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Abstract: The feasibility of detecting mild dehydration by using autonomic responses to cognitive
stress was studied. To induce cognitive stress, subjects (n = 17) performed the Stroop task,
which comprised four minutes of rest and four minutes of test. Nine indices of autonomic control
based on electrodermal activity (EDA) and pulse rate variability (PRV) were obtained during both
the rest and test stages of the Stroop task. Measurements were taken on three consecutive days
in which subjects were “wet” (not dehydrated) and “dry” (experiencing mild dehydration caused
by fluid restriction). Nine approaches were tested for classification of “wet” and “dry” conditions:
(1) linear (LDA) and (2) quadratic discriminant analysis (QDA), (3) logistic regression, (4) support
vector machines (SVM) with cubic, (5) fine Gaussian kernel, (6) medium Gaussian kernel, (7) a
k-nearest neighbor (KNN) classifier, (8) decision trees, and (9) subspace ensemble of KNN classifiers
(SE-KNN). The classification models were tested for all possible combinations of the nine indices of
autonomic nervous system control, and their performance was assessed by using leave-one-subject-out
cross-validation. An overall accuracy of mild dehydration detection was 91.2% when using the cubic
SE-KNN and indices obtained only at rest, and the accuracy was 91.2% when using the cubic SVM
classifiers and indices obtained only at test. Accuracy was 86.8% when rest-to-test increments in the
autonomic indices were used along with the KNN and QDA classifiers. In summary, measures of
autonomic function based on EDA and PRV are suitable for detecting mild dehydration and could
potentially be used for the noninvasive testing of dehydration.

Keywords: dehydration; autonomic nervous system; electrodermal activity; pulse rate variability;
machine learning

1. Introduction

Clinicians and researchers need accurate, precise, relatively non-invasive, and sensitive
measurements of hydration state, which is important to health and performance. The effects of
dehydration are well-studied for their clinical implications [1,2]. Though the effects of mild dehydration
equivalent to ≤2% body mass loss that are attributable to acute water losses are less understood,
research has demonstrated that mild dehydration causes headache, tiredness, reduced alertness and
cognitive performance, and greater difficulty concentrating [3]. Several studies have suggested that
mild dehydration modifies the cerebrovascular response and the autonomic function in response to
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physical and cognitive stimuli [4–6], and it is likely that many other effects on health and performance
have not yet been identified.

The available tools for assessing the degree of a person’s hydration state include body mass
change, serum and urine osmolality, urine specific gravity, and urine volume [7–11]. However,
no hydration index has been shown to be valid (or feasible) in all dehydration scenarios (laboratory and
field) [7,12,13]. For this reason, noninvasive objective biomarkers for detecting mild dehydration that
do not require laboratory testing are of special interest. Autonomic nervous system (ANS) variables
are novel targets for the development of an objective physiological tool for detecting dehydration,
given the mechanistic physiology of hydration and fluid homeostasis.

The physiological response to dehydration is an integrated and complex network including
psychological and behavioral (e.g., thirst), cellular (e.g., cell volume regulation), gene expression
(e.g., organic osmolyte production), and organ-level (e.g., cardiovascular) changes that attempt to
regulate cell and blood plasma volume. During dehydration, nervous system chemoreceptors and
mechanoreceptors detect variables like osmolality and concentrations of certain solutes to stimulate the
release of fluid regulatory hormones [14]. Fluid-regulatory hormones, including arginine vasopressin
(AVP, and antidiuretic hormone), renin, angiotensin II, aldosterone, and atrial natriuretic peptide,
coordinate signaling to conserve body water, stimulate thirst, and protect cell and blood plasma volume.
Fluid-regulatory hormones directly target renal and cardiovascular tissue and have direct action on
vasoconstriction and dilation. It is likely that mild dehydration affects aspects of cardiovascular and
ANS physiology that have yet to be studied and detected with sensitive tools.

The purpose of this study was to evaluate the feasibility of using autonomic responses to cognitive
stress for the assessment of mild dehydration. A previous study attempted to assess dehydration
that was produced by physical activity through the use of parameters that were obtained from heart
rate, electrodermal activity (EDA), skin temperature, and body mass index by using an empirical
formula [15]. The protocol only achieved a fluid loss of 0.53 in average, and the regression model fitted
to predict fluid loss was not validated. In a recent study, we obtained an accuracy of 67.91% when
detecting dehydration in patients with a dehydrating illness with a support vector machine (SVM)
model based on the spectral features extracted from photoplethysmographic signals [16]. In this study,
we conducted the validation of a model based on the indices of the ANS based on EDA and pulse rate
variability (PRV). This a novel study that examines the feasibility of detecting mild dehydration by
using measures of ANS based on EDA and PRV.

2. Materials and Methods

2.1. Protocol

Table 1 shows the study design for this experiment. Seventeen men (age: 23 ± 3.4 years old;
weight: 81 ± 7.3 kg; height: 176.6 ± 5.6 cm) completed three consecutive morning experimental visits
(days 1–3) for 30–40 min per visit. Participants were instructed to abstain from exercise and alcohol
consumption throughout the study and to avoid altering normal sleep each night. Before participating,
all subjects read and signed informed consent documents for inclusion, previously approved by the
University of Connecticut’s Institutional Review Board (protocol H17-291).

During all days of this study, all urine produced (during each 24 h period) was collected in a jug
that was provided by the investigators. Subjects also received a cloth bag for carrying this urine jug
during all daily activities. During each of the visits to the experimental lab, participants provided a
blood sample (2 tablespoons = 29.57 mL) from a forearm vein and a small urine sample.
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Table 1. Study design.

Day 1 Day 2 Day 3

Measures taken Measure 1 Measure 2 Measure 3, Measure 4

Activities Euhydration. Drink and
eat normally

Fluid restriction. Drink no
fluids and eat dry food

After Measure 3, consume
water as desired

On the morning of day 1, baseline information (body weight, height, age, perceptual ratings,
blood sample, and urine sample) was taken. Participants were then instructed to eat and drink
normally (euhydration) during their daily activities on this first day. Fluid restriction began on day
2. During this day, besides the total fluid restriction, we provided a list of dry foods and instructed
the participants not to eat watery foods (e.g., soup, watermelon, oranges, grapes, smoothies, and
milk). On day 3, participants were expected to be mildly dehydrated. Two sets of measurements and
tests were conducted on this day. The first set of measurements was conducted upon arrival to the
experimental facility (in dehydration). After this set of measurements was completed, participants
were instructed to drink as much water as desired for 30 min before the second set of measurements of
the day (Measure 4 overall). After participants’ rehydration, they were instructed to return to normal
fluid and food intake.

2.2. Stroop Task

In order to induce cognitive stress, subjects performed the Stroop task every visit. In this task,
subjects were asked to stay at rest for 4 min (defined as the rest stage). After that, the subjects performed
a test in which they had to say the color of words that appeared on the screen of a tablet computer;
the words named colors [17] (defined as the test stage). The screen showed congruent visualizations
(the word was written in the color it expressed) and incongruent visualizations (the word and the color
it was printed in were different to induce cognitive stress). The words and colors were: “blue,” “yellow,”
“green,” “red,” “purple,” and “black.” The color of the background of the screen also changed to be
randomly congruently or incongruently colored with the name of the word, never matching the color
the word was printed in. The test stage lasted 4 min. On the morning of day 3, participants completed
the Stroop task (comprising the rest and test stages) two times. The first test was administered before
consuming any water, and the second was administered following the 30-min period of unlimited
access to water.

On all days, EDA and photoplethysmographic (PPG) signals were collected during the rest and
test stages of the Stroop task. EDA was collected with the use of a pair of stainless-steel electrodes
placed in the left hand and a galvanic skin response module FE116 (ADInstruments, Sydney, Australia).
PPG signals were collected with the use of a wearable device on the left wrist (Samsung Simband).
The sampling frequency was set to 32 Hz for both signals.

2.3. Data Processing

Measures to assess the autonomic nervous system based on EDA and pulse rate variability (PRV)
were computed by using the data collected. To ensure high-quality physiological data, subjects were
asked to keep their left hands still—as this hand was where the data were collected—while performing
the Stroop task. A summary of the indices of EDA and PRV computed in this study is included in
Table 2.



Nutrients 2020, 12, 42 4 of 12

Table 2. Indices of autonomic response based on electrodermal activity (EDA) and pulse rate
variability (PRV).

Name Description

EDA

SCL Skin conductance level Mean value of the tonic component
NS.SCRs Non-specific SCRs Frequency of phasic drivers >0.05 µS

EDASymp Power spectral index of EDA Power of EDA in the range of 0.045–0.25 Hz
EDASympn Normalized EDASymp EDASymp normalized to total power of EDA

TVSymp Time-varying index of EDA Instantaneous amplitude of sympathetic components

PRV

PRVLF Low frequencies of PRV Power in the range of 0.045–0.15 Hz
PRVLFn Normalized PRVLF PRVLF normalized to total power of PRV
PRVHF High frequencies of PRV Power in the range of 0.15–0.4 Hz

PRVHFn Normalized PRVHF PRVHF normalized to total power of PRV

2.3.1. Indices of PRV

In this study, we used PRV extracted from PPG signals. PRV is a suitable alternative measurement
of heart rate variability [18–20], with the advantage that photoplethysmography is a low-cost optical
technique [21] that is much simpler to use than the electrocardiogram and is easily deployed in
smartphones and wearable devices [22–24]. For PRV analysis, four minutes of clean PPG signals were
extracted from the rest and test stages of the Stroop task. A customized algorithm was used for PPG
peak detection. Though PPG signal morphology is highly individual-dependent, we did not use the
information from the morphology; instead, we only used the peak-to-peak (also called pulse-to-pulse)
interval variability. In other words, we only obtained the variations in the time between pulses of the
PPG signals, from which PRV analysis was made. To ensure data quality, all segments were visually
inspected to make sure that no beat was missed. The peak-to-peak interval series was converted to an
evenly time-sampled signal (4 Hz) through cubic spline interpolation. A Blackman window (length
of 256 points) was applied to each segment, and the fast Fourier transform was calculated for each
windowed segment. Finally, the power spectra of the segments were averaged.

The index of low frequencies of PRV (PRVLF [ms2], 0.045–0.15 Hz), the index of high frequencies
of PRV (PRVHF [ms2], 0.15 to 0.4 Hz), and their normalized versions (PRVLFn and PRVHFn, obtained
by dividing by total power of PRV in normalized units [n.u.]) were computed [25]. Indices from the LF
range (PRVLF and PRVLFn) of PRV are referenced as indices of sympathetic control, and indices from
the HF power (PRVHF and PRVHFn) are commonly used as indices of parasympathetic control.

2.3.2. Indices of Electrodermal Activity

In this study, the first two minutes of EDA data were extracted from both the rest and test stages of
the Stroop task to compute the indices of EDA in the time and frequency domains. In the time domain,
the skin conductance level (SCL, expressed in microsiemens, µS) and the skin conductance responses
(SCRs) were obtained [26]. SCL is defined as the mean value of the tonic component of the EDA, and
the SCRs are the phasic changes of the EDA signal. Based on the detected SCRs, the frequency of
non-specific SCRs (NS.SCRs) was computed as the number of SCRs whose amplitude was higher
than a given threshold (0.05 µS in this study) per minute [26]. The SCL and NS.SCRs indices were
extracted by using nonnegative sparse deconvolution for the decomposition of EDA into tonic and
phasic components [27].

The power spectral index of EDA, EDASymp [µS2], was computed by integrating the power
in the range of 0.045–0.25 Hz, as it was previously found to be sensitive to cognitive stress [28].
The spectra of EDA were calculated by using Welch’s periodogram method with a 50% data overlap.
A Blackman window (length of 128 points) was applied to each segment, the fast Fourier transform
was calculated for each windowed segment, and the power spectra of the segments were averaged.
To compute the time-varying index of EDA, TVSymp, the time-frequency representation of EDA was
computed by using variable frequency complex demodulation (VFCDM), a time-frequency spectral
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analysis technique that provides accurate amplitude estimates and one of the highest time-frequency
resolutions [29]. At a sampling frequency of VFCDM decomposition of 2 Hz, the second and third
components, comprising the approximate range of 0.08–0.24 Hz, were used to compute TVSymp,
as defined in a previous study [30].

We evaluated the increments between the rest and test (cognitive stress) stages of the Stroop task
in the indices of EDA and PRV for the four measurements. The normality of each index was tested
by using the one-sample Kolmogorov–Smirnov test [31–33]. To test the significance of rest-to-test
increments, we used the t-test for normally-distributed indices, and we used the two-sided Wilcoxon
rank sum test if non-normality was found [34]. A p value of <0.05 was considered significant.

2.4. Classification Analysis

The physiological indices of the ANS collected in this study were: PRVLF, PRVLFn, PRVHF,
PRVHFn, SCL, NSSCRs, EDASymp, EDASympn, and TVSymp. Measurements of days 1, 2, and 3b
(after the subject drank as much water as desired), were defined as the samples of the “wet” (no
dehydration) class. Measurements on day 3a were considered part of the “dry” (mild dehydration) class.

Nine approaches were tested for the classification of “wet” and “dry” conditions (Table 3):
discriminant analysis with linear and quadratic discriminant functions [35,36]; logistic regression
(LR) [37]; support vector machines (SVM) with cubic, fine Gaussian (C = 1, γ = 0.66), and medium
Gaussian (C = 1, γ = 2.6) kernel functions [38]; decision trees (DT) [39]; k-nearest neighbor classifier
(KNN, k = 1) [40,41]; and a subspace ensemble of KNN classifiers (SE-KNN; 30 learning cycles) [42–44].
In this study, we use the terms “fine” and “medium” to differentiate the two classifiers based on the
value of γ. The models were trained by using only rest measures, only test measures, increments (test
measure minus rest measure, denoted as rest-to-test increments), and both measures (test and rest).
By doing this, we evaluated whether the indices of EDA and PRV could detect mild dehydration in a
purely static test (i.e., one that requires only a measure at rest) and how a dynamic test (i.e., a test that
requires a measure at rest and a measure in response to a test) improves detection.

Table 3. Classification models.

Name Description

LDA Linear discriminant analysis
QDA Quadratic Discriminant analysis

Logistic Logistic regression model
Cubic SVM SVM with cubic kernel

Fine Gaussian SVM SVM with Gaussian kernel, C = 1, γ = 0.66
Medium Gaussian SVM SVM with Gaussian kernel, C = 1, γ = 2.6

KNN k-nearest neighbor classifier
DT Decision trees

SE-KNN Subspace ensemble of KNN classifiers

To prevent overfitting, leave-one-subject-out cross-validation was used to evaluate the performance
of the constructed models. The data consisted of 51 (3 times 17 subjects) “wet” samples and 17 “dry”
samples. The three “wet” samples corresponded to the baseline measurement (Measure 1, taken on
day 1 before the euhydration day), the measurement after the euhydration day (Measure 2, taken on
day 2, before the fluid restriction day), and the measurement after rehydration (Measure 4, taken on
day 3, after the fluid restriction day). Leaving one subject out for the validation resulted in the use
of 48 “wet” samples and 16 “dry” samples in each training set. In order to obtain balanced classes,
the “dry” samples were up-sampled in the training process. Given the structure of the dataset (“wet”
samples were exactly three times the “dry” samples), this was equivalent to giving a higher weight
to the “dry” class than “wet” class. Every leave-one-subject-out testing set was comprised of three
“wet” samples and one “dry” sample. Accuracy ((correctly classified as “dry” + correctly classified
as “wet”)/total) was used as the main measure of model performance. The error rate ((incorrectly
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classified as “dry” + incorrectly classified as “wet”)/total), the false positive rate (incorrectly classified
as “dry”/actual “dry”), specificity (correctly classified as “wet”/actual “wet”), and precision (correctly
classified as “dry”/all classified “dry”) were also computed.

The indices (i.e., features) of the data set were scaled to improve the performance of the machine
learning algorithms by using normalization to the Euclidean norm of each index. The classification
analysis was performed in MATLAB (MathWorks, Inc., Natick, MA 01760, USA).

3. Results

3.1. Dehydration Assessment

Table 4 includes the results for urinary loss, blood osmolality, body mass, and body-mass loss
encountered in the baseline measurement (Measure 1; taken on day 1), after the euhydration day
(Measure 2; taken on day 2), after the fluid restriction day (Measure 3, taken on day 3), and after
rehydration (Measure 4, taken on day 3). Urinary losses amounted to 0.83 ± 0.28 L over 24 h of fluid
restriction, a value that was significantly lower than that during the euhydration day. Blood osmolality
increased significantly during the 24 h fluid restriction day compared with the corresponding time
point after the euhydration day. Overall, subjects’ body mass after the euhydration day was 81.1 ± 0.48
kg, and it was 79.7 ± 7.1 kg after 24 h of fluid restriction. This equates to 1.78 ± 0.48% loss of body mass
during the fluid restriction day and indicates that the protocol successfully induced mild dehydration.

Table 4. Body mass, body-mass loss, urinary loss and blood osmolarity measurements during the study.

Day 1 (BL)
Measure 1

Day 2 (EU)
Measure 2

Day 3 (FR)
Measure 3

Day 3 (RH)
Measure 4

Urinary loss (liters) - 1.9 ± 1.1 0.83 ± 0.28 * -
Blood osmolality 277.8 ± 10.8 275.8 ± 21.9 286.6 ± 7.2 * 281.6 ± 9.7 *
Body-mass (kg) 81 ± 7.3 81.1 ± 7.2 79.7 ± 7.1 * 80.9 ± 7.3 *

Body-mass loss (%) - 0.1 ± 0.8 −1.78 ± 0.48 −0.31 ± 0.66

* denotes significant difference (p < 0.05); BL: baseline; EU: euhydration; FR: fluid restriction; and RH: rehydration.

3.2. Indices of Autonomic Response

Figure 1 shows the EDA and heart rate (HR) data for Measures 1–4 for a given subject. Table 5
includes the results for the rest and test stages of the Stroop task measurements over three days
of tests (four measurements in total). SCL, NS.SCRs, EDASympn, TVSymp, PRVLFn and PRVHFn
were normally distributed. EDASymp, PRVLF and PRVHF were non-normally distributed. Test
vs. rest significant differences of the indices are marked in the table. The only index that exhibited
consistently significant differences was TVSymp. The other indices exhibited variability in their
rest-to-test increments.
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Table 5. Measurements of autonomic response based on EDA and PRV during the rest and test stages
of the Stroop task throughout the study.

Day 1 (BL)
Measure 1

Day 2 (EU)
Measure 2

Day 3 (FR)
Measure 3

Day 3 (RH)
Measure 4

Rest Test Rest Test Rest Test Rest Test

SCL (µS) 2.2 ± 2.4 7.1 ± 4.4 * 2.3 ± 3.6 5.5 ± 6.4 * 3.8 ± 4.7 7.9 ± 6.4 * 3.8 ± 5.5 6.3 ± 6.6 *
NS.SCRs (#/min) 3.8 ± 1.9 8.1 ± 2.1 * 4.2 ± 2.6 6.6 ± 3.8 3.9 ± 2.5 8.2 ± 3 * 3.9 ± 2.2 7.3 ± 3.6 *
EDASymp (µS2) 0.2 ± 0.48 6.6 ± 24 * 0.19 ± 0.33 0.97 ± 3.1 1.3 ± 4.8 0.61 ± 1.1 0.092 ± 0.17 0.096 ± 0.086

EDASympn (n.u.) 0.36 ± 0.21 0.27 ± 0.21 0.35 ± 0.18 0.24 ± 0.21 0.3 ± 0.17 0.2 ± 0.16 0.36 ± 0.2 0.27 ± 0.15
TVSymp

(dimensionless) 0.52 ± 0.31 1.5 ± 0.42 * 0.69 ± 0.35 1.2 ± 0.48 * 0.55 ± 0.35 1.3 ± 0.44 * 0.72 ± 0.43 1.2 ± 0.48 *

PRVLF (mS2) 14 ± 12 15 ± 12 13 ± 15 15 ± 15 170 ± 650 120 ± 420 13 ± 12 19 ± 28
PRVLFn (n.u.) 0.35 ± 0.16 0.3 ± 0.14 0.29 ± 0.11 0.35 ± 0.14 0.34 ± 0.18 0.46 ± 0.15 * 0.32 ± 0.12 0.39 ± 0.18
PRVHF (mS2) 15 ± 23 16 ± 18 12 ± 10 17 ± 22 37 ± 110 55 ± 140 17 ± 22 27 ± 69
PRVHFn (n.u.) 0.29 ± 0.17 0.26 ± 0.13 0.34 ± 0.19 0.3 ± 0.13 0.29 ± 0.18 0.25 ± 0.14 0.35 ± 0.17 0.29 ± 0.13

* denotes significant difference to rest (p < 0.05). # represents the number of SCRs whose amplitude was higher
than 0.05 µS. BL: baseline; EU: euhydration; FR: fluid restriction; RH: rehydration; SCL: skin conductance level;
NS.SCRs: nonspecific skin conductance responses; EDASymp: sympathetic component of the EDA; TVSymp:
time-varying index of sympathetic tone; PRVLF: low-frequency components of pulse rate variability (PRV); and
PRVLFn: normalized low-frequency components of PRV.

3.3. Classification Analysis

We used the minimum redundancy maximum relevance [45] (MRMR) and joint mutual
information [46,47] (JMI) approaches for feature selection. However, MRMR and JMI feature selection
achieved consistent good accuracy for all the data types classifications (e.g., only rest and only test).
For this reason, the classification models were trained for all possible combinations of the nine indices of
the ANS (512 combinations). Table 6 includes the results for the most accurate classification approaches
for each dataset used.
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Table 6. Classification results for the most accurate models for each case.

Data Used Classifier Indices Accuracy Error Rate Sensitivity FPR Specificity Precision

Only rest SE-KNN EDASymp, TVSymp,
PRVHFn 91.2% 8.8% 76.5% 3.9% 96.1% 86.7%

Only test Cubic
SVM

NS.SCRs, EDASymp,
EDASympn, PRVLF,
PRVLFn, PRVHFn

91.2% 8.8% 100.0% 11.8% 88.2% 73.9%

(Test-rest) KNN SCL, NS.SCRs, TVSymp,
PRVLF, PRVLFn, PRVHFn 86.8% 13.2% 88.2% 13.7% 86.3% 68.2%

Rest and test QDA SCL, NS.SCRs, PRVLF,
PRVLFn 86.80% 13.2% 52.9% 2.0% 98.0% 90.0%

SCL: skin conductance level; NS.SCRs: nonspecific skin conductance responses; EDASymp: sympathetic component
of the EDA; TVSymp: time-varying index of sympathetic tone; PRVLF: low-frequency components of pulse rate
variability (PRV); and PRVLFn: normalized low-frequency components of PRV.

Only the combination of indices and machine learning models that achieved the highest accuracy
for the four possible data types (i.e., only rest, only test, rest-to-test increments, both test and rest
measures) were included. When only rest measures were used (e.g., data from the test stage of the
Stroop task were not used), SE-KNN achieved an accuracy of 91.2% by using EDASymp, TVSymp and
PRVHFn in classifying “dry”/“wet” classes (Figure 2 shows the scatterplot for this specific combination
of indices). Note that the dataset looks imbalanced in Figure 2 because the up-sampled “dry” samples
fell on top of the other “dry” samples. The same “dry”/“wet” classification accuracy (91.2%) was
achieved by using the Cubic SVM classifier with the only test values (i.e., no data were collected during
the rest stage of the Stroop task) of the NS.SCRs, EDASymp, EDASympn, PRVLF, PRVLFn and PRVHFn
indices. This cubic SVM model was the best in overall, as its error rate was the lowest (8.8%), its
sensitivity (100%) was the highest, and its specificity (88.2%) and precision (73.9%) were high. A slightly
lower “dry”/“wet” classification accuracy was achieved when rest-to-test increments (i.e., difference
between PRV and EDA values from the rest-to-test stages of the Stroop task) were used in the KNN
model (86.8%) with SCL, NS.SCRs, TVSymp, PRVLF, PRVLFn and PRVHFn. An accuracy of 86.8%
was reached when both rest and test measures were used in a quadratic discriminant analysis (QDA)
classifier. Remarkably, this model exhibited a specificity of 98% and a precision of 90%, the highest
overall. This means this model detected the “wet” samples almost unequivocally. However, it had a
rather low sensitivity (52.9%).
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Figure 2. Scatter plot for the indices used in one of the most accurate models (accuracy = 91.2%).
Classifier: subspace ensemble of k-nearest neighbor (KNN) classifiers (SE-KNN). The features are the
rest measurements of: EDASymp (power spectral index of EDA), TVSymp (time-varying index of
EDA), and PRVHFn (normalized high frequencies of PRV).
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4. Discussion

In this study, we collected EDA and PRV data from healthy subjects who performed the Stroop
task, which consisted of a stage of rest followed by a stage of test, at intervals throughout the course
of a standardized experiment that caused mild dehydration. We collected baseline data on the first
day, then took a measure following a day of normal hydration (euhydration), another measure after
a day of fluid restriction, and a final measure on that same day but after rehydration. We defined
the “dry” class as the measure taken right after the day of fluid restriction and the “wet” class as
all the other measures (baseline, euhydration, and rehydration). Our subjects’ average body-mass
loss of 1.78 ± 0.48% resulting from 24 h of fluid restriction was similar to that observed in previous
studies [3,48–50]. This body-mass loss corresponded to the “dry” measures. There was no significant
body-mass loss in the “wet” measures. We used several machine learning techniques to perform
the “dry”/“wet” classification. Nine indices of autonomic control were obtained from the EDA and
PRV data taken during the rest and test stages of the Stroop task. We trained the classifiers by using
different combinations of the indices that were computed during the rest and test stages in order to
evaluate the feasibility of the “dry”/“wet” classification in each case: (1) only measures taken at rest,
(2) only measures taken during the Stroop task test, (3) the difference between rest and test measures
(rest-to-test increments in EDA values), and (4) both rest and test measures.

We have demonstrated that mild dehydration can be accurately detected by measuring the
effects of cognitive stress on the autonomic reactions expressed in EDA and PRV. By using a static
approach (without Stroop task stimuli), in which measures are taken only when subjects are at rest,
mild dehydration can be detected with an overall accuracy of 91.2%. If the dynamics of the autonomic
response to cognitive stress are considered, mild dehydration can be detected with the same accuracy
of 91.2% (using measures only under cognitive stress) and 86.8% (if the rest-to-test increments are used
for the model). As for the measures of the ANS, the only indices that exhibited significant differences
between the rest and test stages across the four measurements were the SCL and TVSymp. NS.SCRs
exhibited significant differences for only three measurements, not including Measure 2 (day 2), and
PRVLFn was only different in the third measure (first measure of day 3). This is in agreement with a
recent study that established that measures of sympathetic arousal based on EDA (mainly TVSymp)
are more reproducible in response to cognitive stress [51]. Furthermore, this study has shown that SCL
and TVSymp are robust indices of cognitive stress in the presence of mild dehydration.

SE-KNN and Cubic SVM analysis were the most accurate classification tools in this study. This
Cubic SVM model included the rest-to-test increments of NS.SCRs, EDASymp, EDASympn, PRVLF,
PRVLFn, and PRVHFn. This suggests that both EDA and PRV bear information of the autonomic
response that is necessary for detecting mild dehydration under cognitive stress. The SE-KNN
classification model based on static measures included the EDASymp, TVSymp and PRVHFn, which
indicates that in resting conditions, peripheral sympathetic reactions (expressed in EDA) better
discriminate between normal and dehydrated subjects. This static model has a reduced sensitivity
(76.5%) as compared to the Cubic SVM model (100%).

Models based on KNN and QDA that contained the only test and both the rest and test
measurements were highly accurate (86.8% for both) and specific (86.3% and 98%, respectively).
These two models used SCL, NS.SCRs, PRVLF, and PRVLFn, and they only differed in the two indices
used in the KNN that were not used in the QDA (TVSymp and PRVHFn). All four models were highly
specific. This means that a “dry” adjudication in these models is useful for detecting dehydration,
because they rarely adjudicate a “dry” sample to a “wet” sample. A model with high specificity will
accurately exclude dehydration from normally hydrated subjects, and a “dry” adjudication signifies a
high probability of dehydration.

As for the limitations of the study, given the procedural restrictions, this study was only conducted
on male subjects. The validity of the results for female subjects needs be tested in the future.
Furthermore, this experiment was meant to evaluate the feasibility of EDA and PRV to detect mild
dehydration in a controlled environment that afforded pre- and post-dehydration measurements. A
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more realistic situation in which no repeated measurements are taken should be tested in the future.
However, our current results already show differences between “dry” and “wet” samples without
repeated measurements. For example, day 2 measurements are not needed if we are solely interested
in detecting differences between “wet” and “dry” states. EDA and PRV can be also affected by other
confounders, like physiological stress and external stimuli. The feasibility of detecting dehydration in
a more realistic setup should also be tested in the future.

5. Conclusions

In summary, measures of autonomic function based on EDA and PRV are suitable for discriminating
mildly dehydrated subjects and have the potential to be used in a noninvasive and easy-to-deploy
test of dehydration because EDA and PPG signals can be collected with the use of wearable devices.
The most accurate models based only on test measurements evenly included indices of EDA and PRV,
but the most accurate classification model based on static measures mainly relied on spectral indices of
EDA. The practical application of our findings is the potential for development of wearable devices
that use these variables to monitor the real-time hydration state. as validated with current validated
and well-researched hydration biomarkers.
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