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Abstract: We developed an algorithm to detect premature atrial contraction (PAC) and premature
ventricular contraction (PVC) using photoplethysmographic (PPG) data acquired from a smartwatch.
Our PAC/PVC detection algorithm is composed of a sequence of algorithms that are combined
to discriminate various arrhythmias. A novel vector resemblance method is used to enhance the
PAC/PVC detection results of the Poincaré plot method. The new PAC/PVC detection algorithm
with our automated motion and noise artifact detection approach yielded a sensitivity of 86% for
atrial fibrillation (AF) subjects while the overall sensitivity was 67% when normal sinus rhythm (NSR)
subjects were also included. The specificity, positive predictive value (PPV), negative predictive
value (NPV) and accuracy values for the combined data consisting of both NSR and AF subjects
were 97%, 81%, 94% and 92%, respectively, for PAC/PVC detection combined with our automated
motion and noise artifact detection approach. Moreover, when AF detection was compared with and
without PAC/PVC, the sensitivity and specificity increased from 94.55% to 98.18% and from 95.75%
to 97.90%, respectively. For additional independent testing data, we used two datasets: a smartwatch
PPG dataset that was collected in our ongoing clinical study, and a pulse oximetry PPG dataset from
the Medical Information Mart for Intensive Care III database. The PAC/PVC classification results
of the independent testing on these two other datasets are all above 92% for sensitivity, specificity,
PPV, NPV, and accuracy. The proposed combined approach to detect PAC and PVC can ultimately
lead to better accuracy in AF detection. This is one of the first studies involving detection of PAC and
PVC using PPG recordings from a smartwatch. The proposed method can potentially be of clinical
importance as this enhanced capability can lead to fewer false positive detections of AF, especially
for those NSR subjects with frequent episodes of PAC/PVC.

Keywords: premature atrial contraction detection; Poincaré plot; premature ventricular contraction
detection

1. Introduction

Premature atrial contractions (PAC) and premature ventricular contractions (PVC) are benign
cardiac arrhythmias that occur in some healthy subjects; their impact on overall cardiovascular
well-being is still unclear [1]. Although the debate is ongoing, there is no clear clinical evidence to
suggest that either PAC or PVC are malignant arrhythmias or that their presence can trigger fatal
arrhythmias. However, it is clear that frequent occurrence of PAC and PVC can lead to incorrect
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detection of atrial fibrillation (AF), as irregular ectopic beats interspersed among normal sinus rhythm
(NSR) can lead to sufficient appearance of randomness, hence, false positive detection [2]. AF is the
most commonly encountered arrhythmia in clinical practice and it has been forecasted that over 6
million Americans will be affected by 2050 [3]. As a significant percent of the population suffering
from AF are asymptomatic, and most will likely have paroxysmal—short lasting, intermittent and
random onset—AF (pAF), there has been a growing need for long term monitoring. Wearable devices
such as Holter and event monitors, and recently cardiac patches, have been used to monitor pAF [4,5].
Most recently, there has been growing interest in using smartphones and especially smartwatches for
detecting AF [2,3,6], as these devices are especially practical for long-term monitoring. While the form
factor of smartwatches for long-term pAF monitoring is convenient and potentially widely accepted
by users, the major drawback is that the photoplethysmogram (PPG) is measured using light emitting
diodes and photodetectors are quite sensitive to motion artifacts. Moreover, the capability to detect
other arrhythmias than just AF has not yet been developed for smartwatch-based PPG signals.

Algorithms for PAC and PVC detection using electrocardiographic (ECG) data have been well
established, and due to their distinctive waveform morphologies, these rhythms can be accurately
distinguished [7,8]. For example, Chetan et al. [8] proposed a method that can decompose ECG signals
and extract non-linear features from the ECG waveform to discriminate ventricular arrhythmias from
atrial arrhythmias. However, a PPG waveform associated with ventricular arrhythmia does not have a
distinguishable T-wave in the ECG that is different from the ECG waveform of atrial arrhythmia. Thus,
the method proposed by Chetan et al. [8] cannot be used for PPG signals. Fortunately, the Lorentz
plot obtained from RR interval time series is implemented in [9] to detect AF and atrial tachycardia
including PACs. Recently, low resolution Lorentz plot images were trained with a convolutional neural
network to discriminate between AF and sinus rhythm [10]. In another recent study, RR intervals and
QRS morphology-based features were combined with a random forest to detect PVC in [11]. However,
there is scant literature on detecting PAC/PVC from PPG-based data. Recently, our lab has published
about PAC and PVC detection using a Poincaré plot method applied to fingertip video-PPG data
acquired from a smartphone [2]. It should be noted; however, that video-PPG signal quality from
a fingertip is much higher than that from a wrist, as the skin is thinner on the fingertip. Moreover,
motion artifacts are less severe for video PPG data from a smartphone than for smartwatch PPG data,
as long as the finger makes constant good contact with the smartphone’s camera. A study by Solosenko
et al. used an adaptive low-pass filtered PPG waveform of premature beats to train an artificial neural
network to detect PVC, with good results [1]. They took fingertip PPG datasets from pulse oximeters
out of the MIMIC and MIMIC II databases. However, their intent was not to discriminate between PVC
and other types of cardiac arrhythmia such as AF. In [12], PPG pulse rate turbulence onset, slope and
turbulence shape are used to classify PVCs from NSR; however, PAC and AF were not studied in [12].
In [13], PPG morphology based algorithm is proposed to reject non-sinus rhythm pulses; although
no discrimination is made among different pulses. Signal quality assessment and suppression of
ectopic beats, bigeminy along with respiratory sinus arrhythmia are described in [14] for more accurate
AF detection; however, no detection of PACs or PVCs are reported. In [15], the case of ventricular
arrhythmia (VA) was considered in AF detection from wrist PPG signal, however, only accuracy of AF
detection was reported, and no independent VA detection was performed. Recently, deep learning
method is used to classify AF and NSR in [16] which mentioned that high PAC burden would lower AF
detection accuracy. However, deep neural network models proposed in this paper did not discriminate
PACs from NSR and AF. Moreover, the dataset used in this paper did not consider PVC arrhythmia.
Many other studies on AF detection using wrist PPG sensors were conducted [17–32], however, none
of them considered PAC or PVC case in their AF detection.

To the best of our knowledge, this is one of the first studies which demonstrates detection of PAC
and PVC from smartwatch PPG data. To discriminate amongst NSR, AF, PAC, and PVC, a combination
of PAC and PVC detection algorithms is designed to distinguish PAC/PVC from AF and NSR using
the heart rates derived from a peak detection method, as illustrated in Figure 1.
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The evaluation of our proposed method was based on data collected from both NSR and AF
subjects using Samsung Simband 2 smartwatches at the University of Massachusetts Medical Center
(UMMC).

Figure 1. Flow chart of entire AF detection and PAC/PVC detection system.

2. Materials and Methods

2.1. Datasets and Experimental Protocol

2.1.1. Training Dataset: UMMC Simband Dataset

37 patients (28 male and 9 female) with cardiac arrhythmia, ranging in age from 50 to 91 years
old, participated in the smartwatch study at the ambulatory cardiovascular clinic at University of
Massachusetts Medical Center (UMMC). This population is representative for AF, PAC and PVC
subjects as described in [33]. The details of subject characteristics, monitoring duration, and arrhythmia
burden are listed in Table 1. The Institutional Review Boards at both UMMC and the University of
Connecticut approved the study protocol. Reference ECG and smartwatch data were simultaneously
measured from the chest and wrist using a 7-lead Holter monitor (Rozinn RZ153+ Series, Rozinn
Electronics Inc., Glendale, NY, USA) and Simband 2 (Samsung Digital Health, San Jose, CA, USA)
(henceforth referred to simply as Simband), respectively. ECG data consisted of 3-channel signals,
each sampled at 180 Hz. The Holter ECG data were used as the reference. Simband data consisted of
8-channel PPG signals, three-axis accelerometers and a one-lead ECG which was obtained by touching
the wristband’s stainless-steel electrode with a finger from the non-watch worn hand. Simband PPG
signals were sampled at 128 Hz. Only the 5th PPG channel (green LED color, wave length 520–535 nm)
was used for data analysis since it consistently provided the best quality signal. The subjects were
requested to touch the Simband’s ECG electrode for at least one minute at the beginning of data
collection so that PPG data could be aligned with Holter ECG data. The alignment of the Simband
and Holter ECG signals was performed by estimating the cross-correlation between the signals [34].
When two signals are well-aligned, the cross-correlation value will have a value >0.8 and if they are
not, it can be lower than 0.4. However, even for perfectly aligned signal, the cross-correlation value
will be lower than 1 if they have a low signal-to-noise ratio. For this reason, we chose 0.9 for the
alignment of ECG data from Simband and Holter monitors. We manually checked both ECG signal at
the point where alignment could occur when cross-correlation is around 0.9, and we slightly adjusted
the alignment time point to make sure R waves in both ECG signals were precisely aligned. Given
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this need for correlation, only the Holter ECG data with good signal quality (discernible R waves)
were retained, as they also needed to be used as the reference heart rates from which PPG heart rate
estimates were benchmarked. PPG and accelerometer data were down sampled to 50 Hz and 20 Hz,
respectively. All signals were segmented into 30-s lengths, with no overlap, for peak detection analysis
in real time clinical detection. This dataset was created as a part of a preliminary study, thus we have a
limited number of subjects and recordings. The training dataset is available for download on our lab’s
website listed in Supplementary Materials section.
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Table 1. Detailed subject information of training dataset—UMMC Simband dataset

Adjudicated Detected
Subject 1 Age Sex Duration 2 Clean (%) 3 NSR (%) 4 AF (%) PAC (%) PVC (%) NSR (%) 5 AF (%) PAC (%) PVC (%)

4001 66 male 47 13 (27.66%) 0 0 13 (100.00%) 0 0 0 10 (76.92%) 0

4002 58 male 44 12 (27.27%) 12 (100.00%) 0 0 0 12 (100.00%) 0 0 0

4004 76 female 47 0 0 0 0 0 0 0 0 0

4005 54 male 60 4 (6.67%) 4 (100.00%) 0 0 0 4 (100.00%) 0 0 0

4006 69 male 46 3 (6.52%) 0 3 (100.00%) 0 0 0 3 (100.00%) 0 0

4007 91 male 103 10 (9.71%) 0 10 (100.00%) 0 0 0 10 (100.00%) 0 0

4008 62 female 44 2 (4.55%) 2 (100.00%) 0 0 0 2 (100.00%) 0 0 0

4009 59 male 45 0 0 0 0 0 0 0 0 0

4012 72 male 65 7 (10.77%) 0 7 (100.00%) 0 0 0 6 (85.71%) 0 0

4013 50 male 27 12 (44.44%) 0 12 (100.00%) 0 0 0 12 (100.00%) 0 0

4015 74 male 43 2 (4.65%) 0 2 (100.00%) 0 0 0 2 (100.00%) 0 0

4016 62 male 36 3 (8.33%) 0 3 (100.00%) 0 0 0 3 (100.00%) 0 0

4017 76 male 98 15 (15.31%) 8 (53.33%) 0 7 (46.67%) 0 7 (87.50%) 0 0 0

4019 60 male 53 3 (5.66%) 3 (100.00%) 0 0 0 3 (100.00%) 0 0 0

4020 69 male 48 3 (6.25%) 3 (100.00%) 0 0 0 3 (100.00%) 0 0 0

4021 77 female 49 15 (30.61%) 6 (40.00%) 0 9 (60.00%) 0 6 (100.00%) 0 7 (46.67%) 0

4022 63 male 87 10 (11.49%) 1 (10.00%) 0 9 (90.00%) 0 1 (100.00%) 0 8 (80.00%) 0

4024 70 male 133 2 (1.50%) 0 2 (100.00%) 0 0 0 2 (100.00%) 0 0

4025 64 male 110 3 (2.73%) 3 (100.00%) 0 0 0 3 (100.00%) 0 0 0

4026 74 male 106 4 (3.77%) 4 (100.00%) 0 0 0 4 (100.00%) 0 0 0

4027 73 male 100 31 (31.00%) 31 (100.00%) 0 0 0 30 (96.77%) 0 0 0

4028 69 male 63 6 (9.52%) 6 (100.00%) 0 0 0 6 (100.00%) 0 0 0

4029 69 male 143 18 (12.59%) 18 (100.00%) 0 0 0 18 (100.00%) 0 0 0
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Table 1. Cont.

Adjudicated Detected
Subject 1 Age Sex Duration 2 Clean (%) 3 NSR (%) 4 AF (%) PAC (%) PVC (%) NSR (%) 5 AF (%) PAC (%) PVC (%)

4030 74 female 68 18 (26.47%) 18 (100.00%) 0 0 0 18 (100.00%) 0 0 0

4032 67 female 92 2 (2.17%) 2 (100.00%) 0 0 0 2 (100.00%) 0 0 0

4033 82 male 95 39 (41.05%) 39 (100.00%) 0 0 0 39 (100.00%) 0 0 0

4034 70 female 88 8 (9.09%) 7 (87.50%) 0 1 (12.50%) 0 6 (85.71%) 0 1 (12.50%) 0

4035 88 male 29 2 (6.90%) 2 (100.00%) 0 0 0 2 (100.00%) 0 0 0

4036 75 female 88 1 (1.14%) 1 (100.00%) 0 0 0 1 (100.00%) 0 0 0

4037 69 male 46 3 (6.52%) 0 0 0 3 (100.00%) 0 0 0 3 (100.00%)

4038 81 male 98 11 (11.22%) 0 11 (100.00%) 0 0 0 11 (100.00%) 0 0

4040 74 male 120 2 (1.67%) 2 (100.00%) 0 0 0 2 (100.00%) 0 0 0

4041 81 male 89 3 (3.37%) 3 (100.00%) 0 0 0 1 (33.33%) 0 0 0

4042 76 male 74 9 (12.16%) 9 (100.00%) 0 0 0 8 (88.89%) 0 0 0

4043 75 male 71 4 (5.63%) 0 4 (100.00%) 0 0 0 4 (100.00%) 0 0

4044 70 male 94 3 (3.19%) 3 (100.00%) 0 0 0 3 (100.00%) 0 0 0

4045 69 female 79 9 (11.39%) 9 (100.00%) 0 0 0 9 (100.00%) 0 0 0

Total 70.49
21.62%
female 2728

292
(10.70%)

196
(67.12%)

54
(18.49%)

39
(13.36%)

3
(1.03%)

190
(96.94%)

53
(98.15%)

26
(66.67%)

3
(100.00%)

1Discontinuity in the subjects’ IDs occurs there was no interpretable data recorded from those subjects; 2Monitoring Duration (segments); 3Percentage (%) is based on
monitoring duration; 4Arrhythmia burden (%) is based on adjudicated clean segments; 5Percentage (%) is based on Arrhythmia Burden.
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Our experimental protocol was designed to simulate everyday activities and consisted of the
following sequence: sit still for 2 min, walk slowly for 2 min, stand still for 30 s, walk quickly for
2 min, stand still for 30 s, make watch-arm movements for 2 min, and stand still for 30 s. Patients
were then asked to sit and stand repetitively for 1 minute followed by climbing stairs for 1 additional
minute. The last procedure required patients to sit still for 1 minute. Figure 2 succinctly summarizes
the above-described protocol.

Figure 2. Timeline of the experimental protocol (unit: minute).

2.1.2. Testing Dataset: Samsung Gear S3 Dataset

For the first independent testing dataset, we randomly selected two subjects with 101 30-s
segments from patients who participated in the ongoing clinical trial (funded by NIH) at UMMC. The
Institutional Review Boards at UMMC approved the study protocol. Subject 005 was non-AF with 54
NSR segments and 27 PAC/PVC segments. Subject 307 was an AF subject with 20 clean AF segments.
The reference ECG and smartwatch data were simultaneously measured from the chest and wrist using
a 2-lead rhythm patch device (Cardea SOLO, Cardiac Insight Inc., Bellevue, WA, USA) and Samsung
Gear S3 (Samsung, San Jose, CA, USA) (henceforth referred to simply as Gear S3), respectively. (This is
a different smartwatch than the Simband we used for the training data collection.) The patch ECG
data consisted of 1-channel signals and were sampled at 250 Hz. The patch ECG data were used as
the reference. The Gear S3 data consisted of 1-channel PPG signal and 1-channel magnitude of the
accelerometer signal. Gear S3 signals were all sampled at 50 Hz and were automatically segmented
into 30-s lengths. The alignment of the Gear S3 and ECG patch signals for every 30-s segment was
done by visual inspection. The heart rates from the patch ECG and PPG signals were based on Hossain
et al.’s method [35] and Han et al.’s method [36], respectively.

The enrolled patients wore the Gear S3 smartwatch and ECG patch 24 h a day with no restriction
on their regular daily activities, for 14 consecutive days, to evaluate the performance of our real-time
PAC/PVC detection algorithm. Due to the 7-day battery limitation, patients switched to a second new
ECG patch on the 7th day of trial. Smartwatches were charged daily for 1 hour.
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2.1.3. Testing Dataset: MIMIC III Dataset

The recently released Medical Information Mart for Intensive Care (MIMIC III) database provides
continuous ECG and pulse oximetry waveforms (PLETH) from patients in critical care at a large
tertiary care hospital [37,38]. Ten subjects, listed in Table 2, were selected from MIMIC III database
[39].

Since the ICU recording for each subject in the MIMIC III [38] dataset contained hundreds of
hours of data, we only used the subjects whose data had already been prepared for the AF study [39],
in which cardiologists had spent several months to adjudicate the presence of AF in those recordings.
The AF detection study described in [39] was based on long-term ECG recordings, where the subjects
were selected from critically ill sepsis patients. Since the PPG signal was neither analyzed nor observed
in that study, only a few subjects in that study had simultaneous PPG and ECG signals. However, for
this paper we needed subjects with simultaneous ECG and PPG recordings, as well as AF annotations
from the cardiologists. As a result, we manually selected a random subset of 10 subjects from the study
population of [39] for whom simultaneous ECG and PPG signals were available, and used this subset
of 10 subjects as a separate blind test dataset.

Approximately four hours of PPG and ECG data were used, with the former for testing. The ECG
was used for PPG beats validation. All signals were originally sampled at 125 Hz. PLETHs signal were
down-sampled to 50 Hz to be concordant with the training dataset. All signals were segmented to a
30-s length with no overlap for peak detection analysis. The testing dataset is also available on our
lab’s website listed in Supplementary Materials section.

Table 2. Selected subject information in testing dataset: MIMIC III

Subject Index Subject ID in MIMIC III

AF1 p075796-2198-07-25-23-40
AF2 p026377-2111-11-17-16-46
NSR1 p004829-2103-08-30-21-52
NSR2 p013072-2194-01-22-16-13
NSR3 p050384-2195-01-30-02-21
NSR4 p055204-2132-06-30-09-34
NSR5 p058932-2120-10-13-23-15
PACPVC1 p007614-2177-01-08-13-21
PACPVC2 p065656-2121-08-07-04-35
PACPVC3 p030542-2135-10-17-10-33

2.2. Methods and Evaluation

2.2.1. Overview of PAC/PVC Detection

Figure 1 shows the diagram of our proposed PAC/PVC detection approach. Motion artifact
detection [40] is performed as the first step to ensure that PPG data are relatively clean. The algorithm
involves a combination of features derived from the time-frequency analysis of PPG and the significance
of the accelerometer magnitude. To briefly summarize the motion artifact detection [40]: we used two
signals, the accelerometer (ACC) and PPG signals, to decide if motion noise existed in a 30-s segment.
Motion artifact detection for the ACC signal was based on a thresholding method on the mean value of
the univariance ACC data. For detecting motion artifacts in the PPG signal, a time-frequency spectra
(TFS) was first calculated from the univariance and zero-mean PPG, and then two signals’ power
consisting of the clean (Q1) and noisy (Q2) signals, were calculated from the TFS. By counting the
time instances of Q1 and Q2, we can separate the corrupted PPG signal from the clean PPG signal.
We considered a 30-s PPG segment as clean only when both the PPG segment and its corresponding
ACC segment were detected as clean. The details of our motion artifact detection algorithm have been
described in [40].



Sensors 2020, 20, 5683 9 of 25

If PPG data pass the motion artifact detection test, peak detection is performed. The details of our
peak detection algorithm have been described in [36]. The approach defined as the overall sequence
for waveform envelope peak detection is named SWEPD and it is shown to be accurate for various
arrhythmias including AF [36]. The next step is to perform AF detection [40] to separate AF from NSR.
PAC/PVC detection is performed on both AF and NSR data segments. A modified version of the
PAC/PVC detection algorithm for NSR is applied to AF detected data via our algorithm to ensure
fewer false positive detections of AF. Details of each of these steps are provided in the next sections.

2.2.2. Poincaré Plot for PAC/PVC Pattern Recognition

The aim of this section is to expose distinct patterns of PAC/PVC heart rates that distinguish them
from NSR and AF rhythms. The PAC/PVC detection method is similar in concept to the Poincaré plot
algorithm developed for smartphone video camera data [2], but modifications were necessary to be
applicable to smartwatch PPG data, which are more prone to motion and noise artifacts. The Poincaré
plot was originally used for heart failure detection using ECG data [41]. The rationale behind using the
Poincaré plot is that it allows assessment of the nonlinear dynamics of the RR interval data, which are
usually non-Gaussian in distribution. It is simple to implement method and allows good visualization
of the nonlinear dynamic characteristics of the data [41]. Figure 3 shows four representative examples
of PPG signal 30-s segments (left panels) and the corresponding Poincaré plots (right panels) from
subjects with four different rhythms: NSR, PVC, normal heart rate AF and fast heart rate AF. Normal
and fast heart rate AF are defined as AF episodes with the mean heart rates below, and greater than
or equal to, 100 beats/min, respectively. The Poincaré plot is based on the difference in heart rates
of the current beat to the next beat, on the X-axis, and of the previous beat to the current beat, on the
Y-axis, for the entire 30-s data segment in the left panels of Figure 3. In panel (2) of Figure 3, a distinct
repeated kite shape pattern emerges for PAC/PVC rhythms. The difference in heart rates for the X- and
Y-axes of the Poincaré plots are set to [−80, 80] beats per minute (BPM). Moreover, the Poincaré plot
is subdivided into nine quadrants, which represent permutations of all possible sequences of “long”
and “short” time differences based on three consecutive heart beat intervals. A “long” time difference
occurs when a time difference of the heartbeats associated with either the PAC or PVC beat to the
next normal heartbeat is compared to the time difference between two consecutive normal heartbeats.
A “short” time difference occurs when a time difference between a previous normal beat to either
a PAC or PVC beat is compared to the time difference between two consecutive normal heartbeats.
The quadrants are divided to capture PAC/PVC patterns as well as to discriminate between normal
and fast heart rates of AF and PAC/PVC. These quadrants’ boundaries were set optimally based
on experimental data. The initial assumption for the width of the zeroth quadrant is set to 10 BPM,
symmetrically starts from -5 and ends on 5 BPM on both X and Y axes based on the maximum variation
of 10 BPM heart rate that sinus rhythm subject could have [42]. Variations of adding or subtracting 3
BPM from the 10 BPM width were tested to optimize the PAC/PVC detection, and the best width is
still 10 BPM. As we finalized the range for zeroth quadrant, widths for the rest eight quadrants are
easy to set. The widths of the shorter side for quadrant one, three, five and six are the same size of
zeroth quadrant; their longer width is set to 75 BPM, which is equal to subtraction of the half width of
Poincaré plot with the half width of zeroth quadrant. For quadrant two, four, seven and eight, their
widths are the same as the widths of longer side for quadrant one, three, five and six.
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Figure 3. Poincaré plots of PPG HR and reference ECG HR (middle panels and right panels) for NSR,
PVC, normal heart rate AF and fast heart rate AF for the data shown in the left panels (1), (2), (3) and
(4), respectively. Each panel of the left column shows (a): reference ECG, (b) PPG, (c) detected peaks
from the filtered PPG and the (d) reference ECG HR and PPG HR from a 30-s segment.

All possible Poincaré plot quadrant patterns associated with three consecutive heartbeats are
provided in Table 3. In addition, Table 4 provides various arrhythmias with their corresponding
trajectory patterns in Poincaré plots. The right panels from the top to bottom of Figure 3 show typical
patterns for NSR, PAC/PVC, normal heart rate AF and fast heart rate AF, respectively. As shown in
these figures, there are distinct patterns so that discrimination among these rhythms can be made.

In our previous study, we showed only two types of PAC/PVC pattern, with the quadrant
sequence ‘1-2-3’ for trigeminy PAC/PVC and ‘2-4’ for bigeminy PAC/PVC [2]. However, in this study,
we include a new pattern that resides in the quadrants ‘6-4-5’ to represent fast heart rate PAC/PVC.
These PAC/PVC patterns can be seen in the right panels of Figure 4. In Figure 4, the five rows of
panels (labelled 1-5) show five different types of PAC/PVC patterns from the Poincaré plots. The top
to bottom strips (labelled as a, b, c and d) shown within each of the left panels of Figure 4 show ECG,
raw PPG, filtered PPG and comparison of the reference and PPG-derived heart rates, respectively, for
representative data segments. In the plots (c) of the left panels, we also labeled Poincaré quadrants
associated with each PPG peak. The right panels of Figure 4 are the corresponding Poincaré plots
derived from the difference in heart rates obtained from the peak detection shown in the plots (b) of
the left panels of Figure 4.
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The top right panel of Figure 4 shows a normal heart rate PAC with the ‘1-2-3’ pattern, having the
appearance of an upward kite on the Poincaré plot. Row 2’s right panel shows a fast heart rate PAC
segment with the ‘6-4-5’ pattern, with the appearance of a downward kite on the Poincaré plot.

The third row’s right panel of Figure 4 shows a fast heart rate PVC segment with the ‘6-4-5’
downward kite shape pattern on the Poincaré plot.

The right panel of row 4 in Figure 4 shows the pattern of ‘2-4’ to reflect bigeminy and ‘6-4-5’ to
signify fast heart beats in the Poincaré plots, whereas the fifth row’s right panel represents a slow heart
rate PAC and largely shows ‘2-4’ or bigeminy pattern. We use the three heart rate patterns of ‘6-4-5,’
‘1-2-3,’ and ‘2-4’ to detect PAC/PVC.

Figure 4. PAC/PVC Poincaré plot patterns. Panel (1) is ‘1-2-3’ pattern for normal heart rate PAC; panel
(2) is ‘6-4-5’ pattern for fast heart rate PAC; panel (3) is ’6-4-5’ pattern for fast heart rate PVC; panel (4)
is ‘2-4’ pattern for fast heart rate PAC with trigeminy; panel (5) is ‘2-4’ pattern for normal heart rate
PAC with bigeminy.
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Table 3. Poincaré plot quadrants associated with various heart beat arrhythmia permutation based on
difference of three consecutive heartbeats

HRn−1 − HRn − HRn+1 Quadrant Number

slow-slow-slow 0
fast-fast-fast 0
slow-slow-fast 1
slow-fast-slow 2
fast-slow-slow 3
fast-slow-fast 4
slow-fast-fast 5
fast-fast-slow 6
slow-fast-ultra fast 7
ultra fast-fast-slow 8

Table 4. Arrhythmias with their corresponding trajectory patterns in Poincaré plots

Types of PAC/PVC Trajectory Patterns

Bigeminy (normal HR) 2-4-2-4-2-4-. . .
Bigeminy (Fast HR) 0-0-0-0-0-0-. . .
Trigeminy (Fast HR) 2-4-2-4-2-4-. . .
Trigeminy (normal HR) 1-2-3-1-2-3-. . .
Quadrigeminy (fast HR) 6-4-5-6-4-5-. . .
Quadrigeminy (normal HR) 1-2-3-0-1-2-3-. . .

2.2.3. Vector Resemblance of Poincaré Plot Trajectory for PAC/PVC Detection in AF-Detected Subjects

To automatically quantify the patterns associated with PAC/PVC rhythms described in the
preceding section, we propose a method called vector resemblance to represent the similarity of
PAC/PVC trajectories. Note that frequent occurrences of PAC/PVC can erroneously lead to false
positive detection of AF [2], hence, it is important to discriminate them from AF rhythms. Before
introducing our algorithm, we must note that the most important criterion in our paper is that either
the ‘1-2-3’ or ‘6-4-5’ patterns need to repeat more than three times in a 30-s segment to be considered
as PAC/PVC. The biggest reason for this choice is that our AF detection algorithm [40] will falsely
detect AF when at least three heart beats in a 30-s segment are ectopic beats. Another reason is that
PAC/PVC often occurs more than once, as evidenced by bigeminy and trigeminy occurrences of these
rhythms. Moreover, three PAC/PVC patterns ensures better detection accuracy, as either random
motion artifacts or AF can sometimes lead to the above-noted kite-shaped patterns associated with
PAC/PVC.

Algorithm 1 summarizes the pseudo-code of our proposed PAC/PVC detection algorithm for
those segments initially detected as AF.

As shown in Figure 1, AF detection is first performed to discriminate subjects with AF from NSR.
For both AF and NSR subjects, PAC/PVC detection is subsequently performed. Hence, we code for
automatic detection of PAC/PVC intervals in segments that also contain AF. The vectors are shown
in the Poincaré plots of Figure 4, which show trajectories from the start to their destination. Since a
PAC/PVC pattern can have the ‘6-4-5’ kite shaped pattern, angles for the vector ‘6-4’ and ‘4-5’ are
calculated. The same procedure is used for the pattern ‘1-2-3’. The pattern ‘2-4’ is not considered for
PAC/PVC detection since AF can mimic this pattern due to heart rates that can go from normal and
fast. However, the pattern ‘2-4’ is used for PAC/PVC detection in NSR as described in the section
pertaining to non-AF subjects. We use a threshold of the standard deviation of the vector angles to sort
out similar vectors so that those PAC/PVC occurrences which lead to false positive AF detection can
be reclassified as PAC/PVC.

The first threshold involves the standard deviation of vector angles. Standard deviation is a
measure of the trajectory resemblance on Poincaré plots. Because PAC/PVC occurrences are repeated
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(e.g., bigeminy, trigemini, etc.) the trajectories of their dynamics often overlap in the Poincaré plot.
However, AF are characterized by random behavior, thus, the trajectories of their dynamics in the
Poincaré plot rarely overlap when compared to PAC/PVC. Therefore, the standard deviation of
vector angles for PAC/PVC will be smaller than that for AF. We have heuristically determined that
the standard deviation of the vector angles needs to be less than 10 degrees to be considered true
PAC/PVC. Our choice of 10 degree threshold value will be further described and validated in the
Results section 3.3 and Figure 5a.

If the standard deviation of the vector angles is more than 10 degrees, the segment is no longer
considered a candidate for PAC/PVC, and undergoes another test. The second threshold we examined
is the ratio of the number of heart beat points in the zero quadrant to those that are outside it. The zero
quadrant represents the change of heart rates for both the current and next beats that are less than 10
BPM. Since AF has highly varying heart rates, it will have more heart beat trajectory points that fall
outside the zero quadrant than will NSR. For NSR, most of the heart beat points do reside inside the
zero quadrant, provided that heart rates are unaffected by motion artifacts. If the ratio is less than 13%
(heuristically determined), the initial determination that the segment includes AF is kept; otherwise,
AF detection is replaced with NSR. As shown in Figure 3, NSR rhythms are typically contained within
the zeroth quadrant whereas AF trajectories are rather highly spread and span out to other quadrants.
Our choice of the 13% threshold value will be further described and validated in the Results section 3.3
and Figure 5b.

Algorithm 1 Algorithm for PAC/PVC Detection on AF Windows

Input: θ123 := degrees of included angle for ‘1-2-3’ pattern
θ645 := degrees of included angle for ‘6-4-5’ pattern
n123 := number of ‘1-2-3’ pattern
n645 := number of ‘6-4-5’ pattern
rzero := ratio of zero quadrants.

Output: Arrhythmia type as NSR, PAC/PVC, or AF.
1: if (n123 + n645) ≥ 3 then
2: Calculate std123 and std645, the standard deviation of θ123 and θ645, respectively.
3: if n645 ≤ 1 then
4: Set std645 = 0.
5: end if
6: if n123 ≤ 1 then
7: Set std123 = 0.
8: end if
9: if std123 ≤ 10 && std645 ≤ 10 then

10: Arrhythmia =PAC/PVC.
11: else
12: if rzero < 0.13 then
13: Arrhythmia =AF.
14: else
15: Arrhythmia =NSR.
16: end if
17: end if
18: else
19: if rzero < 0.5 then
20: Arrhythmia =AF.
21: else
22: Arrhythmia =NSR.
23: end if
24: end if
25: return Arrhythmia
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2.2.4. PAC/PVC Detection for Non-AF Subjects

Algorithm 2 summarizes our proposed PAC/PVC detection algorithm for NSR detected segments.
Similar to PAC/PVC detection for AF subjects, we examine if there are at least three or more ‘1-2-3’ or
‘6-4-5’ quadrant patterns. If there are three or more kite shaped patterns and the standard deviation of
the vector angles is less than 10 degrees, the 30-s data segment is noted to contain PAC/PVC rhythms.
If the standard deviation of the vector angles is greater than 10 degrees, the segment is further subjected
to the following procedures.

Algorithm 2 Algorithm for PAC/PVC Detection on Non-AF Windows

Input: θ123, θ645 := degrees of included angle for ‘1-2-3’ and ‘6-4-5’ pattern, respectively.
θ24, θ42, θ12, θ23, θ64, θ45 := degrees of slope angle for ‘2-4’,‘4-2’,‘1-2’,‘2-3’,‘6-4’,‘4-5’ pattern,
respectively
n123, n645, n24, n42, n12, n23, n64, n45 := number of ‘1-2-3’,‘6-4-5’,‘2-4’,‘4-2’,‘1-2’,‘2-3’,‘6-4’‘4-5’ pattern,
respectively.
rzero := ratio of zero quadrants
noutside := number of points outside cross demarcation

Output: Arrhythmia type as NSR, AF, or PAC/PVC.
1: if (n123 + n645) ≥ 3 then
2: Calculate std123 and std645, the standard deviation of θ123 and θ645, respectively.
3: if n645 ≤ 1 then
4: Set std645 = 0.
5: end if
6: if n123 ≤ 1 then
7: Set std123 = 0.
8: end if
9: if std123 ≤ 10 && std645 ≤ 10 then

10: Arrhythmia =PAC/PVC.
11: else
12: Arrhythmia =AF.
13: end if
14: else
15: Calculate std24 and std42, the standard deviation of θ24 and θ42, respectively.
16: if min(n24, n42) ≥ 5 && std24 ≤ 10 && std42 ≤ 10 then
17: Arrhythmia =PAC/PVC.
18: else
19: Calculate std12, std23, std64, std45, the standard deviation of θ12, θ23, θ64, and θ45, respectively.
20: if min(n64, n45) ≤ 3 then
21: Set std64 = 0 and std45 = 0.
22: end if
23: if min(n12, n23) ≤ 3 then
24: Set std12 = 0 and std23 = 0.
25: end if
26: if max(std12, std23, std64, std45) ≤ 10 then
27: Arrhythmia =PAC/PVC.
28: else
29: if rzero < 0.5||noutside ≥ 5 then
30: Arrhythmia =AF.
31: else
32: Arrhythmia =NSR.
33: end if
34: end if
35: end if
36: end if
37: return Arrhythmia
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For NSR-detected data segments, we also look for the ‘2-4’ patterns since they represent bigeminy.
To ensure that there are several PAC/PVC rhythms in a given 30-s data segment and to minimize false
positive detection of PAC/PVC due to either poor signal-to-noise ratio or random artifacts, we have
criteria that there needs to be more than 5 pairs of ‘2-4’ and ‘4-2’ patterns and the standard deviation of
slope angles must be equal to or less than 10 degrees, to be considered a PAC/PVC segment. If neither
of the above criteria is satisfied, we also check for other ‘kite’ shaped patterns.

For the two possible ‘kite’ shaped patterns associated with PAC/PVC, we subdivide ‘1-2-3’ and
‘6-4-5’ patterns into four vectors: vector ‘1-2’ and ‘2-3’ for pattern ‘1-2-3’, and ‘6-4’ and ‘4-5’ for pattern
‘6-4-5.’ The rationale for this is that ‘1-2-3’ or ‘6-4-5’ patterns might be interrupted by either bigeminy
or trigeminy beats, which can result in the following patterns: ‘6-4-2-4-5’ or ‘6-4-0-5’. Thus, if we detect
more than 3 pairs of either ‘1-2’ and ‘2-3’ or ‘6-4’ and ‘4-5,’ and the standard deviations of the paired
vectors (e.g., combinations of either 1-2 or 2-3, and the same for 6-4 or 4-5) is less than 10 degrees, the
data segment is then considered to contain PAC/PVC. Our choice of the 10 degree threshold value
will be further described and validated in the Results section 3.3 and Figure 5a.

If the standard deviation of the vector angle is greater than 10 degrees, we determine two criteria.
First, we calculate the same threshold value as in Algorithm 1, the ratio of points that fall inside the
zero quadrant to the entire number of datapoints in the Poincaré plot. The threshold for the ratio of
points inside the zero quadrant was set to greater than 50%. Our choice of this threshold value will be
further described and validated in the Results section 3.3 and Figure 5c.

Second, we calculate the total number of points that fall outside the ‘cross’ demarcation (the area
that quadrants zero, one, three, five, and six cover in the Poincaré plot). This threshold was set to
further discriminate AF segments from those of PAC/PVC, so this case pertains to the case when AF
was detected using our AF detection algorithm. The rationale for this is that for AF, the number of
Poincaré trajectories that fall outside of the cross demarcation boundaries will be much larger than
for PAC/PVC. As shown in Poincaré plots of Figure 3-(2) and (3) for AF and PAC/PVC, we observe
many more trajectories that fall outside of the cross demarcation for the former. Hence, we set this
threshold value to less than 5 points that all outside for the NSR detection decision for a given segment;
otherwise, the NSR decision is reclassified as AF. Our choice of this threshold value will be further
described and validated in the Results section 3.3 and Figure 5d.

3. Results

Human adjudication of motion noise deemed that 292 30-s segments from 35 subjects were
clean data. Our motion and noise artifact detection algorithm detected clean data segments from 37
subjects; 314 30-s segments were detected as clean [40]. The total number of 30-s segments from the
37 subjects is 2728, thus the coverage of detected clean window is 10.70%. Most of the clean data are
from non-movement stage in our protocol like sitting or standing stage, and non-movement stage
consists of only 35% of our experiment protocol in the ideal case. Moreover, for some subjects, their
health conditions do not allow them to follow the protocol rules strictly, thus we have fewer clean
windows than expected. The motivation to design an experiment protocol which includes different
types of daily activities was to test if AF and PAC/PVC detection can be accurately performed on the
smartwatch PPG data under motion noise artifacts. When compared to human adjudication of motion
noise, our motion and noise artifact detection algorithm detected an additional 25 segments as clean
and misdetected three segments as clean. The adjudication of the clean data and the determination
that the algorithm had misdetected clean data was performed by two of the authors (KHC and DH). If
there were disagreements between the two PPG readers on the results of adjudication for motion noise,
a third person’s (SB) opinion was solicited and the majority view was selected as the ground truth.
The same procedures were used for adjudication of the types of arrhythmias based on the reference
ECG data, except that the third person (DM) is an electrophysiologist from the UMMC team.

Evaluation of our PAC/PVC detection algorithm is based on data from both the motion artifact
detection algorithm (314 segments) and human adjudication of motion noise (292 segments). We show
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both data as this allows the results to be compared to our automated approach versus the human
adjudication approach. Moreover, this allows us to examine how including 25 additional motion and
noise corrupted data segments and the misdetected three clean segments affects the results when
compared to human adjudication of motion noise.

3.1. Results of PAC/PVC Detection

First, we show results from the 314 segments that were detected as clean from our motion artifact
detection algorithm [40]. The ground truth numbers based on human adjudication of motion noise,
including the 25 additional misdetected segments by the motion artifact algorithm, are provided in the
first row of Table 5. We adjudicated that there are 213, 55, and 46 segments associated with NSR, AF,
and PAC/PVC, respectively. The confusion matrix depicting results of the types of rhythms without
and with our proposed PAC/PVC detection algorithm is shown in Table 5. The purpose of displaying
Table 5 is to quantify the number of PAC/PVC segments that are incorrectly labeled as either NSR or
AF when our PAC/PVC detection algorithm is not used. Without the PAC/PVC detection algorithm,
NSR and AF were detected in 248 and 52 segments, respectively. Note that PAC/PVC segments are
classified as NSR in this case. The PAC/PVC detection algorithm, on the other hand, correctly classified
31 of the 46 as PAC/PVC and reduced 3 segments initially incorrectly detected as NSR to only 1.

Table 5. Evaluation of proposed PAC/PVC detection method based on automatic noise detection

Without
PAC/PVC Detection

With
PAC/PVC Detection

Non-AF AF NSR AF PAC/PVC

Ground Truth 259 55 213 55 46

True Positive 248 52 202 54 31
True Negative 52 248 99 233 256
False Positive 3 11 1 5 7
False Negative 11 3 11 1 15
Sensitivity 95.75 94.55 94.84 98.18 67.39
Specificity 94.55 95.75 99.00 97.90 97.34
PPV 98.80 82.54 99.51 91.53 81.58
NPV 82.54 98.80 90.00 99.57 94.46
Accuracy 95.54 95.54 96.17 97.95 92.88

Table 5 shows the performance evaluation of our PAC/PVC detection algorithm in more detail.
The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and
accuracy for PAC/PVC label detection are 67.39%, 97.34%, 81.58%, 94.46% and 92.88%, respectively.

Table 5 also shows the results without our proposed PAC/PVC algorithm in the left two columns.
The sensitivity of NSR classification values dropped slightly after our PAC/PVC detection, from 95.75%
to 94.84%. However, the specificity, PPV, NPV and accuracy increased from 94.55% to 99.0%, 98.80%
to 99.51%, 82.54% to 90.00%, and 95.54% to 96.17%, respectively. In addition, all five metrics’ values
improved for AF classification after the PAC/PVC algorithm was used, as the sensitivity, specificity,
PPV, NPV and accuracy all increased—from 94.55% to 98.18%, 95.75% to 97.90%, 82.54% to 91.53%,
98.80% to 99.57%, and 95.54% to 97.95%, respectively.

We also evaluated our arrhythmia classification algorithm results based on only the human
adjudication of motion noise. Table 6 shows the results using the 292 segments manually-adjudicated
to be clean. In this case, we found there to be 196, 54, and 42 segments associated with NSR, AF, and
PAC/PVC, respectively. Without the PAC/PVC detection algorithm, NSR and AF were detected in 231
and 51 segments, respectively. With the PAC/PVC detection algorithm, it correctly classified 29 of the
42 as PAC/PVC and reduced the three segments initially incorrectly detected as NSR to only 1.
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Table 6. Evaluation of proposed PAC/PVC detection method based on manual adjudication of clean
windows

Without
PAC/PVC Detection

With
PAC/PVC Detection

Non-AF AF NSR AF PAC/PVC

Ground Truth 238 54 196 54 42

True Positive 231 51 190 53 29
True Negative 51 231 94 219 243
False Positive 3 7 1 2 5
False Negative 7 3 6 1 13
Sensitivity 97.06 94.44 96.94 98.15 69.05
Specificity 94.44 97.06 98.95 99.10 97.98
PPV 98.72 87.93 99.48 96.36 85.29
NPV 87.93 98.72 94.00 99.55 94.92
Accuracy 96.58 96.58 97.59 98.91 93.79

Table 6 shows the performance evaluation of our PAC/PVC detection algorithm in more detail.
The sensitivity, specificity, positive predictive value, negative predictive value and accuracy for
PAC/PVC label detection are 69.05%, 97.98%, 85.29%, 94.92% and 93.79%, respectively.

Table 6 also shows the results without our proposed PAC/PVC algorithm in the left two columns.
The sensitivity of NSR classification values dropped slightly after our PAC/PVC detection, from
97.06% to 96.94%. However, the specificity, PPV, NPV, and accuracy increased from 94.44% to 98.95%,
87.93% to 94.00%, 98.72% to 99.48%, and 96.58% to 97.59%, respectively. In addition, all five metric
values improved for AF classification after PAC/PVC was algorithm was used, where the sensitivity,
specificity, PPV, NPV and accuracy all increased from 94.44% to 98.15%, 97.06% to 99.10%, 87.93% to
96.36%, 98.72% to 99.55%, and 96.58% to 98.91%, respectively.

3.2. Results of PAC/PVC Detection on Testing Datasets

We show the results of PAC/PVC detection using two additional testing datasets–MIMIC III and
Gear S3 smartwatch data. We want to stress that no further tuning of the algorithm was done with
these two datasets to detect PAC/PVC. The training of the algorithm was solely based on Simband
smartwatch data.

3.2.1. Gear S3 Dataset

The selected 101 30-s segments shown in Table 7 were adjudicated to determine that both the
reference ECG and PPG signals were devoid of motion artifact. Among 101 30-s segments, we
adjudicated that there are 54, 20, and 27 segments associated with NSR, AF, and PAC/PVC, respectively.
The sensitivity, specificity, NPV, PPV, and accuracy of PAC/PVC classification were found to be 92.59%,
98.65%, 96.15%, 97.33%, and 97.03%, respectively. For AF classification, our results were 100% accurate,
and for NSR classification, since we misdetected one NSR segment as PAC/PVC, the sensitivity, NPV,
and accuracy for NSR classification are 98.15%, 97.92%, and 99.01%. The specificity and PPV for NSR
classification were both 100%.
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Table 7. Evaluation of proposed PAC/PVC detection method on independent gear S3 dataset

With PAC/PVC Detection
NSR AF PAC/PVC

Ground Truth 54 20 27
True Positive 53 20 25
True Negative 47 81 73
False Positive 0 0 1
False Negative 1 0 2
Sensitivity 98.15 100 92.59
Specificity 100 100 98.65
PPV 100 100 96.15
NPV 97.92 100 97.33
Accuracy 99.01 100 97.03

3.2.2. MIMIC III Dataset

The results from 2614 30-s segments are shown in Table 8. The data consisted of 2220 segments of
NSR, 311 of AF, and 83 of PAC/PVC. The sensitivity, specificity, NPV, PPV, and accuracy of PAC/PVC
classification were found to be 92.77%, 100%, 100%, 99.76%, and 99.77%, respectively. For AF and NSR
classification results, the sensitivity of AF is 94.86%, and the specificity of NSR is 95.94%. However,
since there was only one false positive detection of AF, the specificity, PPV, NPV, and accuracy of AF
were found to be 99.96%, 99.66%, 99.31%, and 99.35%, respectively. For NSR classification, since there
was no false negative detection, the sensitivity, PPV, NPV, and accuracy were found to be 100%, 99.28%,
100%, and 99.39%, respectively.

Table 8. Evaluation of proposed PAC/PVC detection method on independent MIMIC III dataset

With PAC/PVC Detection
NSR AF PAC/PVC

Ground Truth 2220 311 83

True Positive 2220 295 77
True Negative 378 2302 2531
False Positive 16 1 0
False Negative 0 16 6
Sensitivity 100 94.86 92.77
Specificity 95.94 99.96 100
PPV 99.28 99.66 100
NPV 100 99.31 99.76
Accuracy 99.39 99.35 99.77

3.3. Performance of PAC/PVC Detection with Difference Thresholds

For Algorithms 1 and 2, there are mainly three sets of threshold values. As shown in Figure
5a, the selected standard deviation of the vector angle threshold value of 10 degrees provides the
best accuracy for the classification of the three classes (AF, NSR, and PAC/PVC), compared to other
threshold values. Furthermore, shown in Figure 5a, increasing the vector angle higher than 10 degrees
did not result in significantly better results. For example, 15 degrees provided an additional 0.01%
accuracy for the detection of AF and an additional 0.32% accuracy for PAC/PVC class. We do note,
however, that threshold values less than 10 degrees did result in significantly less accurate detection
of PAC/PVC, although both AF and NSR classification results were less affected. Hence, while these
results may vary slightly with additional new data, we believe that our choice of the vector angles’
standard deviation threshold value of 10 degrees is valid and that it may also be valid for new data.
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Figure 5. Performance of the proposed algorithms with different thresholds based on automatic noise
detection using Simband Dataset: accuracy of NSR, AF, and PAC/PVC classification with (a) thresholds
for the standard deviation of vector angles; (b), (c) two thresholds for the ratio of the number of heart
beat points in the zero quadrant; (d) thresholds for the total number of points fall outside the ’cross’
demarcation.

The second threshold we examined is the ratio of heart beat points that fall in the zero quadrant of
the Poincaré plot. For this threshold, which looks for the ratio of the number of points that reside within
the zero quadrant to the total number of points in the Poincaré plot space, we have set two different
thresholds to differentiate PAC/PVC from the algorithm-detected AF, and the algorithm-detected
non-AF labels. The former is for Algorithm 1 and the latter is for Algorithm 2. Note that Algorithm
1 is for those heart beats that were initially detected as AF based on our AF detection algorithm.
To ensure that frequent occurrences of PAC/PVC did not lead to false positive detection of AF, we
examined the threshold values to determine whether or not the heartbeats in the 30-s segment were
PAC/PVC. Algorithm 2 is valid only for the case when the AF detection algorithm states that the data
segment contains non-AF rhythms. However, we evaluated Algorithm 2 to examine whether or not
data segments contain PAC/PVC and discriminate these from NSR. Algorithm 1’s threshold value of
13% refers to the case when there are more than three occurrences of kite-shaped trajectories, but if
not, a 50% threshold value was used. To examine the choice of these two threshold values, we varied
these numbers, as shown in Figure 5b,c. The results are largely invariant to the threshold value ranges
shown (0.05–0.2 for the first threshold value and 0.3–0.7 for the second threshold value). However, our
chosen 13% and 50% values are the most optimal threshold values, as shown in these figures. Note
that the 50% threshold value for Algorithm 2 was also chosen to discriminate PAC/PVC from NSR.

The third threshold is the number of heart beats that fall outside the cross-shaped demarcation
boundaries in the Poincaré plot. To examine our choice of this threshold value of 5, we varied it from
1 to 15, as shown in Figure 5d. Similar to the prior threshold case (zero demarcation boundary), the
results are largely invariant to the choice of threshold value. However, the most optimal value is 5.

Overall, the performance of our proposed algorithm did not change much when these three sets
of thresholds values were varied. This is good news, as it instills confidence that our choice of these
threshold values will most likely be valid for new data.
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4. Discussion

The clinical importance of PAC/PVC detection is that frequent occurrences of these arrhythmia
can mimic the behavior of AF when irregular pulse intervals are the main feature used to detect
AF. Hence, the practical and ultimate aim of our PAC/PVC detection is to obtain more accurate AF
detection using smartwatch PPG signals. Indeed, we have shown that detecting PAC/PVC can lead to
significant false positive reduction during AF detection [40]. Other recent published reports [14,16–32]
have largely focused on AF without accounting for PAC/PVC and consequently their accuracy of AF
detection was suboptimal.

In this work, we illustrated a series of algorithmic approaches to discriminate PAC and PVC from
the NSR and AF data segments. We have shown that our PAC/PVC detection algorithm improved
the sensitivity and specificity values by 3.63% and 2.09%, respectively, for NSR detected segments. In
addition, we correctly detected six out of seven PAC/PVC segments for those data initially misdetected
as AF. Thus, the sensitivity for the PAC/PVC detection for AF was found to be 85.71%.

4.1. PAC/PVC Results Improved After Removing Noisy Windows

Comparing PAC/PVC detection results in Table 5 and 6, we can see that after manually removed
those false positive detect of noisy segments, the sensitivity, specificity, PPV, NPV and accuracy are
all increased. Though the values did not increase too much since our noise detection [40] is already
accurate enough, our PAC/PVC detection could be improved if PPG noise detection is 100% accurate.

4.2. Limitations of the Poincaré Plot Approach to Detect PAC/PVC

We were limited by the number of subjects with PAC/PVC arrhythmias. However, the Poincaré
plot approach proposed in this work is able to consistently reveal the distinct kite shape associated
with PAC/PVC, provided that the PPG signal is relatively devoid of motion artifacts. Hence, the
first criterion of the proposed approach to detect PAC and PVC starts with clean data segments. The
accuracy of the proposed approach hinges on clean PPG data. How motion artifacts affect the accuracy
of PAC/PVC detection is shown in Figure 6. Note that in Figure 6, though there exists high frequency
noises in the PPG signal, our motion noise artifact detection algorithm still detects these segments as
clean, which is good on increasing coverage but may induce false PAC/PVC detection [40]. All the
PPG signals in Figure 6 exhibit high frequency noise. Our peak detection algorithm is affected by these
high frequency noise artifacts as there are several instances where PPG heart rates deviate from the
reference ECG heart rates. In the top right panel of Figure 6, a kite shape is formed in the Poincaré plot
for NSR heart rates, which resembles the PAC/PVC patterns albeit we do not see the repeated kite
shaped patterns associated with clean data. Certainly, having a criterion of repeated kite pattern can
lead to false negative PAC/PVC detection in these noise-corrupted PPG data. The same issue arises
for row 3 of Figure 6, which represents a noise-contaminated PAC signal. Noise-artifact effect is seen
in the middle portion of the 30-s data segment, which results in an atypical quadrant pattern ‘4-2-3.’
Based on this atypical pattern, our algorithm will not detect this data segment to contain PAC/PVC
rhythms and consequently leads to false negative detection.

Another instance of low sensitivity for PAC/PVC detection arises from atypical patterns of
PAC/PVC, albeit these instances are less frequent. An example of atypical beats occurs at around
time 2890 s to 2895 s in the middle set of panels in Figure 6. For this data segment, there are three
consecutive fast PAC beats, but the Poincaré plot trajectory reveals a ‘5-0-6’ pattern with no distinct
kite shaped pattern, leading to false negative detection. Cases such as these can potentially benefit
from combining image-processing techniques with machine learning methods to overcome obstacles
associated with accurate detection of PAC/PVC, especially when data are contaminated with noise
artifacts.
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Figure 6. Difficulties in PAC/PVC detection using Poincaré Plot. Panel (1) is from noisy NSR subject
(4044); panel (2) is from noisy PAC subject (4017) with atypical PAC pattern; panel (3) is from same
noisy PAC subject (4017).

4.3. Signal Window Length Limited PAC/PVC Detection Accuracy

In this study, the data segment size was limited to 30 s for the purpose of possible real-time
detection. However, this is a challenging scenario as PAC/PVC occurrences within a 30-s data segment
tend to be limited to a few beats. Increasing the data length requirement to at least 1 minute will most
likely increase the sensitivity of PAC/PVC detection. The standardization of the number of PAC/PVC
patterns within a certain data length segment to be considered accurate detection has not yet been
established by the cardiac rhythm community.

4.4. Limitation of Small Sample Size

As this is a preliminary study to design an algorithm for detection of PAC/PVC, the data samples
were not large. To compensate for a limited data sample size, we have tested the algorithm using two
independent datasets with two different sensor modalities. The results were good, as accuracies were
higher than 92% for the two independent test datasets. Note that these results were based on fixing
all parameters derived from the training datasets from Simband and no further tuning was done for
the testing datasets from MIMIC III and Gear S3. Thus, these new results provide further verification
of the proposed PAC/PVC detection method. It is clear that if unknown patterns associated with
PAC/PVC occur in new data, certainly our method’s accuracy will suffer accordingly. Thus, it remains
to be seen if our results will remain as accurate with more data.
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5. Conclusions

In this study, we introduced a novel approach using the Poincaré plot and vector resemblance
method to perform PAC/PVC detection on smartwatch PPG data from AF and NSR subjects. Our
proposed approach has been shown to accurately distinguish PAC/PVC occurrences from subjects
with either NSR or AF. The ultimate benefit of this capability is not only the detection of PAC/PVC,
but fewer false positive detections of AF from NSR rhythms. This is because frequent occurrences of
PAC/PVC beats in a given NSR rhythm can lead to incorrect detection of AF, as these arrhythmias
introduce some randomness in the variability of heart rates. The independent test datasets using
different sensor modalities (Gear S3 smartwatches and clinical pulse oximeter-derived PPG MIMIC III
database) showed that our proposed method provides rather high detection accuracy (>92% on both
datasets). These results instill some confidence in the generalizability of the proposed method.

Supplementary Materials: The training dataset, Simband dataset, and the testing dataset, MIMIC III dataset, are
available for download on our lab’s website: https://biosignal.uconn.edu/resources/. The details of Samsung
Simband can be found on: https://www.simband.io.
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