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Abstract: The electrodermal activity (EDA) signal is an electrical manifestation of the sympathetic
innervation of the sweat glands. EDA has a history in psychophysiological (including emotional or
cognitive stress) research since 1879, but it was not until recent years that researchers began using EDA
for pathophysiological applications like the assessment of fatigue, pain, sleepiness, exercise recovery,
diagnosis of epilepsy, neuropathies, depression, and so forth. The advent of new devices and
applications for EDA has increased the development of novel signal processing techniques, creating a
growing pool of measures derived mathematically from the EDA. For many years, simply computing
the mean of EDA values over a period was used to assess arousal. Much later, researchers found
that EDA contains information not only in the slow changes (tonic component) that the mean
value represents, but also in the rapid or phasic changes of the signal. The techniques that have
ensued have intended to provide a more sophisticated analysis of EDA, beyond the traditional
tonic/phasic decomposition of the signal. With many researchers from the social sciences, engineering,
medicine, and other areas recently working with EDA, it is timely to summarize and review the recent
developments and provide an updated and synthesized framework for all researchers interested in
incorporating EDA into their research.

Keywords: electrodermal activity; sympathetic function; EDA data collection; EDA signal processing;
EDA data quality assessment

1. Introduction

Sweat gland activity modulates the conductance of an applied current [1–4]. Such modulations
produce electrodermal activity (EDA), a term that comprises the changes in electrical conductance of
the skin. Increased sweating augments the electrical conductance of the skin, because although sweat
contains minerals, lactic acid, and urea, it is mostly water. Thermoregulation is the primary function of
most sweat glands, but those located on the plantar and palmar sides of the hand are known to be
more concerned with grasping performance, rather than with temperature control. These sweat glands
are more responsive to psychological stimuli rather than to thermal stimuli [4]. This phenomena is
most evident in hands and feet because of the high density of eccrine glands in those areas; however,
emotion-evoked sweating involves all eccrine sweat glands [5]. Therefore, EDA is believed to represent
a quantitative functional measure of sudomotor activity, and consequently, an objective assessment of
arousal [6,7]. Sudomotor activity is connected to the sympathetic function, and has the potential to
be used for the evaluation of the autonomic function and assess the level of cognitive arousal [8–10].
EDA makes it theoretically possible to estimate the time and amplitude of stimuli generated from
control centers in the brain by interpreting the manifestation of their arrival at the skin level, which is
observable in the EDA signal [4].
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The single effector model of the sweat glands is the most generally agreed-upon model for EDA.
The changes in the level and phasic shifts of the EDA are the outputs of such a model. Sweat comes
through varying numbers of ducts in the sweat glands at different levels, depending on the level of
sympathetic arousal. The sweat ducts can be thought of as a set of variable resistors wired in parallel,
which is the principle behind the single effector model. The higher the amount of sweat rises and
the more ducts that are filled up, the lower the resistance in that variable set of parallel resistors. In this
manner, changes in the level of sweat in the ducts produce observable variations in EDA [11].

The neurotransmitter involved in the mediation of eccrine sweat gland activity is acetylcholine,
which is the primary neurotransmitter of the parasympathetic nervous system, rather than
noradrenaline, which is typically associated with peripheral sympathetic activation [12]. For that
reason, at one point in history, both the sympathetic and parasympathetic branches of the ANS
were thought to control EDA. However, it is currently accepted that human sweat glands have
predominantly cholinergic innervation from sudomotor fibers linked uniquely to the sympathetic
chain [5,13]. Studies that simultaneously recorded sympathetic action potentials in peripheral nerves
and EDA provide evidence for the solely sympathetic control of EDA; a high correlation between
bursts of sympathetic nerve activity and the amplitude of the rapid transient events in the EDA was
shown [14].

Basics of the Signal Analysis of EDA

The most salient characteristic of an EDA signal is the occurrence of skin conductance responses
(SCRs) resulting from an underlying sympathetic reaction to a stimulus. The SCRs are the rapid
and smooth transient events noticeable in the EDA signal (Figure 1). At least three pathways
lead to the production of SCRs: hypothalamic control, contralateral and basal ganglion influences
(involves one pathway of excitatory control by the premotor cortex and another pathway of exhibitory
and excitatory influences in the frontal cortex), and the reticular formation in the brainstem [13,15,16].
These pathways imply different functional roles associated with the central mechanisms: activation of
the reticular formation is associated with gross movements and increased muscle tone, hypothalamic
activity controls thermoregulatory sweating, amygdala activation reflects affective processes, premotor
cortex activity occurs in situations requiring fine motor control, and prefrontal cortical activity is
associated with orienting and attention [11,17,18]. All these processes influence the EDA signal.
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Figure 1. EDA signal and an isolated SCR. 
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Figure 1. EDA signal and an isolated SCR.

Measures of the SCRs are used to evaluate a subject’s response to event-related experiments
(“startle-like” stimuli) or tonic stimuli tests (like a change in condition, workload, cognitive stress,
and so forth). In event-related experiments, the occurrence of an SCR is expected after the stimulus
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is applied. In such experiments, the SCRs are usually called the event-related SCRs (ERSCRs) [13].
Quantitative measures are obtained from SCRs by computing their amplitude, rise time (also referred
to as onset-to-peak time), and other metrics. Figure 2 illustrates some of the quantitative measures
available from an individual SCR. In the figure, time is relative to the stimulus and amplitude values
are relative to the SCR onset level.
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The skin conductance level (SCL) and nonspecific skin conductance responses (NSSCRs) [3]
are measures obtained to assess the response to a tonic stimulus. SCL, expressed in the same units
as EDA (typically microsiemens (µS)), specifically refers to the overall conductance obtained from
the tonic component of EDA (Figure 3), and was conceived as a measure related to the slow shifts of
the EDA. A SCL is typically computed as the mean of several measurements taken during a specific
non-stimulation rest period, for example, the mean of the “tonic EDA” component shown in Figure 3.
The non-specific NSSCRs are the number of SCRs in a period of time and are considered a tonic measure
because they cannot be linked to a specific stimuli, but are the result of spontaneous fluctuations in
EDA in the presence of an ongoing sustained stimulus over a period of time.
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Despite the source that caused the SCRs (specific to a stimulus or spontaneous), they are
characterized by a rise from the initial level to a peak, followed by a decline [19]. When caused by
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a stimulus, the onset of the SCR is typically between 1 and 5 s after the delivery of the stimulus [3].
The amplitude of the SCRs (conductance at the peak relative to the conductance at the onset) can reach
several µS. A minimum of 0.05 or 0.04 µS is typically set as a threshold to define a significant SCR
to avoid incorrect measurements caused by movement artifacts, the noise level of the equipment,
and experimental conditions [3]. The time from the onset of the SCR to the peak, termed the rise time
(Figure 2), normally varies between 0.5 and 5 s [20]. The spectral content of EDA is mostly confined
to 0.045–0.15 Hz [21]. Exercise increases the spectral content of EDA, exhibiting spectral content at
about 0.37 Hz when subjects perform vigorous-intensity exercise [22].

2. Methods

We reviewed advances in EDA data collection and signal processing techniques from the last
10 years. The first author searched PubMed, Web of Science (WoS), and the Scopus database to
identify research articles and conference papers published in the last 10 years. As EDA is also
referred to in some studies as “galvanic skin response” or “skin conductance response,” these
keywords were also used in the search (TITLE (“electrodermal activity” OR “galvanic skin response”
OR “skin conductance”) AND DOCUMENT TYPE (article) AND PUBLICATION YEAR > 2008).
From the results of the search in the three databases, we extracted studies in three categories of our main
interest: (1) EDA recording devices and electrodes, which included all the studies that investigated
instrumentation, technologies, and sensors for EDA collection development and testing; (2) processing
techniques for EDA signals, which included the signal processing techniques developed to create
novel, sensitive, and quantitative measures based on the EDA; and (3) EDA quality, which included
studies that evaluated the reproducibility and consistency of measures of EDA, as well as techniques
for managing motion artifacts and noise.

3. Results

The search found 365 entries in Pubmed, 377 in WoS, and 417 in Scopus. From these search results,
16 manuscripts were classified as describing EDA recording devices and electrodes, 28 reported on
processing techniques for the EDA, and 9 studies investigated EDA quality. For context, the previous
work has been included, as described in [13].

3.1. EDA Data Collection: Recording Devices and Electrodes

3.1.1. Endosomatic versus Exosomatic Recordings

It is possible to collect EDA signals without an external source of electricity, in which case it is
called endosomatic recording. In this case, the voltage between an active site and a reference electrode
at a relatively inactive site is collected. Endosomatic devices are thought to be simpler as they require
only a high input impedance amplifier (>10 MΩ); however, they require an amplifier gain and a floating
reference to measure the potential difference between the two electrodes. The signal obtained with
this method is termed the skin potential response. It has a direct relationship to SCRs [11]. However,
the skin potential response can be monophasic positive, monophasic negative, biphasic, or triphasic.
This complexity hinders the scoring and interpretation of the signal [3]. This has limited the use of
endosomatic recordings in recent studies.

Most EDA devices use an exosomatic approach, in which an external constant current or voltage source
is applied via electrodes on the skin [3]. Exosomatic devices measure the modulated current or voltage,
depending on whether the constant source is a voltage (most typical) or a current, to compute the skin
conductance using Ohm’s law. To prevent endosomatic contamination of exosomatic measurements,
the latter devices typically use a reference common to output and input that makes the voltage difference
independent of a reference electrode position. The constant source for exosomatic recordings can be either
a direct current (DC) or an alternating current (AC) source.
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3.1.2. DC versus AC Sources in Exosomatic Recordings

Although either a constant current or constant voltage can be used for exosomatic recordings,
the latter is widely recommended [23]. The collection of EDA data using a DC voltage source is the most
common method in psychophysiological applications, given the simplicity of its implementation. This
approach can provide both tonic and phasic components of EDA, and can be technically achieved by
means of operational amplifiers [24]. The main disadvantage of DC-source (voltage or current) devices
is the polarization of the electrodes and the counter emf generation at the electrodes, which corrupts
the collected EDA, even when using nonpolarizing Ag/AgCl electrodes.

Exosomatic recordings using an AC voltage or current source require more sophisticated
instrumentation than for the DC approach. Given that conductance and capacitance (resulting from
the capacitive properties of the stratum corneum) are physically in parallel, using constant amplitude
voltage excitation is recommended (the resulting current is measured). To separate the components
representing the conductive and capacitive contributions, a phase-sensitive rectifier is typically used.
The foremost advantage of AC-source devices compared to DC-source devices is the avoidance of
electrode-polarization issues or a counter emf [3]. Although AC-source devices are highly recommended
over DC-source devices, both types of EDA devices are widely used. Undertaking more research to
support the superiority of the AC method to DC methods has been suggested in previous studies [3].

3.1.3. Basic Considerations on Electrodes for EDA Measurements

Due to the nature of EDA and the location where the signal is acquired, recording EDA signals
may require special electrodes, electrode gels, and recording devices that differ from the ones used
for other psychophysiological measures. Electrodes are an important factor in the quality of the EDA
measurements. The use of the same material for the two EDA electrodes is very important for EDA
data recording, mainly in DC-source devices, because a difference in metals will introduce a potential
difference. The use of silver-silver chloride (Ag/AgCl) electrodes is the standard for EDA recording.
Ag/AgCl electrodes help minimize both the polarization of the electrode and the bias potential between
the electrodes. The hydrogel improves the signal quality by lowering the impedance that exists at
the electrode–skin interface. However, it reduces the shelf life of hydrogel electrodes as the hydrogel
layer that exists in the skin–electrode interface degrades with time due to dehydration. The high
impedance produced by dehydration leads to an impairment in the quality of the signal and to an
increased signal corruption caused by motion artifacts and noise.

Dry electrodes can potentially avoid the signal degradation issues and inventory shelf-life
management. Metallic electrodes are widely used, but carbon electrodes have gained some popularity
for EDA recordings [3]. In general, the main advantage of dry electrodes over hydrogel electrodes is
that they do not degrade over time (lacking hydrogel), and thus can potentially collect better long-term
recordings. As dry electrodes do not have a shelf-life limitation, they also save the expense of managing
an inventory and scrapping obsolete inventory.

A big concern in EDA measurement is the polarization of the electrodes. In exosomatic DC-source
devices, the electrodes are polarized by electrolysis because they carry a DC current and become
the anode and cathode in an electrical system. Reusable EDA electrodes, which are often commercially
available, are much more expensive than disposable AgCl electrodes with very thin layers of silver
chloride. In reusable electrodes, it has been observed that even with a low DC current, the charge
can become sufficiently high to remove part of the AgCl layer at the cathode after prolonged use,
and increase the layer at the anode, producing large bias voltage levels [23].

3.1.4. Advances in Technologies for EDA Data Collection

Multiple studies have reported advances in EDA data collection in recent years, mainly supporting
the feasibility and superiority of AC devices over DC devices. A study reported the development of a
device to enable the DC potential and AC conductance to be measured simultaneously at the same
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skin site by using a small AC current in a monopolar system [25]. They found the skin potential
responses to be more robust to movement artifacts. The developed instrument can also detect whether
the indifferent electrode is connected on an inactive skin site. Another study looked at the feasibility
of high-frequency alternating current for collecting EDA measurements [26]. They collected skin
admittance measurements from 1 Hz to 70 kHz and used the interval 500 Hz to 10 kHz to fit a
Cole model to the measured skin admittance. The method overestimated the skin conductance by
about 20%, suggesting that the proposed skin admittance method is not suitable for the estimation of
a low-frequency skin conductance level, but the method can still be used to collect the variations of
EDA at higher sampling rates. A more recent study aimed toward directly comparing AC and DC
measurements of EDA, following the suggestion from Boucsein et al. [3], in order to validate the AC
method by comparing it to a standard DC method [27]. They found a voltage of 0.2 V to be sufficient
for DC recordings. Their main observation was the excellent agreement they found between a 20 Hz
AC method and a standard DC method. These studies provide further support for the validity and
superiority of the AC recording methodology.

Electrodes for specific applications of EDA measurement have also been developed recently.
Stainless steel electrodes are mechanically strong and avoid the risk of corrosion, which makes them
suitable for many applications including wearable devices. However, this material is more prone
to polarizing than AgCl electrodes. Alternatively, carbon can be used instead of metal for both
the wires and the electrodes because this material not only reduces polarization, but can also make
the electrodes radiotranslucent, and magnetic resonance imaging (MRI)-compatible [3]. Some groups
have developed instrumentation capable of collecting EDA measurements that is compatible with
magnetic technologies, aiming to enable the simultaneous measurement of central and peripheral
nervous activity [28,29]. For example, a device meant to avoid the mutual interference effect between
magnetic resonance and EDA devices was developed in Lim et al. [28]. The system was designed
using only analog elements in order to remove any possible effects that digital devices cause on
magnetic resonance images. They used carbon electrodes instead of Ag/AgCl electrodes to minimize
the induced noise. Another group developed a low-cost system for recording EDA from humans in
a magnetically shielded room simultaneously with magnetoencephalography [29]. The group used
Ag/AgCl electrodes in a “sensors’ plate” used to immobilize participants’ distal sites of the fingers.
These devices are important for neuroscience applications, allowing for the simultaneous assessment
of autonomic and central nervous system activity.

Some groups have developed electrodes that can potentially perform in wearable devices. A group
proposed a highly wearable EDA sensor based on flexible conductive foam as the sensing material and
designed it to be easily attached and detached from clothing [30]. The sensor was tested on the back of
the user and provided reliable measurements. Another group developed dry carbon/salt adhesive
electrodes that were found to have no significant differences in amplitude, onset-to-peak time, and onset
time when compared to Ag/AgCl electrodes, showing the feasibility of the mixture for collecting EDA
signals [31]. Furthermore, carbon-based electrodes can potentially be cheaper to fabricate compared to
Ag/AgCl electrodes [31,32]. More recently, the design and feasibility of breathable and flexible dry
Ag/AgCl electronic textile electrodes for EDA data collection were studied [33,34]. Interestingly, they
also reported that a minimum of about 140 sweat glands needed to be covered by the electrodes in
order to maintain functionality. These flexible conductive foam, carbon/salt adhesive, and Ag/AgCl
electronic textile dry electrodes are potentially suitable for wearable applications. More research is
necessary to evaluate the quality of the signal collected with these sensors in long-term applications.

Other research groups have developed novel devices aiming to foster wearable technology to
collect EDA data. A group developed a glove with embedded circuitry and based on conductive fabric
sensors that is capable of collecting EDA and pulse waves [35]. Later, an unobtrusive wrist-worn
integrated sensor was tested in a study for ambulatory, long-term, continuous assessment of EDA [36].
They also found evidence that the distal forearm is a viable sensor location for EDA measurements. This
location could provide a more comfortable, continuous assessment of EDA. Attempts have been made
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to develop miniaturized instrumentation for collecting EDA data. A group of researchers developed a
miniature EDA monitor (7.2 cm × 3.8 cm × 1.2 cm) and algorithm for investigating hot flash events [37].
The device was reported to be capable of collecting data for seven days without external wires. Another
study evaluated the feasibility of an EDA ring prototype by comparing the similarity of signals between
a prototype of the wearable Moodmetric EDA Ring and a laboratory-grade skin conductance sensor
in a psychophysiological experiment [38]. The prototype ring seemed to be a promising wearable
tool for future studies. Recently, the design and implementation of an ultra-low resource EDA sensor
for wearable applications incorporated a compression method [39]. Although theirs is a DC-source
topology, the system and compression method could improve the functionality of low-resource
microcontrollers. Lastly, it is worth mentioning a proposed method to measure EDA contactless (over
the clothes) using a 5 kHz current source [40]. Their results support the feasibility of such a technology.

3.2. EDA Signal Processing: Techniques for Performing Data Decomposition and Analysis

3.2.1. Tools for Scoring EDA and Recording Contextual Information

The scoring of SCRs was done manually for many years. The main benefit of manual scoring
is the ability of the experimenter to get a close trial-by-trial inspection of waveforms to make sure
that individual SCRs are physiologically related to an event of interest. However, manual scoring is a
cumbersome and subjective process. Aiming to facilitate the analysis of emotion-related data, several
computer algorithms have been implemented. A group of researchers developed a tool that offers
a user-friendly interface for pre-processing and assistance with the peak scoring (latency, rise time,
amplitude, and duration) of individual SCRs [41]. More recently, an application named “Autonomate”
was developed to automate the manual scoring of ERSCRs. The software offers tools to account
for overlapping SCRs and other common problems that introduce bias in manual scoring, such as
consistency in applying response criteria [42]. The spontaneous fluctuations, those that are not specific
to any identifiable external event, complicate the use of automatic approaches and some researchers
still prefer manual scoring tools for their event-related studies.

The availability of wearable sensors for EDA data collection has increased opportunities for
the technology to be used in studies looking at the effects of experiences and environment on physiology.
In such scenarios, contextual information is required. An architecture and implementation of a system
for acquiring, processing, and visualizing EDA and other biophysiological signals along with contextual
information was developed [43]. Their results indicate that the system allowed the users to properly
annotate contextual information to be used in the analysis of biophysiological signals.

3.2.2. Automatic Scoring of EDA

Methods for automatically measuring the SCRs using mathematical models are attractive from
a theoretical and procedural standpoint. There are many studies that have examined automatic ways
to count spontaneous SCRs, extract amplitude or other measures of a single causal SCR, and manage
the superposition of SCRs. The main challenge is the frequent occurrence of a second SCR before
the completion of a given SCR.

Tonic/Phasic Decomposition of EDA

Aiming to resolve the problem of overlapping SCRs, some researchers proposed a method
inspired by the analysis of blood-oxygen-level-dependent responses in functional magnetic resonance
imaging to detect and analyze SCRs [44]. The method uses a linear convolution model and makes
use of the full SCR instead of a traditional peak-scoring approach. The code was made available
as SCRalyze, but newer versions are incorporated into another tool [45]. Previous versions are still
available [46]. Another group developed a tool to analyze individual SCRs by assuming that each
SCR can be regarded as the output of a linear invariant filter [47]. A large part of the variance in
SCRs can be explained by individual-dependent response functions. The group collected EDA data at
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different sites on the body so that the results they obtained were not confined to palmar recordings. All
model-based analyses of EDA assume that SCRs are generated by a linear and time-invariant system.
These assumptions were systematically tested in a subsequent study [47]. Based on the results, both
assumptions seem to hold. They also used the convolution model approach to quantify sympathetic
arousal rather than recovering the sudomotor nerve activity, as attempted by other studies [48]. The
amplitude of event-related SCRs is used to infer sympathetic arousal as SCRs are generated by sweat
secretion initiated by distinct bursts of sudomotor nerve activity. The model uses the time-integral of
the measured conductance as a measure of sudomotor bursts’ amplitude and frequency. This measure
proved to be a sensitive predictor of autonomic arousal. Later, they proposed a dynamic causal model
to describe the EDA signal given an underlying sudomotor nerve activity. The inversion of the model
can describe the sudomotor nerve activity for the defined model and the observed EDA. This method
does not rely on any given stimulus time as the time, duration, and amplitude of the sudomotor activity
can be estimated directly from the EDA [49,50].

Another group proposed a non-negative deconvolution method to separate EDA into continuous
tonic and phasic components, and obtain discrete compact responses [7,51]. The resulting decomposition
of single non-overlapped SCRs allows for measuring the response parameters more precisely. This tool
is available in Ledalab [52]. SCRalyze and Ledalab model-based methods were compared in terms
of their sensitivity in recovering sympathetic arousal from SCRs analysis [53]. SCRalyze exhibited
a better performance than Ledalab at distinguishing between pairs of sympathetic arousals that are
known to be different.

An improvement to the model-based analyses was proposed in Bach et al. [54]. The algorithm
makes use of the between-subject SCR shape variability and high pass filtering (0.05 Hz cut-off

frequency) of EDA. They also found that non-linear models better reconstructed the signals but had a
lower predictive validity compared to a constrained individually-optimized response function. Another
study proposed a knowledge-driven method to represent EDA [55]. The EDA-specific dictionaries
were used to model both the tonic component and the SCRs contained in the phasic component.
A greedy sparse representation technique was used to decompose the signal into a small number
of atoms from the dictionary. The method performed well for signal reconstruction, compression,
and information retrieval. A matching pursuit algorithm was presented as a fast inversion method
for inferring sympathetic arousal from the fluctuations in the EDA signal [56]. This algorithm was
able to approximate the true sympathetic arousal, up to 10 spontaneous fluctuations per minute,
in simulated data. The computation of this approach is about three orders of magnitude faster than
the dynamic causal model.

Another group proposed a model that describes the EDA as a linear combination of the tonic
component, the phasic component, and noise (which incorporates the error of the model, artifacts,
and other measurement errors). The phasic component results from the convolution between an infinite
impulse response function and a sparse, non-negative sudomotor nerve activity driver. Based on these
assumptions, they extracted the tonic and phasic components of the EDA using a convex optimization
problem, which was constrained by non-negativity and sparsity of the sudomotor nerve activity [57].
The algorithm, called cvxEDA, showed good results in decomposing the EDA signal into tonic and
phasic components in simulated and experimental data with different levels of noise. The algorithm
requires the user to adjust two parameters, α and γ, to penalize the phasic and tonic components
of the decomposition. A larger α reaches a sparser phasic component, while a higher γ produces a
smoother tonic component. In this approach, the known inter- and intra-subject variability could be
addressed by using different impulse response functions for a specific subject and/or condition. The
algorithm, available at [58], has been heavily used in many applications. The low computational cost
may enable the use of cvxEDA in wearable devices.

The explicit incorporation of motion artifacts into the tonic component, called the baseline
signal, to produce a more realistic EDA model was proposed later [59] to overcome the difficulty
where changes in the position of wearable sensors due to movement may lead to rapid changes in
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signals. The decomposition of EDA into the baseline, the phasic component, and noise was achieved
by using a sparse deconvolution and a proposed compressed sensing-based decomposition. They
modified the compressed sensing tools to extract the SCRs using a concise optimization program
and corresponding recovery error bounds. The results obtained after testing on simulated and
experimental data suggest that this approach has a higher accuracy for SCR detection than the previously
published tools.

Similarly, another group proposed using the Hartley modulating function to assure convexity of
the optimization formulation for estimating the number, timing, and amplitudes of underlying neural
firing from EDA signals, and using Kaiser windows with different shape parameters to emphasize
the significant spectral components [60]. This approach was meant to maintain a balance between noise
filtering and enhancing the relevant information in the EDA data. This algorithm outperformed cvxEDA
and Ledalab in identifying the neural stimuli. Another fully automated approach for tonic/phasic
decomposition of EDA data based on non-negative sparse deconvolution and multiscale modeling of
SCRs was proposed [61]. The algorithm, called SparsEDA, is reported to be faster and more efficient
(it works for any sampling rate and signal length) and more interpretable (the phasic component
obtained is highly sparse) than cvxEDA or Ledalab. SparsEDA, which is publicly available [62],
was tested on data from 100 subjects to confirm its advantages and performance. The main value
of SparsEDA is that it allows for the fully automated extraction of SCRs from large and small EDA
segments, which is key for wearable applications.

Spectral Analysis of EDA

A very different approach for EDA data processing based on spectral analysis was proposed
recently [21]. This approach was motivated by the spectral analysis of heart rate variability (HRV),
which is used to assess the dynamics of the autonomic nervous system by computing the power
spectra in two main bands. It is known that the high-frequency (0.15 to 0.4 Hz) components of HRV are
solely influenced by the parasympathetic system and the low-frequency components (0.045 to 0.15 Hz)
are influenced by both the sympathetic and parasympathetic nervous systems. In the presence of
several stressors, a significant increase in the spectral power of the EDA was found in the same band
as the low frequencies of HRV, which are known to be, at least in part, controlled by the sympathetic
nervous system. The expanded frequency range of 0.15–0.25 Hz (accounting for an additional 5–10%
of the spectral power of EDA) was proposed as an index of sympathetic control based on the power
spectral analysis of EDA, termed EDASymp. This index was sensitive to stress in a similar fashion to
time-domain measures (i.e., SCL and NSSCRs) in response to most stimuli but was even more sensitive
to the stress induced by the cold pressor test. The sensitivity and consistency of the spectral analysis
index of the sympathetic control were subsequently improved by using a time-varying spectral analysis
approach [63]. The new index of sympathetic control (termed TVSymp), incorporating the components
between 0.08 and 0.24 Hz, was found to be highly sensitive to orthostatic, cognitive, and physical
stress, exhibiting a higher between-subject consistency than did other measures of EDA, including SCL,
NSSCRs, and EDASymp. The change in the high boundary of the spectral band containing the power
of EDA under physical activity was explored in a further study [22]. The evidence suggested that
the boundary is about 0.37 Hz under vigorous-intensity exercise. EDA, as a marker of sympathetic
control, has also been proposed for improving the assessment of the sympathovagal balance [64].
Time-varying power in the EDASymp band was used to assess sympathetic activity, and instantaneous
parasympathetic dynamics were measured using a point-process model for heartbeat dynamics.
Results of the cold pressor testing showed that the increase in the proposed sympathovagal marker
is more consistent and showed a higher statistical discriminant power compared to the standard
low-frequency/high-frequency (LF/HF) ratio.

Another study introduced the EDA-gram, a multidimensional fingerprint of the EDA signal [65].
The EDA-gram was inspired by the spectrogram and is based on the sparse decomposition of EDA
using a set of dictionary atoms. The tonic and phasic atom selection is knowledge-driven. The spectral
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dimension of the EDA-gram depicts the width of the selected dictionary atoms, and the intensity is
the atom coefficients, which represent in turn the amplitude of the SCRs. The results of testing this
approach suggest that some features derived from the EDA-gram can differentiate between arousal
levels and stress type because it accentuates the signal fluctuations.

Other Approaches for Decomposition and Scoring of EDA

A point process approach for characterization of the EDA signal was introduced recently [66].
This technique aims to overcome the lack of statistical models for analyzing the occurrence of SCRs
in EDA based on physiology that consider the stochastic structure of the signal to provide insight
into the underlying autonomic dynamics. The point process framework was used in conjunction
with an inverse Gaussian distribution to track the instantaneous dynamics of EDA. Although
the reported results are based on data from only two healthy volunteers under controlled sedation with
propofol, they provide preliminary evidence that point process models that consider the physiology of
the phenomena and are constructed upon the specific statistical structure of the SCRs have potential to
track instantaneous activations of the sympathetic nervous system.

The state-space approach has also been used for EDA data analysis. Similar to other studies using
state-space models to estimate an unobserved neural state from physiological data, in a particular
study, the authors related stress to the probability of occurrence of a specific SCR (a phasic driver
impulse) in the EDA [67]. The study showed promising results for extracting measures to continuously
track a stress level elicited by cognitive and emotional stress, as well as relaxation, using EDA data
collected by wearable devices.

A new tool to perform SCR detection from EDA data that accounts for respiration was made
available recently in a MATLAB toolbox called Breathe Easy EDA (BEEDA) [68]. Irregular respiration
and deep breaths usually cause fluctuations in the EDA signals that can be confounded with SCRs,
making their accurate detection more difficult. BEEDA facilitates visual inspection of EDA signals,
allowing for the deletion of respiration artifacts, and trough-to-peak measurements of individual SCRs.
It also includes functionality for EDA data decomposition into tonic and phasic EDA components,
and artifact identification. The tonic component is assessed using the mean and standard deviation of
the segments of EDA.

3.3. EDA Quality

A key concern about the SCL and NSSCRs is that these indices are highly variable between
subjects [69]. In addition, periodic shifts in the background SCL (e.g., a DC shift) could be important if
they appear to occur in conjunction with specific components of the experiment, and only a visual
analysis would reveal the difference between an SCR and unimportant drift factors (artifacts) [70].
Traditionally, obtaining NSSCRs required an observer to count SCRs, which was difficult if the EDA
measurements were affected by motion artifacts. In particular, artifacts like patient motion, temperature
fluctuations, and noise can be confounded with SCRs. The inability to distinguish these artifacts
from real SCRs limits the reach of ambulatory EDA data analysis and interpretation. The manual
identification and removal of artifacts from EDA data is possible, but it is a time-consuming task.
The traditional approaches for dealing automatically with noise and motion artifacts in EDA include
low-pass filtering (typical cutoff frequency = 1 Hz), exponential smoothing, and removing corrupted
signal segments (e.g., connect endpoints using a spline) [71,72].

3.3.1. Motion Artifacts Detection and Correction

Several studies have focused on motion artifact detection and/or correction of the EDA signal.
A machine learning algorithm for the automatic detection of artifacts in EDA signals was presented in
Taylor et al. [73]. Their approach was tuned to detect motion artifacts in 5-s segments using features
extracted from the amplitude, the first and second derivatives of the EDA, and wavelet coefficients.
They tested several machine learning strategies for classification, including neural networks, support
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vector machines, naïve Bayes, and others. Although their overall accuracy was not very good,
the results are promising because they proved the feasibility of detecting motion artifacts in EDA
data. The resulting tool is available online [74]. Another approach for artifact and noise suppression
was presented using a biophysical model for EDA implemented with an extended Kalman filter [75].
The filter was tested on real and simulated noise and artifacts. Their results suggest that noise and
artifacts can be suppressed while obtaining an estimate of the sudomotor nerve activation by using
this approach.

A method for removing motion artifacts from EDA using a stationary wavelet transform was
proposed [76]. The wavelet coefficients are modeled as a Gaussian mixture distribution corresponding
to the underlying tonic and phasic components of EDA. The denoising procedure uses a stationary
wavelet transform to expand the EDA signal (presumably contaminated) into multiple levels of scaling
and wavelet coefficients. Then, the threshold limit within each time window at each level is adaptively
selected based on the statistical estimation of the wavelet coefficients’ distribution. Such a threshold
is used on the wavelet coefficients of all levels. Finally, the inverse wavelet transform is applied to
the thresholded wavelet coefficients to obtain the denoised EDA signal. Compared to traditional
approaches, this method exhibited a higher performance in reduction of artifacts.

Curve fitting and sparse recovery methods have been used to automatically identify and remove
artifacts in EDA data [77]. Specifically, these researchers used an orthogonal matching pursuit sparse
recovery algorithm to address the artifacts and perform SCR detection. They tested the effect of
different filters (0.35, 0.5, and 1 Hz) on the determination of SCR morphology and artifact detection,
and reported a maximum accuracy of around 80% for correctly labeling corrupted EDA data as artifacts.

Another simple, transparent, and flexible method for the automatic quality assessment of EDA
data was reported [78]. The algorithm uses four rules to identify corrupted EDA data: (1) data out of
range; (2) too-rapid changes; (3) subject not wearing the device, as suggested by temperature sensor;
and (4) data surrounding the segments (i.e., transitional) were identified as invalid via the preceding
rules. The method exhibited a high sensitivity (91%), specificity (99%), and overall accuracy (92%)
when compared to labels provided by experts who inspected the data visually. The method was
intended for ambulatory data but it can be used to enhance the quality and reproducibility of EDA
analyses in general. The software is freely available online [79].

3.3.2. Variability and Repeatability of Measures of EDA

The deployment of indices of EDA in clinical settings and daily use requires repeatable and robust
measures. High inter-subject variability of time-domain measures of EDA has been reported [21,69].
Specifically, the SCL and NSSCRs exhibited higher coefficients of variation (i.e., the standard deviation
of measurements divided by the mean) and lower degrees of consistency (assessed using intra-class
correlation coefficient) between subjects undergoing cognitive, postural, and physical stress when
compared to spectral indices. Recent studies have looked into the intra- and inter-subject variability of
EDA measures [80]. A recent paper explored the latency of SCRs (stimulus to SCR onset time), as this
characteristic is thought to be a major indicator for defining an appropriate response. The latency
of SCRs was investigated for tactile, auditory, and visual stimuli, as well as its fluctuations over
the course of a learning experiment. The results suggested a modality-specific latency of the SCRs.
They found evidence for gender and cognitive effects while exploring individual differences in SCR
latencies. This suggests that the inter- and intra-subject variability of SCR latencies may contain
information, besides serving as criteria for defining response windows. In another recent study,
the five-day reproducibility of measures of sympathetic control based on heart rate variability and EDA
was assessed [81]. They tested the consistency and reproducibility under orthostatic and cognitive
stress in highly controlled conditions without environmental causes of variability. Indices obtained
from heart rate variability and the time-varying spectral index of EDA (TVSymp) exhibited higher
consistency during the orthostatic test compared to other EDA measures. Indices of EDA exhibited
a higher consistency overall in response to cognitive stress when compared to HRV. TVSymp was
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the most reproducible measurement on average (lowest coefficient of variation and highest intra-class
correlation coefficient) for both types of stimuli.

4. Discussion

EDA has a long history in psychophysiological research since the studies of Vigouroux in France
in 1879. During the first years of use of the technique, it was used to evaluate EDA as a response
to mental (e.g., emotional, cognitive) stress. More recent observations showing that EDA varies
with the state of sweat glands in the skin, which are controlled by sympathetic nervous activity,
initiated the practice of using the technique as an indication of not only psychological but also general
sympathetic arousal. Despite the wide acceptation of this concept, using EDA for pathophysiological
assessment is rather novel.

Literature suggests the practical superiority of the constant-amplitude AC-voltage exosomatic
method for reliable EDA data collection. This approach avoids the complexity of collecting signals
using endosomatic approaches and the error in the EDA signal introduced by electrode polarization.
Nevertheless, the constant-amplitude AC-voltage exosomatic method allows for the collection of skin
potential, skin conductance, and skin susceptance (the imaginary part of admittance) at the same
skin site, which is of interest for some groups attempting to assess the functioning of the sympathetic
nervous system [82,83]. The constant-amplitude AC-voltage exosomatic configuration is advisable for
the development of future applications based on EDA.

The development of wearable technologies capable of reliable EDA data collection and
analysis is a relevant research topic. It involves the type of sensor, the measuring site, the signal
conditioning, motion artifact detection and correction, and the suitability of the resulting measures
of EDA. Furthermore, different scenarios, such as sleeping, exercising, driving, and others,
have specific requirements, such as quality and data length, to provide the intended measures
based on EDA. The feasibility of wearable devices to provide the required chain of capabilities
(collection–processing–diagnosing) should be tested in such scenarios.

Tonic/phasic decomposition is the most-pursued task for EDA signal processing. The scientific
relevance of tools for this task relies on their ability to detect the underlying sympathetic driver
that produces a specific phasic shift. If such a task is accurately achieved using EDA, one could
use the model to objectively measure subjects’ reactions to specific stimuli or significant situations
(e.g., public speech, advertisements, pain, and so forth). Several implementations of the tools are
available. However, the main practical constraints of such methods are the feasibility of implementing
the mathematical computations in wearable devices and the requirement of subject-specific tuning.
In particular, the convex optimization approach (cvxEDA) and the sparse deconvolution approach
(sparsEDA) are relatively fast techniques that can be implemented in a wearable device given their
low computational cost. Nevertheless, both tools require setting a group of parameters (four or more).
If the default values for the parameters are used, the results of the decomposition vary highly depending
on the subject and the application. There is no congruency on the results between the decomposition
methods. For illustration purposes, in Figure 4 we have included the tonic/phasic decomposition
of a given EDA signal using the cvxEDA [57], the sparsEDA [61], the continuous decomposition
analysis available in Ledalab (CDA-Ledalab) [84], the discrete decomposition analysis also available in
Ledalab (DDA-Ledalab) [84], and the dynamic causal modeling available in psPM (DCM-psPM) [49].
Besides the difference in computational time, each algorithm provides a very different estimation
of the tonic and phasic component. Machine learning and deep learning could help with this task.
If a well-established definition of what the tonic and phasic components should be comprised of
existed, a model could be trained to perform such a decomposition.
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A potential application of EDA is to use it jointly with heart rate variability to develop indices of
autonomic function. For instance, EDA can be used to adjust the bands for spectral analysis of heart
rate variability under exercise. Also, adaptive filtering approaches are able to use the information
in EDA to obtain more accurate, sensitive, and specific indices of autonomic control and balance.
The heart rate variability is known to have a nonlinear relationship with the autonomic control [85].
For its part, the order (i.e., linear or nonlinear) of the interplay between EDA and the sympathetic tone
must be determined before we can obtain suitable indices of autonomic control combining EDA and
heart rate variability.

Furthermore, ways to increase the specificity of EDA for the assessment of the sympathetic nervous
system in clinical applications need to be explored. The correct diagnosis of many diseases requires
more sensitive and reliable measures of sympathetic function. An important example is diabetic
cardiovascular autonomic neuropathy, which is present in at least 25% of diabetics. It is a remarkable
example of the need for sensitive measures of sympathetic tone [85,86] because the gold standard
procedure for sympathetic assessment for this disease is the cardiovascular autonomic reflex test [87],
which has a low sensitivity (50%) [88]. New quantitative and accessible methods for assessment of
the sympathetic nervous system are needed.

Future applications of EDA may include the multi-parameter approach (e.g., precision health)
based on wearable sensors for assessing diseases that affect the autonomic control (stress, neuropathies,
pain, and so forth). We envision those tools to incorporate artificial intelligence for obtaining and
selecting features, as well as for estimating the level of progress of disease. A different application
would be the detection of sleep drowsiness, which could be used, for example, to alert drivers when
they are too tired to be driving safely because their bodies are showing low levels of responsiveness.
The simplicity of the circuitry to collect the signal and the absence of parasympathetic interference make
the EDA a valuable source of information and a desirable target for many applications. Several wearable
devices already incorporate EDA sensors [89] but their use is limited to functions like detecting whether
the user is wearing the device, or basic analysis, such as merely computing the conductance level.
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5. Conclusions

The best electrode type for EDA data collection highly depends on the application.
Although Ag/AgCl hydrogel electrodes provide the most reliable signals, they are impractical for
wearable applications that require long-duration reliability. More research is required to validate
the feasibility of stainless steel and carbon electrodes to provide comparable signal quality. Developing
reusable electrodes that are reliable for long-term applications can boost the deployment of EDA
applications. As for the electronic devices, AC-voltage devices seem to be the most appropriate
approach overall. Despite their higher circuit complexity, they avoid the issues caused by electrode
polarization. Current techniques for automatic analysis of EDA signals still require improving their
subject independency and their ability to function without setting any external parameters to make
the technique feasible for ambulatory settings. Furthermore, alternative techniques like spectral
analysis have emerged as potential tools for the analysis of EDA. Some tools for detecting and
removing corrupted segments from EDA signals are available but their sensitivity needs to be further
evaluated. The consistency of the measures derived from EDA is still a matter of concern, specifically
in the presence of motion artifacts.
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