%
detection error rate. Three other datasets—the MIMIC III database, University of Massachusetts atrial
fibrillation data, and SCUBA diving in salt water ECG data—were used to further test the robustness of
our proposed algorithm. For all these three datasets, our method retained consistently higher accuracy when
compared with the BioSig Matlab toolbox, which is publicly available and known to be reliable for ECG
peak detection.

INDEX TERMS Electrocardiogram, peak detection, QRS complex, signal reconstruction, T-wave, variable
frequency complex demodulation.

I. INTRODUCTION
The electrocardiogram (ECG) is one of the most vital physi-
ological signals [1]. The ECG waveform is characterized by
major waves including P, QRS, and T, where QRS repre-
sents the depolarization of the ventricles [1]. By analyzing
QRS complexes, much important information such as the
heart rate (HR), heart rhythms (normal sinus and abnormal),
and ectopic beat information can be obtained. As a result,
QRS complex detection, also known as R-peak detection or
simply peak detection, has significant importance in both
clinical and research applications. For example, HR is often
monitored for physical wellbeing as well as for chronic
conditions such as hypertension, and others, in both adults
and children.

Many attempts have been made to accurately detect
QRS complexes, including the seminal work by Pan and
Tompkins [2], which is based on analysis of slope, width,

and amplitude of the QRS complexes, and has been used
extensively in the literature as one of the gold standard algo-
rithms. Other ECG peak detection methods include the first
order derivative [3] and second order derivative [4]. Digital
filters and a strategy based on looking for irregular R-R inter-
vals are described in [5]. In [6], a QRS detection algorithm
is presented which includes polynomial filters, and their
associated parameters are selected by a genetic algorithm.
In [7], the ECG signal has been decomposed with filter banks
and then several parameters are combined with a heuristic
decision rule to detect heartbeats. An adaptive-matched filter
technique with artificial neural networks is used in [8].

Several works have been published with wavelet trans-
forms to detect ECG beats. A wavelet transform-based
single-lead delineation system is described in [9], while a
hidden Markov model along with wavelets are used in [10].
In [11], multiscale features of wavelet transforms are used

13856
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-4422-4837


S. K. Bashar et al.: VERB: VFCDM-Based Electrocardiogram Reconstruction and Beat Detection Algorithm

to distinguish QRS complexes. In [12], a stationary wavelet
transform is described, which uses local maxima, minima,
and zero-crossing information. In [13], higher-order statisti-
cal moments derived from the discrete wavelet transform are
used for QRS complex peak detection. In [14], a QRS detec-
tion algorithm is presented using quadratic filters capable of
enhancing QRS signal-to-noise ratios.

Other than wavelets, some recent methods include empir-
ical mode decomposition with peak correction and detec-
tion [15], and a Shannon energy envelope-based method [16].
In [17], sparse derivative-based ECG enhancement and a
Hilbert transform approach are implemented to detect ECG
peaks. An optimized nonlinear adaptive whitening filter
based on sigmoidal radial basis functions is used in [18] to
detect QRS complexes.

However, as mentioned in [15], wavelet-based methods
are non-adaptive and may not be generally applicable
for most ECG signals. For empirical mode decomposition
(EMD)-based approaches, although EMD is data-driven,
it can be sensitive to noise and mode mixing is an important
issue. Moreover, the commonly used derivative filters can
amplify the high frequency noise components [1]. Neural
network and iteration-based methods can suffer from com-
putational complexity and convergence issues, respectively.
Apart from these issues, several types of noise can be present
in ECG signals including muscle noise, electrode motion arti-
facts, power-line interference, baseline drift, and others [2].
Some of these methods have been compared to our proposed
method in the Results section.

To better combat these issues, we propose the variable fre-
quency complex decomposition method (VFCDM) for ECG
reconstruction and beat detection, which we name hence-
forth VERB. VERB reconstructs the ECG signal among var-
ious VFCDM sub-bands, to remove components associated
with noise so that better peak detection can be achieved.
Since most of the QRS beat detection methods are eval-
uated and compared to the MIT-BIH arrhythmia database,
the performance of the proposed VERB algorithm has also
been evaluated using the same database. Moreover, to show
the robustness of the proposed method, we used two other
ECG datasets along with data from a SCUBA diver riding an
autonomous vehicle in salt water.

The rest of the paper is organized as follows: we briefly
describe the datasets in section II, we develop the proposed
VERB algorithm in section III, we present the results from
different datasets in section IV, and we discuss the results in
section V. Finally, we conclude with section VI.

II. DESCRIPTION OF THE DATASETS
Four different datasets have been used in this study to develop
and evaluate the proposed beat detection algorithm.

A. MIT BIH ARRHYTHMIA DATABASE
The MIT-BIH Arrhythmia Database (MITDB) contains
48 half-hour datasets from two-channel ambulatory ECG
recordings, obtained from 47 subjects [19]. Twenty three

recordings were chosen at random from a set of 4,000 24-h
ambulatory ECG recordings collected from a mixed popula-
tion of inpatients (about 60%) and outpatients (about 40%) at
Boston Hospital; the remaining 25 recordings were selected
from the same set to include less common but clinically sig-
nificant arrhythmias that are not well-represented in a small
random sample. The recordings were digitized at 360 sam-
ples per second per channel with 11-bit resolution over a
10 mV range. Each recording includes two leads: the mod-
ified limb lead II and one of V1, V2, V4 or V5 leads.
Two or more cardiologists independently annotated each
record; disagreements were resolved to obtain the computer-
readable reference annotations for each beat (approximately
110,000 annotations in all) included with the database [20].

B. UMASS DATABASE
Data collection was approved by the University of Mas-
sachusetts Institutional Review Board (IRB). The UMass
database contains data from 22 subjects, consisting of 10 nor-
mal sinus rhythm (NSR) subjects, 10 subjects with atrial
fibrillation (AF) and 2 subjects with premature atrial con-
tractions (PAC). Subjects were instructed to perform dif-
ferent body movements, as noted below. Participants were
approached following their ambulatory clinic appointment
and taken to a free exam roomwhere they gave their informed
consent to participate in the study and received a detailed out-
line of the study procedure. A 7-lead Holter monitor (Rozinn
RZ153+ Series, Rozinn Electronics Inc., USA) was used
to record the ECG data. Participants were taken through a
standardized protocol consisting of the following activities:
2 minutes of completely sitting still, 2 minutes of slow walk-
ing (approximately 2 mph), 30 seconds of rest while stand-
ing still, 2 minutes of fast walking (approximately 4 mph),
1 minute of rest, 1 minute of up and down arm movement,
1 minute of random wrist movement, 30 seconds of rest
while standing, 1 minute of alternating sitting and standing,
2 minutes of going up and down a set of stairs, and 1 minute
of deep breathing. The sampling frequencywas 180Hzwhich
was down-sampled to 128 Hz.

C. MIMIC III DATABASE
MIMIC-III is a large and publicly-available database com-
prising de-identified health-related data associated with
approximately sixty thousand patients who stayed in criti-
cal care units of the Beth Israel Deaconess Medical Center
between 2001 and 2012 [21]. MIMIC stands for ‘‘Medi-
cal Information Mart for Intensive Care’’ and the database
includes a wealth of different information such as demo-
graphics, vital sign measurements, laboratory test results,
medications, nurse and physician notes, imaging reports, out-
of-hospital mortality, and other patient data. MIMIC III links
continuous ECG and pulse plethysmographic waveforms to
a wealth of time-varying clinical and hemodynamic data. For
this peak detection study, ECG waveforms from N=20 sub-
jects (10 NSR and 10 AF subjects) were used. ECG sig-
nals from AF subjects were annotated by the University
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of Massachusetts cardiologist (DM). From each subject,
10 minutes of ECG signal have been analyzed to evaluate
the peak detection performance. For AF subjects, clean ECG
signals were taken from the AF-annotated part. The sampling
frequency of the ECG signals was 125 Hz.

D. SALT-WATER ECG DATA
This data is unique, as we obtained ECG data from a Navy
SCUBA diver whowore our previously developed chest worn
device using our previously developed hydrophobic elec-
trodes [22], [23]. The SCUBA dive was performed in salt
water in Key West, Florida and the diver rode an autonomous
vehicle which dove to a depth of 20 ft. and then surfaced;
this procedure was repeated throughout the data collection.
During this procedure, the diver was also experimenting with
new flippers, which may have introduced additional motion
artifacts in the ECG recordings. Data were collected for
40 minutes but we only show the peak detection algorithm
results on a relatively clean portion consisting of 19 minutes.

III. METHODS
The proposed method consists of two major steps: (a) recon-
struction of the ECG signal and (b) beat detection from
the reconstructed ECG. However, before any of these steps,
preprocessing of the ECG signal is performed. Preprocessing
includes taking an ECG segment (30-second ECG segments
have been used here), then filtering that segment with a
3rd order Butterworth bandpass filter having cutoff frequen-
cies of 0.5 and 20 Hz. After filtering the ECG segment, it is
normalized to zero mean and unity variance.

A. VFCDM-BASED RECONSTRUCTION OF ECG
While most ECG waveforms have the textbook-described
morphology, which leads to accurate peak detection, in some
cases the ECG data are noisy, with unclear QRS complexes,
some with T-wave amplitudes that are equal to or greater
than R waves, deep S waves, and the signal affected by low
frequency trends. All these distortions can hinder accurate
detection of the QRS peaks (or R peaks) (heart beats) from
the time domain ECG signal. To overcome these problems,
we have implemented a VFCDM-based ECG reconstruction
approach. The signal reconstruction is performed with only
the frequency components of interest, and the other non-ECG
related dynamics are removed.

VFDCM is a time-frequency analysis technique that has
been used for a variety of physiological signal process-
ing [24], [25]. It is designed to estimate the time-frequency
spectrum (TFS) of a given signal. VFCDM not only provides
high time and frequency resolution, but also retains the accu-
rate amplitude distribution of the signal [26].

The first step of VFCDM uses complex demodula-
tion (CDM) to obtain an estimate of the TFS. Let x (t) be
a narrow band sinusoidal signal with a center frequency f0,
instantaneous amplitude A (t), phase ∅ (t) , and the direct
current component dc (t).

x (t) = dc (t)+ A(t)cos(2π f0t + ∅(t)). (1)

For a given center frequency, the instantaneous amplitude
A (t) and phase ∅ (t) can be extracted by multiplying (1)
by e−j2π f0t .

Now, if the modulating frequency is not fixed but varies
with time, then the signal x (t) can be written as:

x (t) = dc (t)+ A (t) cos
(∫ t

0
2π f (τ ) dτ + ∅ (t)

)
. (2)

Multiplying (2) by e−j
∫ t
0 2π f (τ )dτ yields both instantaneous

amplitude, A(t), and ∅ (t) :

z (t)=x (t) e−j
∫ t
0 2π f (τ )dτ =dc (t) e−j

∫ t
0 2π f (τ )dτ+

A (t)
2

ej∅(t)

+
A (t)
2

e−j(
∫ t
0 4π f (τ )dτ+∅(t)). (3)

If z(t) is filtered with an ideal low-pass filter (LPF) with
a cutoff frequency fc< f 0, then the filtered signal will be
obtained which has the same instantaneous amplitude A(t)
and phase ∅(t).
This instantaneous frequency is given by:

f (t) = f0 +
1
2π

d∅ (t)
dt

. (4)

In the case of variable frequency, the center frequency, f0,
is replaced with a variable frequency. By changing the center
frequency followed by using the variable frequency approach
and the low pass filtering, the signal, x(t), can be decomposed
into the sinusoid modulations by the complex demodulation
technique, as follows:

x (t) =
∑
i

di = dc (t)+
∑
i

Ai (t)

× cos
(∫ t

0
2π fi (τ ) dτ + ∅i (t)

)
. (5)

The instantaneous frequency and amplitude of di can be
calculated using the Hilbert transform. As a result, with
the combination of the CDM and Hilbert transform, a high
time-frequency resolution spectrum and accurate amplitude
information can be obtained [27].

The di in Eq. (5) represents the number of frequency
components. Once VFCDM has been applied to a 30-sec
ECG segment, we obtain 12 di components, which represent
the ECG signal at different frequency bands. Thus, by sim-
ply adding these components in the time domain, the orig-
inal ECG signal can be reconstructed as noted in Eq. (5).
Fig. 1 shows a sample ECG segment and the associated first
9 VFCDM components of increasing frequencies.

The purpose of the VFCDM reconstruction stage is to
combine only those components that represent the dynamics
of the ECG. To this end, we only added components 2 to 4 to
form the reconstructed representation of the ECG segment.
For example, the component 1 is associated with very low
frequency dynamics and are not related to ECG waveforms.
By doing reconstruction with high frequency components,
we induce sharp spikes on both the top and bottom sides of
the reconstructed ECG segments, particularly at the location
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FIGURE 1. (a) Representative 10-sec ECG segment from MITDB
(record #209); (b)-(j) First 9 VFCDM decomposition components of (a).

FIGURE 2. (a): Representative preprocessed ECG segment; (b) ECG
reconstruction using VFCDM components 1 to 4; (c) reconstruction with
components 2 to 4 (used in VERB).

of the QRS complex waves. Moreover, this reconstruction
approach leads to elimination of ripples from the middle part
(P-R and S-T segment) of the ECG waveforms. Fig. 2 shows
a sample ECG segment and the VFCDM reconstruction
based on two different compositions of VFCDMcomponents.
Fig. 2(b) shows the VFCDM reconstruction using the first
4 components while Fig. 2(c) presents the results of adding
components 2 to 4. Fig. 2 (b) shows that the reconstructed
ECG resembles the original ECG segment which is fine
in most cases, but, for those ECG with large T-waves (see
Fig. 3), they would cause difficulty in detecting accurate QRS
complexes. However, in Fig. 2(c), the low frequency noise
and non-QRS waves are suppressed, especially between two
consecutive QRS waves. Not only is there less noise around
the middle portion, but also the QRS waves are prominent.
We made use of this property in the proposed beat detection
algorithm.

Another major advantage of the proposed VFCDM recon-
struction is that, after combining components 2, 3, and 4 in

FIGURE 3. VCFDM reconstruction of ECG segments with long T or deep
S waves: (a-b) sample ECG and reconstructed signal from MITDB
record # 113 (long T); (c-d) sample ECG and reconstructed signal from
MITDB record # 117 (long T); (e-f) sample ECG and reconstructed signal
from MITDB record # 200 (deep S).

the reconstruction stage, the long T waves are suppressed,
as they belong to the first component. Moreover, when there
is a deep S wave, the reconstruction also creates sharp spike
shapes but significantly lower amplitudes compared to the
QRS complexes in place of the S waves. By suppressing the
long T waves and the deep S waves, we thereby reduce the
number of false beats detected.

Figs. 3 (a-d) represent sample ECG segments with long T
waves and the corresponding VFCDM-reconstructed ECG
segments. It is evident that the T waves are suppressed to
a great extent for all cases. Figs. 3 (e-f) show the effect of
the VFCDM ECG reconstruction on the deep S waves. They
show that by adding only the components of interest, sharp
spikes associated with R peaks can be accentuated. These
spikes are suitable for the proposed QRS peak detection step.

B. BEAT DETECTION STRATEGY IN THE VERB ALGORITHM
As shown in the previous section (see Figs. 3d & 3f), the
VERB reconstruction method accentuates sharp spike shapes
in the QRS waves (both top and bottom sides of the ECG seg-
ment). The proposed VERB algorithm was developed based
on this property. First, local peak detection is performed on
the top side of the reconstructed ECG segment. A local peak is
defined as a data point that is larger than its two neighboring
points [28]. Although the spike peaks from the top side are
easily detectable, to reduce false peak detection, two condi-
tions have been imposed on the local peak detection: (a) the
minimum peak-to-peak distance cannot result in an instanta-
neous heart rate greater than 250 bpm, and (b) a variable peak
amplitude threshold is calculated as 15% of the maximum
value found in the reconstructed ECG segment.

Since there are also spike shapes on the bottom side of the
reconstructed ECGwaves, we also perform peak detection for
the bottom side. By comparing both top and bottom peaks
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location by location, we expect to have more robust peak
detection and elimination of false peaks. For the bottom peak
detection, a similar local peak detection approachwas applied
after inverting the reconstructed ECG signal and setting the
previous threshold condition (amplitude threshold is reduced
to 10% for this case). The reason for the lower threshold value
is that the bottom part of the QRS wave generally tends to
have lower amplitude than the top portion of the reconstructed
waveforms.

After detection of both the top and bottom peaks, they are
compared location by location. During this step, when a peak
is found on the top side of the reconstructed ECG segment,
another peak also has to be located within a certain time range
on the bottom side for the top peak to be considered a peak;
similarly, a peak on the bottom has to have a neighboring top
peak. Prior to comparing the peak locations, upper and lower
value clipping is performed to adjust any unwanted change in
the amplitude.

FIGURE 4. (a) Local peak detection from the top side; (b) local peak
detection from the bottom side; (c) detected peaks after comparing both
top and bottom sides (record # 200 from MITDB).

Fig. 4 (a) shows the top peak detection from the recon-
structed ECG segment while Fig. 4 (b) shows the same for
the bottom side. The black circles indicate the detected peaks.
Note that Fig. 4 (b) does not show the two small peaks seen
in the Fig. 4 (a) around 1 and 4 sec, respectively, based
on the beat detection strategy described above. Fig. 4 (c)
shows the results after the peak-to-peak comparison from
both sides. It is clear from Fig. 4 (c) that with the peak-to-
peak comparison for each location, we have removed two
false peaks seen around 1 sec and 4 sec in Fig. 4 (a).

On some occasions, many false peaks (false positives)
can still be present even after the above-described local
peak-to-peak comparison approach. Hence, to eliminate these

false peaks, threshold conditions based on the peak positions
have been imposed. These thresholds are not fixed but are
automatically varying with peak locations and from segment
to segment. The underlying idea is that in a reconstructed
ECG segment of shorter length (30-sec segment), the true
QRS peaks are more or less of similar amplitude unless the
ECG is corrupted with some sudden spike induced noise arti-
facts, which can lead to additional spurious peaks. To counter
this, after the initial peak detection step, if the previous peak
and the next peak are detected at a close range, it has to be of
a minimum height/amplitude to be considered as a true peak.
To determine the minimum peak height, the following steps
have been considered:
Step 1: If two consecutive peaks are in such close range

that the instantaneous HR becomes 170 to 250 bpm, then
the current (ith) peak has to be at least 60% of the mean
of its surrounding two ((i−1)th and (i+1)th) peaks. If ‘A’
denotes the peak amplitude, then A (i) has to be at least 0.6×
A(i−1)+A(i+1)

2 . This is possible for AF subjects with very fast
HR, albeit a rare occurrence. For this reason, the threshold is
strictly set to 60% of the mean of its two surrounding peaks.
Step 2: If the peaks are located further apart than noted in

Step 1, so that the instantaneous HR is in the 120 to 170 bpm
range, the ithpeak has to be at least 40% of the mean of the
surrounding two peaks. Since this can happen for AF subjects
or someone with fast HR, the threshold is lowered to 40%.
Step 3: For the peaks which are located even further apart

(i.e., the instantaneous HR becomes lower than 120 bpm,
which is the most common scenario), we do not impose any
kind of amplitude-based thresholds.

At any stage of the algorithm, if two consecutive peaks are
found in such close range that the instantaneous HR becomes
excessively high (more than 250 bpm), the peak with the
highest amplitude is retained. The other one is discarded,
as it is not physiologically possible to have a HR higher
than 250 bpm.

Fig. 5 shows two examples of removing false positive
beats with the abovementioned steps for two representative
samples of reconstructed ECG segments. Figs. 5 (a) and 5 (c)
show that there are several erroneously detected peaks
after peak-to-peak comparison from both sides. However,
in Figs. 5 (b) and 5 (d), incorrectly detected peaks are
removed with the proposed false peaks removal criteria. It is
clear from the plots that these location-based criteria are
effective in removing the false beats. Fig. 6 gives the complete
step-by-step outputs of the proposed VERB algorithm for a
representative sample ECG segment. Fig. 6 (a) shows the
preprocessed ECG signal and Fig. 6 (b) shows the recon-
structed ECG segment from VFCDM components 2 to 4.
Figs. 6 (c) and 6 (d) show the peak detection from both the
top side and bottom side of the ECG segment, respectively.
The detected peaks after side-by-side comparison are shown
in Fig. 6 (e) and finally, in Fig. 6 (f), the detected peaks after
the location based false peak removal criteria is employed are
shown with the original ECG data.
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FIGURE 5. Examples showing the effectiveness of the false peak removal
criteria: (a) and (c) before false peak removal; (b) and (d) VERB output
after false peak removal (peak locations shown with ECG signal).

FIGURE 6. Different steps of the VERB algorithm: (a) input preprocessed
ECG signal; (b) VFCDM-reconstructed ECG segment; (c) local peak
detection from the top side; (d) local peak detection from the bottom
side; (e) peaks after comparing both sides; (f) final peak detection output
with the VERB algorithm (peak locations shown with ECG signal).

IV. RESULTS
In this section, we evaluate the performance of the proposed
VERB algorithm using four different datasets—MITDB,
UMass DB, MIMIC III and salt-water ECG datasets.

TABLE 1. Experimental results for all recordings of MITDB.

VOLUME 7, 2019 13861



S. K. Bashar et al.: VERB: VFCDM-Based Electrocardiogram Reconstruction and Beat Detection Algorithm

TABLE 1. (Continued.) Experimental results for all recordings of MITDB.

A. RESULTS ON MIT-BIH ARRHYTHMIA DATABASESS
The MIT-BIH arrhythmia database has been widely used as
the standard benchmark to evaluate the performance of ECG
beat detection algorithms. Hence, we compare our VERB
algorithm to other methods that have been already published.
Detected beats were compared with the reference annotated
beats. For the sake of fair comparison with other published
methods, the first channel (i.e., modified limb lead II) was
chosen for all recordings. To calculate the evaluation metrics,
several quantities were calculated from each of the 48 avail-
able subjects in the database. These were:

Sensitivity (Se) = TP/ (TP+FN)
Positive predictivity (P+) = TP/ (TP+FP)
Error rate (Er) = (FP+FN)/TB
Where:
TP is the true positive (a QRS peak is detected correctly).
FN is the false negative (a QRS peak is missed by the

detection).
FP is the false positive (false detection of a QRS peak

where there is no QRS peak).
TB is the total number of beats.
Table 1 represents the experimental results for all the

recordings of theMITDB. For record # 207, ventricular flutter
beats are excluded, as reported in [9] and [13]. From the
table, it can be seen that our proposed method achieves accu-
rate peak detection performance for all subjects. The lowest
sensitivity obtained is 99.09% for record #203 while we
obtain 100% sensitivity for 28 other subjects. The lowest P+
value is 99.54% (for record #105) whereas 100% P+ value
was achieved for 29 subjects. For all subjects, the VERB
algorithm detected 66 FN and 55 FP from 109,457 true beats.

Next, we present in detail some examples of the proposed
VERB algorithm in use on several challenging recordings of
the MIT-BIH arrhythmia database. Fig. 7(a) shows a sample
ECG segment from recording #222 where a baseline drift is
present (along with tall P-waves), but the VERB algorithm
has successfully detected all of the R peaks. In Fig. 7(b),
the ECG signal is from recording #228 and contains greatly
varying R peak amplitudes. Despite this challenging scenario,
the proposed method was able to accurately detect all R
peaks.

Finally, Table 2 compares the performance of the proposed
beat detection algorithm with several other existing methods.

FIGURE 7. R peak detection examples from ECG segments:
(a) recording #222 and (b) recording #228 of MITDB.

FIGURE 8. R peak detection examples from ECG segments:
(a) recording #117 and (b) recording #210 of MITDB.

The table shows that our proposed method achieves the best
performance. The VERB algorithm achieves 99.94% sensi-
tivity, 99.95% P+ and only 0.11% detection error rate on the
MIT-BIH arrhythmia database.

B. RESULTS ON UMASS DB AND MIMIC III DATABASE
To further demonstrate the robustness of the proposedmethod
on different ECG datasets, we present VERB peak detection
results on UMass and MIMIC III datasets. The peak height
thresholds and the false beat removal criteria are kept con-
sistent throughout the whole study (they are the same for
all three datasets, to have a fair comparison). Fig. 9 shows
the peak detection performance of the VERB method on
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TABLE 2. Comparison of ECG beat detection performance on MITDB.

FIGURE 9. Output of VERB algorithm on UMass dataset: (a) NSR ECG
segment and (b) AF ECG segment.

the UMass dataset for two representative NSR and AF ECG
segments. The R peaks were accurately detected for both the
AF and NSR recordings, as shown in the figure. Fig. 10 also
shows the similarly accurate peak detection performance
using a representative sample from the MIMIC III database.

To quantify the R-peak detection performance on both
UMass and MIMIC III datasets, similar performance metrics

FIGURE 10. VERB peak detection output on MIMIC III dataset: (a) NSR
ECG segment and (b) AF ECG segment.

like TP, sensitivity, P+ etc. were calculated. To demonstrate
the superiority of the proposed method, the ‘‘QRSdetect’’
function of the BioSig Toolbox was used for comparison of
the two methods [29]. A filter bank-based ECG beat detec-
tion algorithm has been implemented in the ‘‘QRSdetect’’
function [7]. Table 3 shows the performance comparison of
the VERB algorithm with the BioSig method for the UMass
dataset while a similar comparison is reported in Table 4 for
the MIMIC III dataset.

For the UMass dataset, 6 minutes of ECG signals from
each subject were analyzed for the performance comparison.
In total, there were 5,438 AF beats and 4,778 non-AF beats
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TABLE 3. Beat detection performance on UMass dataset.

TABLE 4. Beat detection performance on MIMIC III dataset.

(including NSR and PAC beats) from 22 subjects. Among
those beats, VERB detected 5,430 AF and 4,778 non-AF
beats correctly, with only 11 false positives and 5 false neg-
ative beats. The overall sensitivity, P+, and error rate are
99.95%, 99.89%, and 0.16%, respectively, which are better
than the BioSig results.

For the MIMIC III dataset, the total beat number is 17,809
including 8,561 NSR beats and 9,248 AF beats. VERB
achieved an impressive 100% sensitivity and 99.95% P+
value for the AF beats, while the sensitivity and P+ are 100%
and 99.97%, respectively, for the NSR beats. As a result,
the overall sensitivity and P+ value are 100% and 99.96%,
which is better than the 96.30% and 99.84% obtained by
the BioSig method. Clearly, the proposed VERB algorithm
consistently achieved accurate peak detection not only for
the widely used benchmark MITDB dataset, but also for two
other datasets (UMass dataset and MIMIC III).

C. PERFORMANCE ON SALTWATER ECG DATA
From the salt-water ECG data collected from a Navy diver,
19 minutes of clean ECG signal (a total of 1,258 beats) were
used to compare with the BioSig implementation. BioSig
had a detection error rate of 5.52% while VERB resulted
in 99.75% sensitivity, 99.75% P+ value and only 0.50%
error rate. This indicates that the proposed peak detection
algorithm remains accurate even for dry hydrophobic ECG
electrode data.

Fig. 11(a) shows a representative preprocessed salt-
water ECG segment, and Fig. 11(b) shows the VFCDM-
reconstructed ECG along with the detected beats. It is evident

FIGURE 11. (a) Representative 10-sec salt-water ECG data (after
preprocessing); (b) VFCDM reconstruction and the detected peaks.

from the figure that although the salt-water ECG signal
fidelity is not as good as the dry condition, our proposed
method maintains its accuracy in peak detection.

V. DISCUSSION
The proposed VERB algorithm achieved consistently accu-
rate performance on all four datasets. For the MIT-BIH
database, it had equal sensitivity when compared to [13],
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but the number of false positives was much lower. As a result,
VERB had the lowest detection error rate (0.11%) compared
to other reported methods. For some recordings, the second
lead contained better ECG signal quality although the first
lead was used to be consistent with other published methods.
Selecting the best ECG lead can further improve the detection
results.

When our method was applied to the UMass DB and
MIMIC III datasets, similarly accurate performance was
achieved. The peak correction criteria are kept consistent
across these datasets, thus showing the effectiveness of the
proposedmethod. The filter bank-basedmethod implemented
in BioSig was compared on both datasets. BioSig resulted
in 813 false negatives across two datasets while VERB had
only 5 false negatives, thus providing significantly lower error
rate. Moreover, the proposed method yielded highly accurate
detection results for both NSR and AF subjects.

For the salt water ECG data, the signal is from dry
hydrophobic carbon electrodes instead of the traditional wet
Ag-AgCl electrodes. As a result, the salt-water ECG data
show some different characteristics. For this reason, during
the VERB reconstruction step, the second and third compo-
nents were used along with different thresholds to remove
false peaks. However, the main procedural steps of VFCDM
reconstruction and the peak comparison from both top and
bottom sides remained the same.

VI. CONCLUSION
In this paper we have presented a novel ECG R-peak detec-
tion method which relies on variable frequency complex
demodulation-based ECG signal reconstruction along with
peak location detection based on adaptive criteria. We have
applied the algorithm on several different datasets includ-
ing salt-water ECG data, to test the accuracy of the pro-
posed method. For all the varying conditions displayed by
the datasets, the algorithm provided consistently accurate
peak detection results. The accuracy of the proposed peak
detection algorithm will ultimately lead to better arrhythmia
detection, heart rate determination, and heart rate variability
analysis. Atrial fibrillation, which affects more than 5 million
Americans, requires continuous monitoring. Hence, accurate
detection of R-peaks is required for any atrial fibrillation
detection algorithm as they are based on looking for signa-
tures of R-R interval irregularity.
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