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ABSTRACT We present a beat-to-beat heart rate tracking algorithm that is designed especially to handle
the nonstationary motion artifacts often encountered using photoplethysmographic (PPG) signals acquired
from smartwatches or a forehead-worn device, during intense exercise. To date, many algorithms have been
based on tracking heart rates during intense exercise using an 8-second average of heart rates, which does not
accurately capture the large variation in instantaneous heart rates during exercise. In this paper, we propose
a novel technique that can accurately estimate heart rates from wearable PPG signals with subjects running
on a treadmill and making other sudden movements. The proposed algorithm includes three parts: 1) time-
frequency spectrum estimation of PPG and accelerometer signals, 2) motion artifact removal by subtraction
of the time-frequency spectra of the accelerometer signals from the PPG signals, and 3) postprocessing to
further reject motion artifact-affected heart rates followed by interpolation of removed heart beats using
a cubic spline approach. The proposed approach was compared to one of the recent and most accurate
algorithms. The results of the proposed and compared algorithms were evaluated with two datasets (IEEE
Signal Processing Cup (N=12) and our own dataset (N=10)) obtained from a smartwatch and a forehead
PPG sensor with subjects running on a treadmill. The reference heart rates were obtained from a chest-worn
ECG. Our method, using a 12 second windowed segment, resulted in an average absolute error of only
2.94 beats per minute and an average relative error of 2.42 beats per minute, which are a 71% and 94%
improvement, respectively, over the compared algorithm.

INDEX TERMS Motion artifact, photoplethysmogram, wearable sensor, heart rate, VFCDM, accelerometer,

beat-by-beat heart rate, treadmill.

I. INTRODUCTION

With the rise in popularity of smart wearable devices, heart
rates are routinely measured [1]-[3]. Unlike traditional med-
ical devices, smart wearable devices enable monitoring and
recording of physiological data anytime and anywhere, and
heart rates (HR), activity recognition, and calorie consump-
tion are some of the most popular metrics measured [4]-[6].
The electrocardiogram (ECG) and photoplethysmogram
(PPG) are often used to measure HR, with the latter device
being the most popular approach with smart wearable
devices [7]. Although ECG signals are generally considered
the gold standard, their use is limited especially in wear-
able devices when continuous monitoring is required. Apple
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Watch Series 4 now contains dry electrodes which allow the
recording of 30 seconds of ECG data, albeit mostly for detect-
ing the presence of atrial fibrillation. However, smartwatches
now all contain PPG sensors which can be used to make
continuous heart rate measurements. A photodiode in a PPG
sensor detects the change of blood volume in the microvas-
cular bed of tissue by illuminating the skin with a light-
emitting diode (LED). PPG signals can be exploited to extract
a plethora of physiological information such as HR, heart
rate variability (HRV), respiratory rate, and oxygen saturation
[8]-[11]. In addition, many investigators have used PPG data
to examine the feasibility of detecting various cardiovascular
arrhythmias [12], [13]. For example, the Chon lab developed
atrial fibrillation detection algorithms using smartphone and
smartwatch PPG signals [13], [14] and other investigators
have also used smartwatch PPG signals [15].
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However, it is well known that PPG signals obtained from
wearable devices are prone to severe motion artifacts (MAs)
which prevent reliable estimation of HR. MAs can be due
to either repetitive movements or sudden movements, with
the former being the easier to filter out as long the repetitive
frequency does not coincide with the HR at that time instant.

Many methods have been explored to detect MAs and
remove them from PPG signals [16]-[20]. A moving average
approach is often employed to remove intermittent noise.
More computationally intensive MA removal methods such
as adaptive filtering [16], Wiener filtering [17], independent
component analysis [18], principal component analysis [19],
and Kalman filtering [20] have been used with some success.

Spurred by the advent of smartwatches and the IEEE Sig-
nal Processing Challenge Cup competition, several accurate
algorithms for heart rate extraction during intense exercise
protocols have been developed [21]-[24]. The competition
started with the development of the algorithm known as
TROIKA, which consists of signal decomposition for denois-
ing, sparse signal reconstruction for high-resolution spectrum
estimation, and spectral peak tracking with verification [21].
Since then, many algorithms have been developed to increase
HR accuracy, including JOSS. It employs joint sparse spec-
trum reconstruction using a multiple measurement vector,
followed by spectral peak tracking with verification [22].
SpaMA is another algorithm, which showed higher accuracy
than either TROIKA or JOSS and is based on reconstruct-
ing MA-corrupted PPG signals and finding HR based on
time-varying spectral analysis [23]. To date, Temko’s method
showed one of the highest accuracies by using the Wiener fil-
ter to attenuate the MAs and a phase vocoder to refine the HR
estimates, with the option of an offline preprocessing method
using Viterbi decoding [24]. This method is henceforth
referred to as the Wiener filter and phase vocoder (WFPV).

All of the aforementioned and other MA removal algo-
rithms are based on taking 8-second segments of data that
are time-shifted every second. Thus, this approach does not
provide instantaneous or beat-to-beat heart rate estimation but
rather an 8 second average of heart rates, which does not pro-
vide an accurate measure of heart rate dynamics, especially
when subjects are exercising intensively. To overcome this
limitation, we propose a beat-to-beat or instantaneous esti-
mate of heart rate rather than an 8 second averaged heart rate.
To this end, our new method is developed to estimate HR from
MA-corrupted PPG signals, consisting of 1) time-frequency
spectrum (TFS) estimation of PPG signals and accelerome-
ter signals using variable-frequency complex demodulation
(VFCDM), which has one of the highest time and frequency
resolutions, to estimate HRs and their associated ampli-
tudes [25], 2) MA removal by subtraction of the estimated
TFES of accelerometer signals from that of the PPG data, and
3) post-processing to remove remaining noise artifacts and
interpolate the missing heart rate data. The results of our
method were compared with those of WFPV [24]. Henceforth
our method is defined as time-varying spectral motion artifact
removal technique (TVSMART).
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This paper is organized as follows. The datasets and meth-
ods are described in Section II. The results are presented and
compared with other methods in Section III, and conclusions
are drawn in Section IV.

Il. METHODS

A. DATASETS

Our method, TVSMART, was evaluated with two different
PPG databases. The first database is from the 2015 IEEE
signal processing challenge competition and the data consists
of wrist-worn PPG signals during walking and running on
a treadmill [26]. The dataset provides reference ECG HRs
on a beat-to-beat basis. The second dataset is our own lab’s
(Chon lab) data and it includes PPG signals from the forehead
while subjects were walking and running on a treadmill [23].
The protocols of both datasets are described in Table 1. For
our own dataset, we collected beat-to-beat ECG heart rates
and these were used as the reference. The objective was to
compare estimated HRs with the reference ECG HRs for
each beat rather than an 8 second moving average with a
2 second time shift. The reference HR was calculated beat-
to-beat from the ECG electrodes placed on the chest. ECG
electrodes and leads were secured to the subject’s skin with a
tape to minimize motion artifacts.

TABLE 1. Datasets.

Activity

Index | Dataset Age and Sex Remarks
Type
1
2
3
4
S Wrist
6 IEEE Type 1 13-38
7 Cup M Male Green LED
8 (609 nm)
9
10
11
12
13
14
15 Forehead
16
Chon 26-55
17 Lab Type 2 9 Male, 1 Red & Infrared
18 Data Female LED
19 (660 and 940
20 nm)
21
22
Type 1 IEEE Cup Data)
Seconds 30 60 60 60 60 30
Speed
(km/h) 1-2 6-8 12-15 6-8 12-15 1-2
Type 2 (Chon Lab Data)
60- 120- 60-
Seconds | 60 150 60 150 60 150 60 60
Speed
(k/h) 0 4.8 0 8 0 11.3 0 A

* A: Arbitrary movement
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FIGURE 1. Flowchart of the proposed HR tracking method.

1) IEEE CUP

PPG signals were recorded from the wrist using a 2 channel
pulse oximeter with a green LED. Triaxial acceleration data
were also recorded from the same PPG sensor’s wrist band.
The ECG signals were recorded from the chest as the refer-
ence HR. All signals were sampled at 125 Hz. All data were
recorded on a treadmill with various speeds ranging from 1 to
15 km/h.

2) CHON LAB

A forehead PPG sensor developed in our lab was used to
record signals using both infrared and red LEDs. Triaxial
acceleration data were simultaneously recorded from the
same forehead PPG sensor. Both accelerometer and PPG
data were collected at 100 Hz. The reference ECG signals
were simultaneously collected from a Holter monitor with a
sampling frequency of 400 Hz. All data were recorded with
subjects on a treadmill with various speeds ranging from
3 to 7 miles/h. In the last minute, data was taken while the
subjects made arbitrary arm and head movements while being
otherwise stationary.

B. HR ESTIMATION

Figure 1 shows a flowchart of our HR tracking method. Our
method consists of the following sequential steps: preprocess-
ing using normalization, bandpass filtering, TFS estimation
and MA removal using the VFCDM approach, and estimation
of HRs using cubic spline regression. Each of these sequential
steps are described below.

1) PREPROCESSING

Data are processed in two ways. First, for post-processing
of the entire dataset, all PPG signals and accelerometer
signals are resampled to 20 Hz. Second, for a windowed
data approach, all PPG signals and accelerometer signals are
segmented with a 12-second window which is then shifted
every 4 seconds; these segments are then resampled to 20 Hz.
The PPG signals and tri-axial accelerometer signals for both
the entire dataset and each windowed segment are then
filtered with a 5™ order Butterworth bandpass and highpass
filter, (0.9 Hz — 3.2 Hz and a cutoff frequency of 0.5 Hz)
since the HR range in this study is presumed to be between
55-190 beats/min even when accounting for HRs during
intense exercise. PPG signals for both the entire dataset and
the 12-sec windowed segments are normalized to zero mean
and unit variance, and then averaged as follows:

PPG — Z” 1 (ppgi — Mi)/%"
=

n
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where n represents the number of PPG channels. Also, each
accelerometer signal is normalized to zero mean and unit
variance.

2) VFCDM

The VFCDM-based time-frequency spectrum is chosen to
obtain the TFS of PPG and accelerometer signals to remove
MAs and extract HR. VFCDM has been shown to exhibit
one of the highest time and frequency spectral resolu-
tions while retaining accurate amplitude estimates when
compared to other methods such as the smooth pseudo
Wigner-Ville and continuous wavelet transform. Since details
of the VFCDM are described in [25], we briefly summa-
rize the VFCDM algorithm in this section. A sinusoidal
signal x(t) is considered to be a narrow band oscillation
with a center frequency fy, instantaneous amplitude A(t),
phase ¢(¢), and the direct current component dc(t), as
follows:

x (t) =dc (t) +AcosQufot + ¢ (1)) (D

For a given center frequency, the instantaneous amplitude
information A(#) and phase information ¢(¢) can be extracted
by multiplying Eq. (1) by e 720! which results in the fol-
lowing:

A(t) . A(t .
2 (1) = %emm) + %e—/(élnfotw(t)) 2)

A leftward shift by e/>7/0 results in moving the center
frequency, fo, to zero frequency in the spectrum of z(¢). If z(¢)
in Eq. (2) is subjected to an ideal low-pass filter (LPF) with
a cutoff frequency f. < fo, then the filtered signal zj, (¢)
will contain only the component of interest and the following
equations can be obtained:

zp (1) = %”e”’“) A3)
A1) = 2|Zy, (1) | 4)

&)

¢ () = arctan (M)

real (le (t))

When a modulating frequency is not fixed as described
above but varies as a function of time, the signal x(t) can be
written as follows:

t
x (t) =dc(t) +A(t)cos (/ 2nf (v)dt + ¢(t)> (6)
0

Similar to the operations in Egs. (1) and (2), multiplying
.ot
Eq. (6) by e™ Jo2nf ()dv yields both instantaneous amplitude,
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A(t), and instantaneous phase, ¢(¢), which can be described
by the following equation:
z(t) = x () e_jfé 2nf (z)de

= de (e 20 4 210 oo

(N

From Eq. (7), if z(t) is filtered with an ideal LPF with a
cutoff frequency f. < fo, then the filtered signal z;,(¢) can
be obtained with the same instantaneous amplitude A(t) and
phase ¢(¢) as provided in Egs. (4) and (5). The instantaneous
frequency is given by:

LA ;t) (o 4nr @)

., L dgw
FO=fo+ = ®)

For variable frequencies, the center frequency, fy, is used
to estimate the instantaneous frequency within the arbitrarily
set frequency band using Eq. (8).

By changing the center frequency followed by using the
variable frequency approach of Egs. (1) and (6), respectively,
as well as the LPF, the signal, x(¢), can be decomposed
into the sinusoid modulations by the complex demodulation
technique, as follows:

x(t) = Zi d;
t
=dc(t) + ZA!' (t) cos (/ 27fi (1) dr+¢i(t)) 9)
! 0

The instantaneous frequency and amplitude of d; can be
calculated using the Hilbert transform. The entire TFS can
be obtained by the calculation of the Hilbert transform of

PPG

Frequency (Hz)

200 400 600
Time (sec)

(2)

ACC,,

Frequency (Hz)
S} w

(=1

200 400 600
Time (sec)

(©)
FIGURE 2. An example of the TFS of PPG and accelerometer data (subject 21).
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Eq. (9) for all time points for the obtained lowpass-filtered
frequency components, as described in Eq. (3). According to
the properties of VFCDM defined in the paper [25], the fre-
quency margin for a particular bandwidth can be calculated
as follows:

P(BW)=ffBW 1S <w>|2dwdt=/BW IS (@)*, (10)

where S(w) and BW represent the TFS of the signal obtained
by the CDM, and the bandwidth of the frequency range of
each decomposed signal, respectively.

In summary, the VFCDM technique consists of two steps.
The first step is to use complex demodulation to obtain an
estimate of the TFS. In this step, a bank of LPFs is used to
decompose the signal into a series of band-limited signals.
The second step is to choose only the dominant frequencies of
interest for further refinement of the time-frequency resolu-
tion using the VFCDM approach. Note that MA components
must be removed from the TFS of PPG signals before the
second step.

3) MA REMOVAL

The TFES of each accelerometer signal can be obtained using
VECDM, as described in the previous section. In Fig. 2,
the TFS of a PPG signal (a) and of tri-axial accelerometer
data (b-d) are shown. The frequency resolution of the TFS
was set to 0.0391 Hz. The MA frequencies are distinct from
the PPG signal’s dominant frequencies. If the MA frequencies
are not removed from the TFS of Fig. 2a, we obtain incorrect
HR estimates, especially around 420-580 seconds, as shown
in Fig. 3. This is because the amplitudes of the dominant
frequencies associated with the accelerometer are greater

ACC

X

IS
IS

Frequency (Hz)
[\S] w
[\ w

(=]

200 400 600
Time (sec)
(b)

ACC,

&~
o

Frequency (Hz)
[\S] (9%}
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FIGURE 3. Estimated HR of Subject 21 without MA rejection.

than the heart rate at these time points, hence, the former
would be selected as the chosen heart rate. Therefore, the
MA-associated frequencies can be removed by subtracting
the TFS of each accelerometer signal from that of the PPG
signal. Note that information about the phase of the PPG
and accelerometer signals is not needed for MA removal.
By using the property provided in Eq. (10), the desired
MA-removed TFS can be obtained as follows:

Ppa—removed (BW) = / [max {0,
BW

Sppg (“))|

- Zc |SaccC (w)|}:|zc € {x,y, 2}
(11)

To prevent removal of true HR components from the TFS
of PPG in a resting state, a threshold for the accelerometer
signals was set as follows:

Pyoo (BW) = Eq.10, prmsacce,) < THace
" Eq.11, otherwise,
cefx,y.z) (12)

where wrpscc,) represents an average of the root mean
square of all accelerometer channels and THycc is the thresh-
old value of 0.5 for the IEEE dataset and 300 for Chon Lab
dataset. The threshold values of the accelerometers were
different for these two datasets because the watch sensors
were made by different vendors.

Figure 4 shows an example of the MA-removed TFS of
the PPG signal. By comparing with Fig. 2 (a), most of the
MA frequencies are removed. As shown in Fig. 4, some of
the noise artifacts (starting ~400 seconds and around 2.8 Hz)
are still retained. However, for each time instant, under the
condition that we retain the highest amplitude and that heart
rates cannot increase more than 6 beats from the prior beat,
these remnant beats will not be chosen as the detected beats.

4) POSTPROCESSING

Any remaining MA are further removed and then interpolated
using polynomial regression followed by the cubic spline of
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FIGURE 4. An example of denoised TFS of PPG (subject 21).

missing heart rates due to MAs. First, any abrupt HR changes
(more than 6 heart beats from the previous beat) are removed.
Thus, any heart rate segments shorter than a second and HRs
greater than 6 beats from the previous beat are removed,
as these signify abrupt changes in HRs that are due to MA.
Moreover, for the first 30 seconds of the TFS via VFCDM we
remove any heart rates that are more than three scaled median
absolute deviations (MAD) away from the median, calculated
as follows:

scaled MAD = k - median (|x; — median (x)|)
k =1/ (3/4)), (13)

where ®~! represents the reciprocal of the quantile function.
We use the MAD criterion on the first 30 seconds of the TFS
because of the distortion seen in the beginning portion of the
spectrum with VFCDM.

The next step is to perform polynomial regression on each
sample with estimated HRs that are 20 seconds prior to
and 20 seconds after the current sample, but ignoring the
outliers that are more than three scaled MAD away from the
median. If differences between the estimated values by the
3rd-order regression and the sample values are larger than 6
(the maximum HR difference that we set above), the sample
is rejected. Finally, the cubic spline algorithm is used to
interpolate between removed samples and the retained HRs.

Ill. RESULTS
To evaluate the results, E 1, the average absolute error, and E;,
the average relative error, were calculated as follows:

N

1
]V Z |HRest k) — HRref(k)’ (14)
k=1

E;

N
1 |HR gt (k) — HRyef (k)|
E, = ﬁkE—l x 100 (15)

HRref (k)

where N, HR.y, and HR,.s represent the total number of HR
estimates, estimated HR, and the reference HR, respectively.
Egs. (14-15) are used for both the post-processing and win-
dowed approaches. The reference HR is calculated from the
ECG signal. In Table 2, our method—consisting of the post-
processing of both the entire dataset and 12-sec windowed
segments—is compared with the WFPV method (Wiener
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filter and phase vocoder) using the online post-processing
method for both databases; the code is publicly available in
Github [17]. We chose to compare our method with WFPV
since it has been shown to be one of the best methods for
the IEEE Signal Processing Challenge Cup dataset [27].
As shown in Table 2, our method, both the post-processing
and windowed approaches, consistently outperforms WFPV
for both E; and E; for all subjects in the Chon lab database.
There is not much difference in E and E; values between the
post-processing and windowed approaches. Our windowed
approach is a more direct comparison to WFPV since it also
uses data segments. For the IEEE Cup database, both of our
approaches outperform WFPYV, except for subject 10, with
the post-processing method. Considering both databases, the
average E; is 2.94 £ 0.97 beats per minute and average Ea
is 2.42 4 0.91 beats per minute with our windowed method.
These values are 71% and 94% less than E| and E, for WFPV,
respectively. Figure 5 shows a representative HR tracking
result with the proposed windowed approach. As shown,
heart rates are in good agreement with the reference values.

TABLE 2. Results.

WFPV TVSMART TVSMART
(12-sec window) (post-processing
Index of the entire
dataset)
EE | E EE | E EL | E
IEEE Cup data
1 2.93 2.36 2.29 1.83 2.36 1.82
2 2.78 2.44 2.48 2.40 2.26 2.01
3 2.78 2.25 245 1.97 1.89 1.46
4 3.76 2.90 3.34 2.55 3.15 244
5 4.39 3.10 4.14 2.85 4.08 2.82
6 2.70 2.13 2.34 1.81 2.29 1.76
7 2.34 1.78 2.13 1.59 2.12 1.57
8 3.38 2.74 2.71 2.19 2.61 2.08
9 2.99 2.37 2.66 2.06 2.62 2.04
10 3.90 243 3.81 2.37 4.72 2.92
11 3.57 2.32 3.46 2.21 3.52 2.24
12 3.72 2.60 3.46 2.35 3.30 2.27
Chon Lab Data
13 2.15 1.84 1.51 1.25 1.38 1.15
14 9.85 9.17 4.19 3.97 4.16 4.04
15 9.80 9.61 4.60 4.29 5.10 4.55
16 3.92 3.44 2.30 2.05 245 2.20
17 5.25 4.94 3.26 2.99 3.30 2.98
18 18.49 22.97 4.55 3.81 4.19 3.57
19 11.29 11.92 3.89 4.28 4.01 4.32
20 6.09 6.09 245 1.93 2.49 1.94
21 1.89 1.61 1.24 1.03 1.25 1.01
22 2.57 2.70 1.45 1.54 1.35 1.42
Mean
1-12 3.27 245 2.94 2.18 291 2.12
13-22 7.13 7.43 2.94 2.71 2.97 2.72
1-22 5.03 4.71 2.94 242 2.94 2.39
Standard Deviation
1-12 +0.58 +0.34 +3.68 +3.79 | £0.83 | £043
13-22 +4.99 +6.17 +4.96 +591 | £1.31 +1.28
1-22 +3.90 +4.85 +4.31 +490 | £1.07 | £097

Fig. 6a shows the Pearson correlations between the
estimated and reference HRs whereas Fig. 6b shows a
Bland-Altman plot with a mean difference of £0.3, which
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FIGURE 6. (a) Pearson correlation between the estimated HR and the
reference HR (correlation coefficient = 0.98), (b) Bland-Altman plot for
both IEEE signal processing challenge cup and chon lab databases.

signifies the 95% confidence limit between the estimated HR
and the reference HR.

We compared the number of free parameters that are
required for estimating heart rates. For this purpose, we
compared our method against TROIKA, JOSS, SpaMA,
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and WFPV. For our HR estimation method, the accelerometer
threshold for determining MA, the LPF filter order, and the
cutoff frequency for VFCDM must be preset; for our post-
processing stage, the maximum HR difference and the length
to obtain a spline coefficient must also be chosen. Hence, our
implementation requires only three and two parameters for
each stage, which is significantly fewer than other methods,
as shown in Table 3. Details of the numbers of parameters
required for the other methods compared are provided in [24].

TABLE 3. Number of parameters.

TVSMART|TVSMART
TROIKA [JOSS | SpaMA |WFPV (Window) | (Entire)
.HR. 10+ 5 6 2 3 2
estimation
Post-processingl 10+ 10+ 5 4 2 2

Matlab computation times for post-processing of the entire
data and a 12-sec windowed segment were 16.56 sec and
1.79 sec, respectively, using an Intel Xeon CPU running
at 2.9 GHz.

We also examined the two algorithms’ performance during
the slow and fast exercise components of the experiment.
The slow and fast labels in Table 4 refer to walking and
running phases of the experiment, respectively. For both
datasets, our TVSMART provides lower E; and E; errors
during fast exercise than during slow exercise. The same is
true for WFPV for the IEEE dataset, but the reverse is seen
with the Chon Lab dataset. TVSMART resulted in a reduction
of 20.8% for E; and 24.4% for E, for the slow phase, and
53.2% for E; and 62.9% for E; for the fast phase when
compared to WFPV. Typically, the cyclical artifacts during
running (fast phase) are easier to remove than are the less
repetitive artifacts encountered during the slow walking phase
of the experiment. This is reflected in our TVSMART results
for both datasets but is only seen with the IEEE dataset for
WFPV.

TABLE 4. Comparison of WFPV and TVSMART during slow walking and
fast running phases of the experiment.

Dataset WEPV TVSMART (Window)
Slow Fast Slow Fast
E, 4.00 3.08 368 271
IEEE E, 376 2.15 326 1.87
E, 5.00 8.89 3.35 2.63
Chon Lab =~ 527 928 347 2.15
Al E, 4.46 572 353 2.68
E, 444 539 336 2.00

IV. DISCUSSION and CONCLUSION

In this paper, we described a novel method for tracking beat-
to-beat heart rates. To date, other published algorithms for
HR tracking are all based on reporting an average of 8-second
heart rates for each time instant. Thus, an accurate assessment
of the beat-to-beat HR fluctuations cannot be made with other
approaches. This is especially important and relevant during
intense exercise since heart rates fluctuate significantly from
one beat to the next.
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Our algorithm is able to provide beat-to-beat estimates
of HRs rather than an average of 8-second HR because we
use a high resolution time-varying spectral density approach
using the VFCDM method. Specifically, TFS of the tri-axial
accelerometer signals are subtracted from the PPG signal to
reject motion artifacts’ frequencies. While this step removes
most of the dynamics of motion artifacts that are reflected
in the accelerometers, other noise and non-periodic motion
artifact sources may remain. Thus, further post-processing
procedures were used to remove the remaining noise and non-
periodic motion artifacts using the spline regression, scaled
MAD, and a cubic spline algorithm to interpolate between
the missing and retained heart rates.

Our algorithm yields lower errors, albeit marginally, than
does WFPYV for the IEEE dataset. However, there are much
more pronounced error reductions with our algorithm over
WEFPYV for the Chon lab data. The large error reductions are
most pronounced for subjects 18 and 19, but we also see
similar reductions for subjects 14 and 15. Thus, we do not
believe these four out of the 10 subjects’ results are outliers
since they represent 40% of the data.

Our error rates, calculated on a beat-to-beat basis, are,
as expected, slightly higher than those of other published
methods such as TROIKA, JOSS, SpaMA, and WFPV (not
shown but provided in the references) since these methods
reported results based on 8-sec averaged heart rates, which
smooth out fluctuations in heart rates. In particular, the error
rates based on 8-sec segment’s averaged heart beats of our
algorithm is 24.96 % and 27.02 % higher for E; and E,,
respectively, when compared to WFPV’s approach with the
IEEE Signal Processing Challenge Cup dataset. However,
for the Chon lab dataset, our algorithm performed better,
as WFPV fared poorly on this data. Our algorithm’s error
rates were lower by 83.55% and 73.85% for E; and Ej,
respectively, on an 8 second segment’s averaged heart rates.
In addition, when we calculated the error rates using beat-
to-beat HR estimates for both WFPV and our algorithm,
we found that E; was lower by 71% and E; was 94%
lower with our method for the two combined datasets.
As WFPV was shown to provide better results than TROIKA,
JOSS, and SpaMA, we can conjecture that, for beat-to-beat
HR estimation, our approach will also outperform these
methods. Note that we chose to compare our method only
to WFPV since this algorithm is publicly available and its
performance is better than most of the published algorithms
to date.

In addition to heart rate tracking, our approach will be
most useful to accurately detect heart rates for subjects with
arrhythmias—in particular, fast ventricular atrial fibrillation
and premature atrial contraction with fast heart rates. In these
cases, the heart rates vacillate rather suddenly [28]. Most
algorithms which provide 8-sec averaging of heart rates will
miss these events, whereas our method has the capability to
track these sudden increases or decreases in heart rates.

Also note that our method is computationally efficient
and it requires only a few parameters that need to be
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set a priori. Other published algorithms are generally com-
plex and require many free parameters that need to be
adjusted.

In summary, our method provides for the first time a means
to estimate beat-to-beat heart rates rather than 8 second seg-
ment averaged heart beats for each time instant, which masks
highly varying heart rate dynamics especially during intense
exercise. The proposed algorithm is especially applicable
for estimating heart rates during high intensity exercise and
during the types of arrhythmias which lead to significant
changes in heart rates from one beat to the next.
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