
ORIGINAL RESEARCH
published: 07 April 2020

doi: 10.3389/frai.2020.00017

Frontiers in Artificial Intelligence | www.frontiersin.org 1 April 2020 | Volume 3 | Article 17

Edited by:

Fabrizio Riguzzi,

University of Ferrara, Italy

Reviewed by:

Arnaud Fadja Nguembang,

University of Ferrara, Italy

Rinkaj Goyal,

Guru Gobind Singh Indraprastha

University, India

*Correspondence:

Matthew S. Daley

matthew.s.daley.ctr@mail.mil

Specialty section:

This article was submitted to

Machine Learning and Artificial

Intelligence,

a section of the journal

Frontiers in Artificial Intelligence

Received: 20 December 2019

Accepted: 13 March 2020

Published: 07 April 2020

Citation:

Daley MS, Gever D,

Posada-Quintero HF, Kong Y, Chon K

and Bolkhovsky JB (2020) Machine

Learning Models for the Classification

of Sleep Deprivation Induced

Performance Impairment During a

Psychomotor Vigilance Task Using

Indices of Eye and Face Tracking.

Front. Artif. Intell. 3:17.

doi: 10.3389/frai.2020.00017

Machine Learning Models for the
Classification of Sleep Deprivation
Induced Performance Impairment
During a Psychomotor Vigilance Task
Using Indices of Eye and Face
Tracking

Matthew S. Daley 1*, David Gever 1, Hugo F. Posada-Quintero 2, Youngsun Kong 2, Ki Chon 2

and Jeffrey B. Bolkhovsky 1

1Naval Submarine Medical Research Laboratory, Groton, CT, United States, 2Department of Biomedical Engineering,

University of Connecticut, Storrs, CT, United States

High risk professions, such as pilots, police officers, and TSA agents, require sustained

vigilance over long periods of time and/or under conditions of little sleep. This can lead

to performance impairment in occupational tasks. Predicting impaired states before

performance decrement manifests is critical to prevent costly and damaging mistakes.

We hypothesize that machine learning models developed to analyze indices of eye and

face tracking technologies can accurately predict impaired states. To test this we trained

12 types of machine learning algorithms using five methods of feature selection with

indices of eye and face tracking to predict the performance of individual subjects during

a psychomotor vigilance task completed at 2-h intervals during a 25-h sleep deprivation

protocol. Our results show that (1) indices of eye and face tracking are sensitive

to physiological and behavioral changes concomitant with impairment; (2) methods

of feature selection heavily influence classification performance of machine learning

algorithms; and (3) machine learning models using indices of eye and face tracking can

correctly predict whether an individual’s performance is “normal” or “impaired” with an

accuracy up to 81.6%. These methods can be used to develop machine learning based

systems intended to prevent operational mishaps due to sleep deprivation by predicting

operator impairment, using indices of eye and face tracking.

Keywords: machine learning, performance impairment, sleep deprivation, genetic algorithm, sequential forward

selection, feature selection, psychomotor vigilance task

INTRODUCTION

Many professions require workers to perform cognitively challenging tasks for long periods of
time and/or under conditions of little sleep. Sustained attention to a cognitively demanding task,
without sufficient rest leads to fatigue which impairs cognitive performance. This poses a risk to
worker safety, public safety, and workplace productivity. Additionally, for some high-performance
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professions (e.g., military watch positions, air traffic control,
sonar operations, etc.), decrements can lead to injury and/or
loss of life, be financially costly, and compromise safety and
security. Commonly observed performance decrements include
increased reaction times to stimuli, greater variability in reaction
times, and higher frequency of errors (Basner and Dinges, 2011;
Basner et al., 2011). Predicting cognitively impaired states before
performance decrements manifest is critical to prevent costly and
damaging mistakes.

Researchers have been investigating biometric monitoring
technologies that could be used with machine learning models
to predict performance decrements (Vural et al., 2009; McDuff
et al., 2013; Hasanzadeh et al., 2016; Gavrilescu and Vizireanu,
2017). Several technologies exist that capture physiological
changes indicative of cognitively impaired states. For example,
wearable devices can monitor indices such as electrodermal
activity (EDA) and heart rate variability [via electrocardiogram
(ECG)], which have been shown to correlate with measures
of impairment (Posada-Quintero et al., 2017; Posada-Quintero
and Bolkhovsky, 2019). Additionally, EDA and ECG are
effective inputs for training machine learning models in the
identification of different cognitive loading tasks—such as visual
search and vigilance tasks (Posada-Quintero and Bolkhovsky,
2019). Wearable technologies that collect physiological signals
demonstrate great promise for the prediction of performance
impairment; however, in many occupational settings wearable
physiological monitoring devices is not ideal due to their
sensitivity to motion, thus data collected using these devices
would be expected to contain large amounts of motion artifacts.
Two methods, remote Facial Tracking (FT) and Eye Tracking
(ET) are promising alternatives, that have been shown to be
effective at predicting performance impairment of cognitively
demanding tasks such as driving (Vural et al., 2007, 2009),
piloting aircraft (Previc et al., 2009; Pavelkova et al., 2015),
and maintaining situational awareness (Hasanzadeh et al., 2016).
Intuitively, ET and FT measures are capable of capturing actions
like extended eye closure, frequent blinking, yawning, and head
nodding, which are typically viewed as indicators of tiredness.
ET and FT technologies are capable of obtaining measures from
a target individual in ways that are more resistant to motion
artifacts than wearable physiological monitors, suggesting they
may be a better option for gathering behavioral data for the
prediction of performance decrement.

In laboratory settings, fatigue-related performance
impairment is commonly assessed using the psychomotor
vigilance task (PVT) tool. The PVT is a sustained-attention,
reaction-time test that measures vigilance and responsiveness
as metrics of performance (Dorrian et al., 2005; Basner and
Dinges, 2011; Basner et al., 2011). Briefly, the PVT is a simple
task where the subject must press a button in response to a
stimulus, such as a marker on a screen. This stimulus will appear
randomly every few seconds during the 10min session (Khitrov
et al., 2014). Typically, the PVT is conducted in conjunction
with sleep deprivation, which is a well-established method for
inducing fatigue and resulting performance impairment during
cognitive tasks (Dawson and Reid, 1997; Doran et al., 2001;
Basner and Dinges, 2011; Basner et al., 2011). A substantial

body literature on the use of the PVT during sleep deprivation
studies provides insight into the relationship between fatigue
due to sleep deprivation and cognitive task performance such as
increased reactions times, incidents of minor and major lapses,
and false starts (Dawson and Reid, 1997; Dorrian et al., 2005;
Basner and Dinges, 2011; Posada-Quintero et al., 2017). Using
the results of the PVT, we define performance impairment using
a threshold in the number of lapses and false starts occurring
during a 10-min PVT session.

While the impact of sleep deprivation on performance
has been extensively studied, little research in the field has
focused on the application of our existing knowledge to predict
performance impairment using behavioral and physiological
indices independent of hours awake and/or sleep schedule. This
study sought to fill that gap by exploring various classification
machine learning models using FT and ET indices as parameters
for the classification of impaired states. To do this, we
administered PVT sessions every 2 h during a 24-h sleep and
collected FT and ET data during each session. We hypothesized
that machine learning can be used with indices of FT and ET
to accurately predict (>75%) performance impairment due to
sleep deprivation. We performed three steps of analyses: first,
we confirmed that PVT performance is significantly affected
by time awake; second, we investigated changes in the FT
and ET indices between “normal” and “impaired” classes to
confirm that sleep deprivation-induced performance impairment
was reflected in changes in FT and ET indices, and to assess
sensitivity of those indices; lastly, we trained 14 different machine
learning models with five methods of feature selection to classify
subjects performance as “normal” or “impaired” to determine the
best machine learning model for prediction of sleep deprivation
induced performance impairment.

MATERIALS AND METHODS

Subjects
Twenty healthy participants (13 male, 7 female; 19–32 years old)
were recruited from the University of Connecticut (UConn).
Gender differences were not included in the analysis: although
there may exist differences in the data between male and female
subjects, the scope of this paper seeks to build models consistent
among all individuals regardless of gender. The day prior to the
experimental protocol, each participant arrived at the facility and
participated in practice sessions of the task battery they would
perform until they reached a performance plateau. Within 2 h
of waking on the day the study initiated, participants arrived
at the experimental facility located at the Storrs campus of
UConn with the expectation that they would remain onsite for
the duration of the 24-h protocol. Throughout the protocol,
starting immediately after arrival, participants completed the
PVT every other hour, totaling 13 sessions during the 24 h period.
Subjects were compensated for their participation in the study.
The study was approved by the Institutional Review Board of
UConn in compliance with all applicable Federal regulations
governing the protection of human subjects. All subjects gave
informed written consent in accordance with the Declaration
of Helsinki.
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Protocol
Prior to each PVT trial, participants donned a set of Tobii Pro Eye
Tracking glasses (Tobii Pro, 2019) and calibrated them according
to the manufacturer’s instructions. Participants also positioned
themselves in front of the webcam used for FT. ET and FT
signals were recorded and time-synchronized using iMotions
(“iMotions 7.0,”)1 physiological data collection suite. No filtering
was applied to the signals during recording. Following set-up and
calibration, we collected a minimum of 4min of baseline ET and
FT measurements to ensure we obtained clean data signals. For
the PVT, participants were asked to click the left button of the
mouse as quickly as possible after they saw a number appear
on the screen. The numbers appeared at randomly generated
intervals between 2 and 10 s. Participants performed the PVT task
using publicly available software installed on a desktop computer
(Khitrov et al., 2014). The PVT task took 10min to complete.

Indices of PVT Performance
Data collected during each PVT session included reaction time
(RT) to a stimulus and false starts, defined as a response without
a stimulus. These data were recorded into a spreadsheet along
with the relative time the event occurred, defined as time elapsed
since the start of the test. We used the RT data to calculate the
number of lapses, defined as events with an RT>500milliseconds
(ms), and the number of major lapses, defined as events with an
RT >1,000ms. Previous work has shown that the sum total of
the number of lapses and the number of false starts is the PVT
performance index most sensitive to acute total sleep deprivation
(Basner and Dinges, 2011; Khitrov et al., 2014). Since major
lapses are considered especially egregious errors, this index was
modified to afford greater weight to lapse events >1,000ms; the
combined total sum of the number of all lapses, major lapses,
and false starts is the PVT index we use to measure performance
throughout this paper. We will be referring to this as the “PVT
score” throughout this paper. PVT scores were adjusted for scale
differences between subjects by normalizing by the Euclidean
distance of each subject’s 12 sessions.

Facial Action Units and Eye Tracking
Indices
Indices of Facial Action Units
iMotions software is capable of tracking 21 FTs in real time:
brow furrow, brow raise, engagement, lip corner depressor, smile,
valence, attention, interocular distance, pitch, yaw, roll, inner
brow raise, eye closure, nose wrinkle, upper lip raise, lip suck,
lip press, mouth open, chin raise, smirk, and lip pucker; and
has been shown to be as effective as EMG methods of detecting
facial expressions (“iMotions 7.01,”; Kulke et al., 2020). FT ran
continuously throughout each 10-min session. The iMotions
software computed real-time estimates of each FT based on
the facial action coding system (FACS) and the Affectiva deep
learning neural network system. Results were reported as a time-
series for each of these units, which represented the probability of
that FT occurring at any particular time. The mean probability of

1iMotions 7.0. iMoitions Biometric Research Platform. Available online at: https://

imotions.com/biosensor/fea-facial-expression-analysis/

each FT time-series data was computed as an index of the general
level of each individual FT. These indices were computed from
the time-series data across the entire PVT session.

Indices of Eye Tracking
Computed indices of eye tracking included blink duration,
blink frequency, fixation duration, and fixation frequency. Each
measure is explained briefly below. We collected eye coordinate
data using Tobii pro glasses 2 (Tobii Pro, 2019) and iMotions
software (“iMotions 7.0.”)1. Eye coordinate data was formatted as
an m× 4 matrix, wherem is the total number of data points, and
the four column vectors correspond to the x and y coordinates for
both the left and right eyes. Euclidean magnitudes for each eye
over time were computed by calculating the magnitude vectors
of the x and y components of each eye. A single eye coordinate
magnitude signal was computed by ensemble-averaging the
magnitude vectors of the left and right eye magnitude vectors.
This eye coordinate magnitude vector functioned as a signal of
general eye activity. Events where the eye coordinate magnitude
signal was lost (defined as a magnitude less than a visually
determined threshold close to zero) for time spans >20ms were
considered blinks (Stern et al., 1994; Caffier et al., 2003). The
end of a blink event was defined as the time-point the signal
returned to a value greater than the defined threshold.Mean blink
duration was computed as the mean length of time for all blink
events during the PVT. Mean blink frequency was computed as
the total number of blinks divided by the 10min in which the
PVT took place.

Fixations were defined as a continuous series of eye coordinate
points within a limited proximity to one another, characterized
by a relatively stable, low velocity (Salvucci and Goldburg, 2000;
Johns et al., 2007; Anderson et al., 2013). iMotions software
identified fixation events and provided fixation length in time and
count. Fixation duration was computed as the mean length of
time for all fixation events during the PVT. Fixation frequency
was computed as the total number of fixations divided by the
10min in which PVT took place.

Statistics
Comparing PVT Metrics to Predictive Indices
Classes were defined as “normal performance” or “impaired
performance.” Previous research has shown that an individual’s
performance is relatively unchanged during the first 12 h of
wakefulness (Dorrian et al., 2005). A one-way ANOVA was run
on the PVT scores across sessions to determine if there were
any significant differences in performance among these sessions.
Tukey-Kramer post-hoc analyses were performed to identify
which combinations of sessions were significantly different.
This information was used to identify a generalized onset of
“performance impairment,” defined as a significant increase in
the PVT score when compared to early sessions at the p <

0.05 level. The normal/impaired threshold was established as the
mean PVT score across subjects occurring during the first session
that showed significant differences from early sessions (Figure 1).
Any instance above this threshold was labeled as “impaired
performance.” Two examples of this classification can be seen in
Figure 2. The advantage to computing an objective impairment
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FIGURE 1 | PVT score vs. hours awake, ensemble-averaged across subjects.

Error bars indicate standard error in a given session. Asterisks above

horizontal lines indicate significant differences (p < 0.05) between sessions as

determined by the Tukey-Kramer post-hoc multiple comparisons test.

threshold using the mean PVT score at a given session, instead of
defining a session threshold or basing the threshold on individual
performance, is that this allows for individual differences in
impairment onset to be correctly classified, regardless of which
session the onset appeared in. Due to the imbalance between
classes, we conducted a Welch’s unequal variances t-test (Welch,
1947, 1951; Ruxton, 2006) comparing the two classes for each
index. This was done to assess the difference between classes for
each given index. The results of these t-tests are presented in
Table 1.

Feature Selection for Machine Learning Algorithms
Feature selection is a critical step in creating a machine learning
algorithm that is optimized for providing accurate predictions
with minimal error (Guyon and Elisseeff, 2003; Saeys et al.,
2007; Khalid et al., 2014; Li et al., 2018). We explored two
methods of selecting features in our analysis: Filter andWrapper.
Filter methods use some form of criteria (e.g., correlation,
statistical significance) to select features that best meet said
criteria. Filter methods are quick and easily scalable, however
they ignore feature interactions with the classifier and may result
in redundant feature spaces (Ladha and Deepa, 2011). Wrapper
methods treat the machine algorithm as a black box, wherein
the model is provided a given set of features and evaluated
according to some performance criteria. Wrapper methods are
computationally intensive, however they are performance driven,
interact directly with the classifier, and are more likely to detect
patterns filter methods cannot (Ladha and Deepa, 2011). In this
paper, we performed five sets of feature selection (Guyon and
Elisseeff, 2003; Ladha and Deepa, 2011; Khalid et al., 2014; Li
et al., 2018), two of which were based on the filter method
(significance filter and Fisher Score filter), two on the wrapper
method [sequential forward selection (SFS) wrapper a genetic

algorithm (GA)], and one all-inclusion method (all indices used)
as a control for feature selection methods. The Fisher Score
of a feature, for a given set of samples with two classes, can
be interpreted as the distance between the distributions of the
class data within that feature space (Li et al., 2018). Fisher
Scores are shown alongside t-test results in Table 1. For both
wrapper methods the objective function to be maximized is
the geometric mean of the sensitivity and specificity of the
model, termed “Balanced Accuracy” (Akosa, 2017). In general,
additional parameters within a model count as a penalty for the
robustness of the model (Wilkinson and Dallal, 1981; Babyak,
2004), therefore the maximum number of indices to be used
was set to 1/20th of the number of observations, based on
the rule-of-thumb for regression models (Harrell et al., 1984,
1996), in the data set (i.e., 12), except in the case of using
all indices.

State-Classification Analysis
For the state-classification analysis, six general methods were
tested: k-nearest neighbor (KNN) (Wu et al., 2002; Zuo et al.,
2008; Samworth, 2012), support vector machines (SVM) (Cortes
and Vapnik, 1995; Hsu et al., 2003), decision trees (Quinlan,
1986; Breslow and Aha, 1997; Rokach and Maimon, 2008),
discriminant analysis (Mika et al., 1999; McLachlan, 2004),
Naïve Bayes (Maron, 1961; Elkan, 1997a,b; Zhang, 2005),
and Multilayer Perceptrons (Tamura and Tateishi, 1997; Duda
et al., 2012). These methods were selected due to the multi-
dimensional nature of the input and because these methods are
well-established for dimensionality reduction prior to statistical
classification. For SVM, we evaluated linear (LSVM), quadratic
(QSVM), cubic (CSVM), and Gaussian (GSVM) transformation
kernels. For discriminant analysis, we used linear (LDA) and
quadratic (QDA) approaches. For Naïve Bayes, box (NBBOX),
triangular (NBTRI), normal (NBNRM), and Epanechnikov
(NBEPA) kernels were used. For Multilayer perceptrons we
evaluated 3-layer (MLP3) and 4-layer (MLP4) variations. The
result is that we took 14 total approaches and compared outcomes
from all 14.

Model evaluation was carried out using leave-one-subject-
out cross-validation to prevent overfitting of the model and
appropriately assess the model’s predictive capabilities (Stone,
1974; Cawley and Talbot, 2010). Training data sets were balanced
to contain an equal number of data points for each class by
randomly under-sampling from the class with more data points.
To account for the exclusion of some data points from the
training set, themodel is trained and tested on randomly sampled
training sets for five iterations, producing five sets of results
which are then aggregated. Performance of the models was
measured using the balanced accuracy metric. Data processing
and analysis were performed in MATLAB (Khitrov et al., 2014;
Mathworks, 2019).

RESULTS

PVT Performance
Figure 1 shows average PVT score across 12 experimental
sessions over 25 h awake. Session 1 of the PVT, corresponding to
1-h awake, was excluded from analyses to mitigate the influence
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FIGURE 2 | Example PVT Score of subjects 1 & 5. The dashed red line indicates the threshold above which performance was deemed impaired. Blue diamonds

indicate normal performance and red stars indicate impaired performance.

TABLE 1 | Results of t-test and Fisher scores.

Index T-score Fisher score

Blink duration*** t(125) = −7.22 0.184

Eye closure*** t(110) = −4.94 0.119

Blink frequency*** t(133) = −4.73 0.045

Brow raise*** t(106) = −4.55 0.139

Mouth open*** t(132) = −4.01 0.071

Fixation duration*** t(117) = −3.55 0.038

Lip pucker*** t(138) = −3.38 0.017

Inner brow raise** t(111) = −3.14 0.066

Lip press** t(127) = −3.11 0.029

Smile** t(135) = 3.09 0.018

Pitch** t(121) = −2.84 0.036

Nose wrinkle** t(144) = −2.62 0.023

Attention* t(147) = −2.27 0.025

Upper lip raise* t(142) = −2.17 0.011

Lip corner depressor* t(131) = −2.13 0.004

Roll* t(136) = 2.00 0.011

Smirk t(153) = −1.71 0.011

Engagement t(167) = −1.59 0.007

Chin raise t(144) = −1.54 0.011

Fixation frequency t(139) = 1.42 0.002

Yaw t(170) = 1.33 0.026

Interocular distance t(164) = −0.74 0.001

Valence t(181) = −0.72 0.005

Lip suck t(162) = 0.52 0.004

Brow furrow t(168) = −0.12 0.003

Statistical summary of PVT—computed index relationships. Asterisks (*) indicate p< 0.05,

double asterisks (**) indicate p < 0.01, and triple asterisks (***) indicate significance when

a Bonferroni alpha correction is applied, p < 0.002 during Welch’s t-test. Fisher Scores

provide a metric of discriminability between classes wherein larger values indicate greater

discernibility, bold values indicate the top 12 Fisher Scores.

of any possible learning effects on the performance measure. The
ensemble average shown in Figure 1 demonstrates the typical
relationship between performance of vigilant attention and hours

awake established in previous literature. The results of a one-
way ANOVA showed a significant effect of hours awake on the
PVT score; F(11, 221) = 37.03, p ≪ 0.001. Results of the post-
hoc Tukey-Kramer multiple comparisons test are summarized in
Figure 1 by asterisks indicating significant differences between
the session marked by the asterisk and the session marked
by the right-most portion of the horizontal black line. The
PVT score occurring per PVT session increased slightly after
13 h of wakefulness, more sharply after 17 h of wakefulness,
and continued to increase until the end of the experiment.
Figure 2 shows the PVT score and hours awake relationship
for two individual subjects, as well as the threshold for defining
“normal” and “impaired” performance. One hundred and fifty
three observations were labeled as “normal,” 80 observations were
labeled as “impaired” and 7 observations were unavailable due to
technical malfunctions during data collection.

Statistics of PVT Performance and
Computed Indices
Figure 3 shows an example of the eye signal magnitude (ET),
mouth open (FT), and head pitch (FT) signals collected during
15 s of the PVT. Individual indices of ET and FT were compared
between “normal” and “impaired” performance classes using a
Welch’s t-test, the results are summarized in Table 1. Indices
that were significantly different between the two performance
classes according to the t-test at the p = 0.05 threshold include;
fixation duration, blink duration, blink frequency, brow raise, lip
corner depressor, smile, attention, head pitch, head roll, inner
brow raise, eye closure, nose wrinkle, upper lip raise, lip press,
mouth open, and lip pucker. Significant differences between
these groups indicates some level of detectable sensitivity of
these indices to performance impairment. Lastly, the Fisher score
provides a measure of the discernibility between the two classes
of a given index, where zero is indiscernible and greater values
indicate greater discernibility. Of the Fisher Scores computed, the
top 12 indices, in terms of discernibility, are fixation duration,
blink duration, blink frequency, brow raise, attention, head pitch,

Frontiers in Artificial Intelligence | www.frontiersin.org 5 April 2020 | Volume 3 | Article 17

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Daley et al. Models for Predicting Performance Impairment

FIGURE 3 | (A) Eye coordinate magnitude signal (solid black line), threshold for defining blink events (dotted red line), and highlights fixation/blink events (triangles/x’s,

respectively). (B,C) Examples of FT signals (solid black line)—mouth open and head pitch, respectively—with mean value (dotted red line).

head yaw, inner brow raise, eye closure, nose wrinkle, lip press,
and mouth open.

State Classification Results
Balanced accuracy was influenced by choice of feature selection
method and classifier algorithm; SFS and GA wrapper methods
consistently performed better than all-inclusion or filter
methods, followed by similar performances from filter methods,
and all-inclusion resulting in the worst performance (Figure 4,
Table 2). Overall, the NBNRM model using the GA wrapper
feature selection method was the most accurate (0.816). SFS
feature selection produced the most accurate models with the
QSVM (0.802), CSVM (0.773), QDA (0.741), KNN (0.750),
NBTRI (0.789), MLP3 (0.772), and MLP4 (0.749) classifier
algorithms. GA feature selection produced the most accurate
models with the LSVM (0.761), CSVM (0.773), GSVM (0.783),
LDA (0.778), TREE (0.795), NBBOX (0.802), NBEPA (0.780),
and NBNRM (0.816) classifier algorithms. All-inclusion
feature selection produced the least accurate models for every
classifier algorithm.

Of the classifier algorithms evaluated, there were no clear
distinctions in levels of performance across feature selection
algorithms (Figure 5). QSVM produced the most accurate model
for the SFS feature selection method (0.802). CSVM produced
the most accurate models for the t-test (0.743) and Fisher Score

FIGURE 4 | Comparative accuracies of feature selection methods. The black

bars indicate the mean balanced accuracy of each feature selection method,

the error bars indicate the standard deviation of the balanced accuracy of

each feature selection method.

(0.743) filter feature selection methods. GSVM produced the
most accuratemodel for the all-inclusion (0.674) feature selection
method. NBNRM produced the most accurate model for the GA
(0.816) feature selection method.

Sensitivity to impairment (Table 3), was defined as the
proportion of correctly identified impaired states, was influenced
by choice of feature selection and classifier algorithm. The
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TABLE 2 | Balanced accuracy of models per feature selection method and classifier algorithm.

Feature selection criteria None Filter selection Wrapper selection

All t-test Fisher score SFS GA

Classifier algorithm LSVM 0.672 0.722 0.722 0.757 0.761

QSVM 0.664 0.722 0.722 0.802 0.773

CSVM 0.664 0.743 0.743 0.773 0.773

GSVM 0.674 0.709 0.709 0.767 0.783

LDA 0.661 0.738 0.738 0.777 0.778

QDA 0.500 0.718 0.718 0.741 0.731

KNN 0.645 0.721 0.712 0.750 0.748

TREE 0.653 0.667 0.667 0.786 0.795

NBBOX 0.634 0.731 0.731 0.764 0.802

NBEPA 0.658 0.734 0.734 0.773 0.780

NBNRM 0.673 0.731 0.731 0.767 0.816

NBTRI 0.670 0.727 0.727 0.789 0.780

MLP3 0.669 0.699 0.704 0.772 0.753

MLP4 0.642 0.677 0.692 0.749 0.725

Values in bold indicate highest balanced accuracy for a given feature selection method.

FIGURE 5 | Balanced accuracy per machine learning algorithm. The black bars indicate the mean of the balanced accuracy of each classifier algorithm, the error bars

indicate the standard deviation of the balanced accuracy of each classifier algorithm.

most sensitive models produced were the TREE and NBNRM
(0.863) classifier algorithms with GA feature selection. All-
inclusion feature selection produced the most sensitive model
with the all-inclusion (0.750) feature selection method. SFS
feature selection produced the most sensitive models with the
LSVM (0.738), QSVM (0.800), KNN (0.813), NBTRI (0.775),
MLP3 (0.822), and MLP4 (0.792) classifier algorithms. GA
feature selection produced the most sensitive models with the
CSVM (0.763), GSVM (0.763), LDA (0.785), QDA (0.750),
TREE (0.863), NBBOX (0.800), NBEPA (0.763), and NBNRM
(0.863) classifier algorithms. All-inclusion produced the least
sensitive models with the LSVM (0.600), QSVM (0.625),
CSVM (0.675), LDA (0.638), TREE (0.588), NBBOX (0.675),
NBEPA (0.675), and NBNRM (0.700) classifier algorithms.
Both filter methods produced identical, least sensitive models
for the GSVM (0.658), QDA (0.658), and NBTRI (0.697)
classifier algorithms.

Of the classifier algorithms evaluated here; QDA was the
most sensitive classifier when using all-inclusion (0.750) feature
selection methods. KNN was the most sensitive classifier when
using the t-test filter (0.763) feature selection method. NBBOX
was the most sensitive classifier when using the Fisher Score filter
(0.737) features selection method. MLP3 was the most sensitive
classifier when using the SFS (0.822) feature selection method.
TREE andNBNRMwere themost sensitive classifiers when using
the GA (0.863) feature selection method.

Specificity (Table 4), defined as the percentage of correctly
identified “normal” states, was influenced by choice of feature
selection method and classifier algorithm. The LSVM classifier
algorithm using the GA feature selection method produced the
most specific model (0.843). Both filter-based feature selection
methods produced the most specific model for the QDA (0.783)
classifier algorithm. SFS produced the most specific models with
the QSVM (0.804), CSVM (0.797), LDA (0.791), TREE (0.784),
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TABLE 3 | Sensitivity to impairment of models per feature selection method and classifier algorithm.

Feature selection criteria None Filter selection Wrapper selection

All t-test Fisher score SFS GA

Machine learning algorithm LSVM 0.600 0.645 0.645 0.738 0.688

QSVM 0.625 0.671 0.671 0.800 0.750

CSVM 0.675 0.711 0.711 0.750 0.763

GSVM 0.688 0.658 0.658 0.750 0.763

LDA 0.638 0.724 0.724 0.763 0.785

QDA 0.750 0.658 0.658 0.738 0.750

KNN 0.638 0.763 0.724 0.813 0.738

TREE 0.588 0.684 0.684 0.788 0.863

NBBOX 0.675 0.737 0.737 0.763 0.800

NBEPA 0.675 0.711 0.711 0.750 0.763

NBNRM 0.700 0.711 0.711 0.763 0.863

NBTRI 0.700 0.697 0.697 0.775 0.763

MLP3 0.720 0.699 0.704 0.822 0.781

MLP4 0.678 0.677 0.688 0.792 0.719

Values in bold indicate highest sensitivity for a given feature selection method.

TABLE 4 | Specificity of models per feature selection method and classifier algorithm.

Feature selection criteria None Filter selection Wrapper selection

All t-test Fisher score SFS GA

Machine learning algorithm LSVM 0.752 0.809 0.809 0.778 0.843

QSVM 0.706 0.777 0.777 0.804 0.797

CSVM 0.654 0.777 0.777 0.797 0.784

GSVM 0.660 0.764 0.764 0.784 0.804

LDA 0.686 0.752 0.752 0.791 0.771

QDA 0.333 0.783 0.783 0.745 0.712

KNN 0.654 0.682 0.701 0.693 0.758

TREE 0.725 0.650 0.650 0.784 0.732

NBBOX 0.595 0.726 0.726 0.765 0.804

NBEPA 0.641 0.758 0.758 0.797 0.797

NBNRM 0.647 0.752 0.752 0.771 0.771

NBTRI 0.641 0.758 0.758 0.804 0.797

MLP3 0.621 0.699 0.704 0.724 0.726

MLP4 0.608 0.677 0.696 0.709 0.732

Values in bold indicate highest specificity for a given feature selection method.

NBEPA (0.797), NBNRM (0.771), and NBTRI (0.804) classifier
algorithms. GA feature selection produced the most specific
model with the LSVM (0.843), GSVM (0.804), KNN (0.758),
NBBOX (0.804), NBEPA (0.797), and NBNRM (0.771) classifier
algorithms. All-inclusion feature selection produced the least
specific models with every algorithm (0.333–0.706) except TREE.
Both filter-based feature selection methods produced the least
specific models with the TREE (0.650) algorithm.

Of the algorithms evaluated, LSVM was the most specific
using every feature selection method (0.752–0.843) except SFS.
QSVM and NBTRI produced the most specific models with the
SFS (0.804) feature selection method.

DISCUSSION

This was a study to determine the usefulness of machine learning
with indices of eye tracking (ET) and face tracking (FT) for the
classification of “impaired” or “normal” states of vigilance. We
tested 14 classification algorithms with five methods of feature
selection using the psychomotor vigilance task (PVT) as our test
for vigilance. The results of these analyses can be summarized
as: (1) indices computed from eye tracking and face tracking
technologies are sensitive to behavioral and physiological changes
concomitant with performance impairment; (2) the method
used for feature selection influences the classification capabilities
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of the resulting model; (3) machine learning models can use
these indices to correctly classify an individual’s performance
as “normal” or “impaired” with a balanced accuracy between
50.0 and 81.6%; and (4) bias toward sensitivity or specificity
is a critical element to be considered when evaluating the
performance of a classifier algorithm.

The results in section Statistics of PVT Performance and
Computed Indices demonstrate that, of the computed indices
presented here, at least 16 of 25 can be considered sensitive to
the observable behavioral and physiological changes concomitant
with sleep deprivation: fixation duration, blink duration, blink
frequency, brow raise, lip corner depressor, smile, attention, head
pitch, head roll, inner brow raise, eye closure, nose wrinkle,
upper lip raise, lip press, mouth open, and lip pucker. Of the
16 indices with statistically significant (p < 0.05) differences
between classes, 10 are statistically significant when a Bonferroni
alpha correction is applied (p < 0.002); fixation duration, blink
duration, blink frequency, brow raise, eye closure, mouth open,
and lip pucker. Given this, these computed indices can be
considered sensitive to the physiological changes that occur with
sleep deprivation and are well-suited as parameters for machine
learning algorithms for predicting impaired performance.

Before these indices can be used as parameters for machine
learning algorithms and evaluated, some form of feature selection
must be performed. Feature selection is a vital step in machine
learning to ensure that the set of parameters being used within
the machine learning model are optimized for classification.
The inclusion of redundant or noisy features can obfuscate
patterns the algorithm is attempting to recognize. In our analysis
we compared five methods of feature selection; all-inclusion,
significance based filter selection, Fisher Score based filter
selection, sequential forward selection (SFS) wrapper selecting
for maximal balanced accuracy, and a genetic algorithm (GA)
selection wrapper selecting for maximal balanced accuracy.
This was done to determine the best feature selection method
for our dataset. In terms of balanced accuracy, the SFS and
GA feature selection methods consistently yielded the highest
accuracy among the feature selection methods regardless of
machine learning algorithm (Figure 4). This is likely due to
the direct interactions of wrapper feature selection methods,
such as SFS or GA selection, with the classifier. This interaction
creates a feature space that maximizes the distinction of patterns
that separate the desired classes. In contrast, filter methods that
do not interact directly with the classifier, such as significance,
correlation, Fisher Score filter selection, may result in an overly
redundant feature space by filtering for similarities. However, the
cost of better performance is longer computation times; where
the filter methods took seconds to compute, SFS took minutes
and GA took hours.

The SVM and Naïve Bayes families of algorithms consistently
yielded the highest performance among the classification
algorithms (Figure 5), however substantial differences in
performance among these algorithms was not seen in this
analysis. We expected that we would see greater differences
in performance among classification algorithms because we
expected some algorithms to better uncover latent complex
relationships between ET and FT indices and PVT. This lack of

differences in performance could be the result of a limitation
set by the simplistic relationship between the indices used and
the PVT score. Future work should further explore additional
indices that may exhibit more complex relationships to vigilance
decrement and/or explore the use of optimization algorithms to
tune hyperparameters to these complex relationships.

NBNRM with the GA feature selection method produced
the most accurate model (81.6%) throughout this analysis.
NBBOX with the GA feature selection method and QSVM with
the SFS feature selection method produced the second most
accurate models throughout this analysis (80.2%). These results
support our hypothesis that machine learning algorithms are
capable of using computed indices from eye tracking and face
tracking technologies to predict sleep deprivation performance
impairment with an accuracy >75%. Future work to better
determine the true accuracy of these models should test the
models developed in this study on a new cohort of subjects.

Interestingly, the 2 s-most accurate models may be considered
better because they are less “biased” models than the most
accurate. Bias, calculated as the difference between sensitivity and
specificity is 0.4% in the second-most accurate models, and 9.1%
in the most accurate model. One of the foreseen problems with
using balanced accuracy was the possibility of biased predictions
skewing the overall performance metric. Consider a model that is
over-predicting a single class and the second class has a success
rate near chance (∼50%). This end result would still yield a
model with ∼70.7% balanced accuracy. Thus, it is important
to inspect the components of balanced accuracy; sensitivity,
and specificity, for bias. This is the core issue of condensing a
classifier’s performance into a single metric.

How to best measure performance is a critical consideration
when determining the objective function for optimizing
parameters, such as feature selection, of a machine learning
model; based on the demands the model seeks to fill, specific
objective functions should be designed to produce models
capable of meeting these demands. For example, in the case of
detecting sleep deprivation induced performance impairment in
high-risk professions, such as airline pilots, wherein sensitivity
to impairment may be valued higher than overall accuracy;
the models presented here may not be deemed sensitive to
impairment enough to be appropriate. Therefore, a more
appropriate objective function should be designed to create a
model that puts greater emphasis on sensitivity at the expense
of specificity. Future work should explore considerations of
designing objective functions to produce classifiers tailored to
meet the demands put upon them.

When considering this type of performance data, class
assignment may not be the most appropriate way to identify
“normal” or “impaired” performance. Initially, the PVT
performance data is continuous and then transformed into
binary classifications. This transformation does not affect the
continuous nature of the eye and face tracking indices correlated
with PVT performance. Regression analyses (e.g., multiple
regressions, neural network based regressions) were excluded
from this paper to limit the scope of this analysis to classification
algorithms. However, future work should explore the use of
different methods of regression analysis to use computed indices
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of eye and face tracking to predict markers of PVT performance
to better establish the predictive abilities of these indices with
machine learning methods.

CONCLUSIONS

These findings support the hypothesis that machine learning
can be used with indices of eye tracking and face tracking
technologies to accurately predict performance impairment due
to sleep deprivation. Specifically, these methods can be used
to develop systems that can prevent workplace mishaps by
predicting the onset of impairment in members of the workforce
by tracking eye and facial indices. This is especially important
for groups like the military where high pressure, high risk
occupations are prevalent.

Previous research has well-established the effects of sustained
wakefulness to induce cognitive performance impairment in
individuals, evidenced by the production of observable individual
behaviors. Using machine learning models with indices of
these behaviors, obtained through non-invasive technologies
such as eye tracking or facial tracking, provides a means
to predict impaired states that can be immediately applied
to high stress/fatigue-inducing professions in the military or
industry. The results of this study can help to understand the
effects of sleep deprivation on these observable behaviors. The
methodology for developing machine learning models to predict
cognitively impaired states could allow for the development of

future management strategies to avoid workplace errors caused
by fatigue.
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