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Abstract

We have performed a direct comparison between facial features obtained from a webcam and vigilance-task performance during
prolonged wakefulness. Prolonged wakefulness deteriorates working performance due to changes in cognition, emotion, and by
delayed response. Facial features can be potentially collected everywhere using webcams located in the workplace. If this type of
device can obtain relevant information to predict performance deterioration, this technology can potentially reduce serious
accidents and fatality. We extracted 34 facial indices, including head movements, facial expressions, and perceived facial
emotions from 20 participants undergoing the psychomotor vigilance task (PVT) over 25 hours. We studied the correlation
between facial indices and the performance indices derived from PVT, and evaluated the feasibility of facial indices as detectors
of diminished reaction time during the PVT. Furthermore, we tested the feasibility of classifying performance as normal or
impaired using several machine learning algorithms with correlated facial indices. Twenty-one indices were found significantly
correlated with PVT indices. Pitch, from the head movement indices, and four perceived facial emotions—anger, surprise,
sadness, and disgust—exhibited significant correlations with indices of performance. The eye-related facial expression indices
showed especially strong correlation and higher feasibility of facial indices as classifiers. Significantly correlated indices were
shown to explain more variance than the other indices for most of the classifiers. The facial indices obtained from a webcam
strongly correlate with working performance during 25 hours of prolonged wakefulness.

Keywords Prolonged wakefulness - Fatigue - Sleep deprivation - Reaction time - Artificial intelligence - Facial expressions -
Facial emotions

Prolonged wakefulness induces adverse changes in cognitive
performance (Alhola & Polo-Kantola, 2007; Killgore et al.,
2008; Lim & Dinges, 2008). These changes are well
established in the literature and include increased likelihood
of errors, increased time to complete tasks or react to stimuli,
and impaired attention, memory, and decision-making, among
others (Akerstedt & Philip, 2015; Dinges, 1995; Griffith &
Mahadevan, 2015; Hafner, Stepanek, Taylor, Troxel, & van
Stolk, 2017). Many studies have reported that prolonged
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wakefulness increases human-error related accidents such as
traffic accidents and chemical safety accidents (Akerstedt &
Philip, 2015; Dinges, 1995; Griffith & Mahadevan, 2015;
Hafner et al., 2017; Philip et al., 2014). Workers such as trans-
portation drivers, medical providers, and military personnel
may be required to work long hours or at night, leaving them
susceptible to prolonged wakefulness and resulting negative
impacts on their job performance. Decreased productivity and
critical mistakes that result from prolonged wakefulness can
be costly at both individual and societal levels (Akrout &
Mahdi, 2013; Philip et al., 2014; Werner, Al-Hamadi,
Limbrecht-Ecklundt, Walter, & Traue, 2018). To address
these issues, researchers have been working to develop effec-
tive methods to detect and/or predict decrements in perfor-
mance due to prolonged wakefulness before costly mistakes
are made. These efforts include vocal features, electrodermal
activity signals, and heart rate variability (McGlinchey et al.,
2011; Posada-Quintero, Bolkhovsky, Qin, & Chon, 2018;
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Sloboda et al., 2018). However, vocal features are not easy to
document in noise environment, and the other biosignal
methods are limited in that they are sensitive to motion arti-
facts, expensive, and require electrodes to be attached to the
skin/body.

One promising solution to detecting and predicting cogni-
tive performance impairments during prolonged wakefulness
is through tracking facial features and head movements.
Humans express their social and emotional states through
moving the facial muscles and the head, both consciously
and unconsciously (Damasio, 1998; Dimberg, Thunberg, &
Elmehed, 2000; Magai & McFadden, 1996; Sauter, Eisner,
Ekman, & Scott, 2010). These emotional states vary from
the six Ekman’s basic emotions (Ekman, 1999), defined as
anger, disgust, fear, happiness, sadness, and surprise. In addi-
tion to the six basic emotions, the composite emotions such as
positive and negative valence (Adolph & Alpers, 2010;
Cordaro et al., 2018) can also be estimated using movements
of facial muscles or expressions (R. Ekman, 1997; Friesen &
Ekman, 1983). Fatigue, often caused by prolonged wakeful-
ness (National Academies of Sciences, Engineering, and
Medicine; Division of Behavioral and Social Sciences and
Education; Transportation Research Board; Committee on
National Statistics; Board on Human-Systems Integration; &
Panel on Research Methodologies and Statistical Approaches
to Understanding Driver Fatigue Factors in Motor Carrier
Safety and Driver Health, 2016), has also been suggested as
an emotional state that may lead to adjustment of homeostatic
balance and peripheral physiological changes (Gibson et al.,
2003; LeDoux, 1998; Noakes, 2012). Noakes (2012) sug-
gested that fatigue can be considered as an emotion regulating
exercise behavior to protect the homeostasis of the body.

Therefore, facial expressions, facial emotions, and head
movements can be considered in assessing prolonged
wakefulness. Sundelin et al. (2013) reported that prolonged
wakefulness affects facial features and may in certain cases
make a face look sad. They found that prolonged
wakefulness affects eyelids, exacerbates wrinkle formation
and lines around eyes, and makes the corners of the mouth
droop. Based on their discovery, Peng, Luo, Glenn, Zhan,
and Liu (2017)used machine-learning techniques with facial
features (including eyelids, wrinkle around eyes, and droopy
corner mouth) to measure the degree of fatigue using self-
taken photos or selfies from social media. Also, facial infor-
mation has often been exploited to detect fatigue while driv-
ing (B. Lee & Chung, 2012; Y. Zhang & Hua, 2015). B. Lee
and Chung (2012) used the eye-closure feature to detect fa-
tigue while driving along with photoplethysmography and
eye-blinking features . Y. Zhang and Hua (2015) trained a
support vector machine (SVM) classifier with facial features
extracted around the mouth and eye region to detect drivers’
fatigue. Also, several studies have used head movements to
detect drivers’ drowsiness using a camera (Akrout & Mahdi,
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2013; Friedrichs & Yang, 2010; Mittal, Kumar, Dhamija, &
Kaur, 2016). The studies aimed to analyze and detect fatigue
caused by prolonged wakefulness using facial features; how-
ever, it is still unclear if prolonged wakefulness detected
through facial features correlates with performance deterio-
ration. Therefore, the facial features need to be quantitatively
evaluated with working or cognitive performance during
prolonged wakefulness.

To summarize, prolonged wakefulness affects both cogni-
tive performance and facial expression, facial emotions, head
movements. As mentioned earlier, many methods have
exploited facial features and head movements to detect
prolonged wakefulness. However, no study has examined
the facial features in parallel with working or cognitive per-
formance during prolonged wakefulness. If facial features ob-
tained with an easily accessible and relatively low-cost device
like a webcam can provide information that can be used to
predict the deterioration of performance produced by
prolonged wakefulness, the technology could be used to alle-
viate the harmful or even fatal consequences of performance
impairment. Hence, we aimed to investigate and compare the
changes in facial features (facial expressions, facial emotions,
and head movements) and the deterioration of working and
cognitive performance during prolonged wakefulness. We
tested and analyzed facial features obtained using a webcam,
while measuring working performance using the psychomotor
vigilance task (PVT) for 25 hours. The PVT has often been
used to study overall performance during prolonged wakeful-
ness due to its reliability and limited confounding effects of
aptitude and learning (Basner & Dinges, 2011; Basner,
Mollicone, & Dinges, 2011; Kripke, Marler, Calle, Marler,
& Calle, 2004; Lim & Dinges, 2008). The PVT enables a
researcher to obtain neurobehavioral changes in vigilant atten-
tion, state stability, and impulsivity by measuring the time
required to press a button in reaction to a visual stimulus
(Goel, 2017). In addition, PVT indices have shown strong
correlation with duration of awake time during prolonged
wakefulness (Lim & Dinges, 2008). We then tested machine
learning methods to test feasibility of classifying deteriorated
performance based on PVT using facial features, and to ex-
amine predictive validity of a set of facial features correlated
with PVT performance.

Methods
Participants

A total of 20 healthy participants were recruited (13 males and
seven females, 19-32 years of age). Participants were paid
hourly and offered extra compensation if they completed the
study, to motivate them to finish the experiment. Signed con-
sent forms were collected before the experiments. Our choice
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of 20 subjects allows greater than 95% confidence interval to
observe a significant effect (p < .05; Faul, Erdfelder, Lang, &
Buchner, 2007; Sundelin et al., 2013). Furthermore, this sam-
ple size is sufficient to detect a correlation of at least 0.8
between PVT and facial indices at the 0.05 level of signifi-
cance (Dorrian, Rogers, & Dinges, 2005; Posada-Quintero
et al., 2018; Zar, 1999).

Stimuli and materials
Psychomotor vigilance task

The 10-min duration PVT test was performed using PC-PVT
(a MATLAB-based tool) on a desktop computer (Khitrov
et al., 2014). Participants were asked to click the left button
of a mouse as fast as they could when a number indicating
elapsed time appeared on a black background screen. Four
PVT indices were calculated: average reaction time (AVRT),
the number of major lapses (MaL, RT > 1 s), the number of
minor lapses (MiL, 1 s >RT > 0.5 s), and the number of false
starts (FS) when participants clicked the mouse button before
the number appeared. Reaction time is defined as the lapse
between the time the stimuli was shown on the screen, and the
time the participant clicked the mouse. Many studies that con-
ducted PVT during prolonged wakefulness have reported an
increase of AVRT, MiL, and FS on the PVT (Basner &
Dinges, 2011; Basner et al., 2011; Doran, Van Dongen, &
Dinges, 2001; Posada-Quintero et al., 2018). MiL is signifi-
cantly associated with physical fatigue (I.-S. Lee, Bardwell,
Ancoli-Israel, & Dimsdale, 2010). Many studies showed de-
terioration of MaL during prolonged wakefulness (Anderson,
Wales, & Home, 2010; Posada-Quintero et al., 2018; C.
Zhang et al., 2012).

Facial indices

Facial video recordings were obtained using a Logitech C920
HD webcam, placed in front of the participants, on top of the
screen. Facial indices were estimated using iMotions with
Affectiva, as shown in Table 1 (McDuff et al., 2016).
iMotions with Affectiva is a commercially available software

based on Affdex software development kit (SDK) that extracts
perceived facial emotion, expressions, and head movements.
Affectiva claims accuracy of key emotion detection in the
high 90th percentile, validated using 6 million facial videos
from more than 87 countries (Affectiva, 2017). A total of 34
facial features were collected within four categories: head
movement, facial expression, perceived facial emotion, and
composite indices. The head movement indices consist of
three head movement orientations (Yaw, Pitch, and Roll) de-
termined by estimating the head position in a 3D space in
Euler angles, as shown in Fig 1, and interocular distances
between the two outer eye comners, essentially indicating a
combination of the yaw and the movement between the face
and the screen. Twenty facial expressions and seven perceived
emotion indices were collected, all ranging between 0 and
100. Perceived facial emotion was based on the emotional
facial action coding system (EMFACS; Friesen & Ekman,
1983; McDuff et al., 2016). EMFACS determines the likeli-
hood of perceived emotions (not real emotions) based on fa-
cial expression changes (called “action units”) without bias by
the investigators or techniques (Wolf, 2015). Moreover, va-
lence, engagement, and attention were calculated using
iMotions with Affectiva software based on the perceived emo-
tion indices and head orientations (Yaw, Pitch, and Roll), as
shown in Table 2. Engagement is a measure of facial muscle
activation ranging between 0 and 100, and valence indicates
the intrinsic positivity or negativity in emotions ranging be-
tween —100 and +100 (Frijda, 1986).

Design and procedure

All participants were asked to maintain consistent sleep prior
to the day of the experiment, in addition to recording sleep
diaries for a week before the experiment day. They were asked
to avoid any stimulating or caffeine-containing drink or food
starting 48 hours before their experiment day. They were also
asked to bring their food on the experiment day, and the food
was checked by experimenters to ensure compliance.
Participants completed a medical screening questionnaire to
ensure there would be no medical issues and to prevent unex-
pected accidents and minimize confounding factors, such as

Table 1 Facial indices obtained

using iMotions with Affectiva. Category

Indices

Index names are from Affectiva
Head Movement

Facial Expression

Pitch, Yaw, Roll, Interocular Distance
Brow Furrow, Inner Brow Raise, Brow Raise, Lid Tighten, Smirk,

Eye Closure, Eye Widen, Smile, Nose Wrinkle, Cheek Raise,
Upper Lip Raise, Lip Pucker, Lip Press, Lip Stretch, Lip Suck, Mouth Open,

Perceived Facial Emotion

Composite

Chin Raise, Lip Corner Depressor, Dimpler (Dimpling), Jaw Drop
Joy, Anger, Surprise, Fear, Sadness, Disgust, Contempt
Valence, Engagement, Attention
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Fig. 1 Head orientations

certain medications that can affect prolonged wakefulness.
Participants received a 30-minute training at some point with-
in two days before the start of the experiment.

Participants were asked to wake up at 6 AM and arrive at
the building within 2 hours of waking up. The experiments
were conducted in a 3 % 3-meter lab in the Engineering and
Science building on the Storrs campus of the University of
Connecticut. The room temperature was adjusted to the pref-
erence of each participant. The participants stayed with exper-
imenters inside the building during the experiment. A total of
13 sessions per participant was performed every 2 hours for 25
hours. In every session, PVT test was performed, after a 4-

minute baseline recording without any test (Khitrov et al.,
2014; Loh, Lamond, Dorrian, Roach, & Dawson, 2004).
Facial indices were obtained in real time during each session.
Experimenters monitored the participants to ensure they were
awake throughout the study. This research complied with te-
nets of the Declaration of Helsinki and was approved by the
Institutional Review Board at the University of Connecticut.

Statistics

From the experiments, the facial indices and working perfor-
mance during the PVT were obtained for the 13 runs during
the 25 hours of prolonged wakefulness, for the 20 subjects.
Each participant’s facial index was divided by the Euclidean
norm of each session vector (1-13) of each participant, in
order to accommodate the differences among subjects (Horn
& Johnson, 1990). The Kolmogorov—Smirnov test was used
to check normality of each PVT index and each feature index
of each participant. The significant differences were calculat-
ed using the one-way analysis of variance (ANOVA) for nor-
mally distributed variables, while for nonnormally distributed
variables we used Dunn’s test due to the existence of missing
data. For these analyses, the Bonferroni method was used for
the purpose of multiple comparison correction.

For correlation analysis, the intersubject average value for
each session was obtained for each facial index and measure of
performance. The correlation coefficients were then calculated

Table 2 Relation between indices
(Friesen & Ekman, Perceived emotion indices

1983; Affectiva, 2017) Joy

Anger

Surprise
Fear
Sadness
Disgust
Contempt

Composite indices
Valence

Engagement

Attention

Facial expression indices
Smile
Brow Raise, Brow Furrow

Brow Furrow, Lid Tighten, Eye Widen, Chin Raise,
Mouth Open, Lip Suck

Inner Brow Raise, Brow Raise, Smile

Nose Wrinkle, Upper Lip Raise

Lip Suck, Smile

Inner Brow Raise, Brow Raise, Eye Widen, Jaw Drop
Brow Furrow

Inner Brow Raise, Brow Furrow, Eye Widen, Lip Stretch
Brow Raise, Lip Corner Depressor, Jaw Drop, Smile
Inner Brow Raise, Brow Furrow, Lip Corner Depressor
Brow Raise, Eye Widen, Lip Press, Mouth Open, Lip Suck, Smile
Brow Furrow, Smirk

Smile

Facial expression or head movement indices

Smile, Cheek Raise

Inner Brow Raise, Brow Furrow, Nose Wrinkle, Upper Lip Raise,
Lip Corner Depressor, Chin Raise, Lip Press, Lip Suck

Brow Raise, Brow Furrow, Nose Wrinkle, Lip Corner Depressor,
Chin Raise, Lip Pucker, Lip Press, Mouth Open, Lip Suck, Smile

Pitch, Yaw, Roll
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between each PVT index (AvRT, MaL, MiL, and FS) and each
facial index. All facial indices and three PVT indices, AVRT,
MiL, and FS were normally distributed, while MalL. was
nonnormally distributed. Thus, we calculated the Pearson and
Spearman correlation coefficients for three PVT indices
(AVRT, MiL, and FS) and MaL, respectively.

Each PVT value larger than mean + standard deviation was
set as a deterioration (Class 1), which represents approximate-
ly 84.1% of the data (given the normality of the data), while
the rest were set as normal (Class 0), as follows:

class1 .
classO ,/2{AVRT ,MaL,MiL, FS}.

(1)

The receiver operating characteristic (ROC) curves were
obtained for each facial index and the PVT indices of each
participant in order to evaluate the feasibility of facial indices
as detectors of performance deterioration during prolonged
wakefulness (Fan, Upadhye, & Worster, 2006). ROC curves
calculate true positive and false positive rates of a classifica-
tion model at all classification thresholds that determine two
classes (Class 1 and Class 0). The thresholds can be cither
probability of prediction or feature values when a single fea-
ture is evaluated. For evaluating each feature, we used all
possible values of each normalized facial index as thresholds.
Table 3 shows an example of ROC curve using a feature
threshold of 0.2. To evaluate the ROC curves, area under the
curves (AUC, ranging between 0 and 1) were computed,
which indicate performance across all possible classification
thresholds. The higher AUC indicates more sensitivity of each
facial feature to detecting performance deterioration caused by
prolonged wakefulness. Figure 2 shows an example of ROC
curve and AUC for eye closure.
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Fig. 2 An example of ROC curve (eye closure)

Finally, we performed machine learning to detect perfor-
mance deterioration with facial features. We tested two data
sets that consisted of (1) all facial features and (2) facial fea-
tures that highly correlated with PVT indices only. We used
six different machine-learning models: support vector ma-
chine (SVM) with the linear, with the radial basis function
(RBF) kernel, and with a third-order polynomial kernel, logis-
tic regression, random forest, and k-nearest neighbors (KNN).
Each classification method has its strengths and weaknesses.
SVM is one of the most popular machine-learning methods
that classifies or regresses linear data sets by maximizing
boundaries between classes, and nonlinear problems can be
solved using different types of kernels (e.g., RBF, polynomial
kernels; Cortes & Vapnik, 1995). SVM has been used in many
applications to date in part due to its robustness to high di-
mensional data, but it may not perform well for large data sets
or noisy data sets. Logistic regression is a generalized linear
classifier that estimates the probability of a class (such as
deterioration) using a sigmoid function (McCullagh, 2019).
Logistic regression is simpler and requires fewer parameter
to tune, but it cannot solve nonlinear problems. Random forest

Table 3 An example of ROC curve calculation when a threshold (facial index) is 0.2
Subject Session Time Normalized facial Predicted class Target AVRT subthreshold: 507.77 ms
index (eye closure) (threshold: 0.2)
PVT AVRT (ms) Class
Sub 1 12272018 1(0h) 08 AM 0.0683 0 287.50 0
2@2h) 10 AM 0.2255 1 307.64 0
3(4h) 12 PM 0.1559 0 315.45 0
4 (6h) 02 PM 0.2225 1 330.43 0
5(@h) 04 PM 0.3873 1 323.17 0
6 (10 h) 06 PM 0.3218 1 325.11 0
7 (12 h) 08 PM 0.1706 0 319.93 0
8 (14 h) 10 PM 0.2589 1 367.77 0
9 (16 h) 12 AM 0.0763 0 315.96 0
10 (18 h) 02 AM 0.0708 0 408.07 0
11 (20 h) 04 AM 0.3090 1 614.36 1
12 (22 h) 06 AM 0.5946 1 360.74 0
13 (24 h) 08 AM 0.2471 1 693.67 1
Sub 2 09082018 1(0h) 08 AM 0.4677 1 230.28 0
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classifier is an ensemble learning method that is based on
voting among multiple decision trees generated with different
criteria (e.g., number of samples, features; Ho, 1995). It is
suitable for high dimensional data and nonlinear data; it also
provides low bias and moderate variance with the voting strat-
egy. However, several parameters have to be tuned according-
ly to avoid overfitting problems. In KNN classification, each
sample’s class is determined by voting among the training
data set’s closest K number (Altman, 1992). It is robust to
noisy data sets, but sensitive to irrelevant features (i.e., fea-
tures have to be properly selected).

Data were standardized with zero mean and unit variance.
Class weights are applied for the methods due to the imbal-
ance of the data set (210 samples for normal class and 40
samples for deterioration class). SVM parameters were set as
1 and 0.5 of C and gamma, respectively, for all kernels.
Logistic regression was performed with Broyden—Fletcher—
Goldfarb—Shannon’s optimizer (Fletcher, 2013). Random for-
est was run with 10 estimators. Finally, KNN was performed
with K = 5. All models were trained both with all indices, and
with a set of indices that was highly correlated with the PVT
outcomes. We evaluated using the leave-one-subject-out
(LOSO) cross-validation approach (Koul, Becchio, &
Cavallo, 2018). The LOSO cross-validation approach leaves
all samples from one subject to be a test data set and uses the
samples from all other subjects to be a training data set, and
the procedure is repeated until all subjects are tested. This
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helps prevent overfitting and avoid subject bias and maximize
the number of training sets (Dietterich, 1995; Ng, 1997). We
then calculated the geometric mean scores (the squared root of
the product of the sensitivity and specificity) of each method
due to the imbalance of the data set. Geometric mean score
measures the balance between classification performance of
major and minor classes effectively, by maximizing both clas-
ses’ accuracy equally by using both sensitivity and specificity
(Akosa, 2017). Also, we used the SHapley Additive
exPlanations (SHAP) to evaluate the importance of each fea-
ture in terms of the degree of its contribution (Lundberg et al.,
2019; Lundberg & Lee, 2017), which is a good tool to evalu-
ate feature importance of machine learning models using a
game theory and related statistic methods.

Results

Overall, all PVT indices showed similar trends, with sig-
nificantly higher values for the last two to four sessions
when compared to the rest of the sessions. Figures 3, 4,
5, 6, 7 and 8 display the mean + standard error of the mean
(SEM) of each PVT index and each facial index highly
correlated with PVT indices. Significant differences be-
tween sessions are shown with the numbers in the figures,
obtained using multicomparison tests. In Fig. 3, all PVT
indices showed increasing trends through all sessions, with
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Fig. 3 Indices of performance on PVT. Mean + SEM. The column numbers indicate their significant differences to each corresponding vertical x-axis

session (p <.05)
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Fig. 4 Pitch of the head movement indices. Mean + SEM

the highest values in the last session. AVRT and MaL ex-
hibited that the last three sessions were significantly higher
than the rest of the sessions. Likewise, they both showed
noticeable drops in the last three sessions. On the other
hand, MiL and FS showed that the last four and last two
sessions were significantly higher than the other sessions,
respectively. Also, MiL. monotonically increased until the
ninth session, and FS showed an increasing trend during
the first nine sessions with noticeable performance drops.

Tables 4 and 5 show correlation coefficients and the AUCs
derived from the ROC curves, respectively, between each
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PVT index and each facial index. Twenty-one facial indices
from all four categories (AVRT, MaL, MiL, and FS) showed
high correlation coefficients with PVT indices. Pitch from
head movement indices showed a significant correlation with
PVT indices. Among facial expressions, Brow Furrow, Brow
Raise, Inner Brow Raise, Eye Closure, Lid Tighten, Lip
Corner Depress, Upper Lip Raise, Mouth Open, Lip Pucker,
Dimpler, Jaw Drop, Nose Wrinkle, and Chin Raise were high-
ly correlated with PVT indices. Finally, anger, surprise, sad-
ness, disgust of perceived facial emotion indices and all com-
posite indices were highly correlated with PVT indices.

Among head movement indices, Pitch showed significant
correlation with the PVT indices AvRT, MaL, and FS (0.77,
0.64, and 0.73, p < .05) and MiL (0.84, p < .001). Pitch
showed an increasing trend, except for slight decreases be-
tween the fifth and eighth sessions, as shown in Fig. 4. As
shown in Table 5, it also had the highest AUC with AvRT,
MaL, MiL, and FS (0.62, 0.62, 0.61, and 0.62) among the
head movement indices. Yaw and roll negatively correlated
with all PVT indices.

Figure 5 shows the facial expression indices for the upper
part of the face, which strongly correlated with the PVT
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Fig. 5 The upper facial expression. The column numbers indicate their significant differences to each corresponding vertical x-axis session (p < .05)
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Fig. 6 The lower facial expression indices strongly correlated with the PVT indices. Mean + SEM. The column numbers indicate their significant

differences to each corresponding vertical x-axis session (p < .05)

indices. Although showing strong correlations with AvRT and
FS (0.56 and 0.65, p < .05), brow furrow exhibited the lowest
AUC values with all PVT indices among the indices, as the
last two values are similar to the second and sixth sessions in
Fig. 5. Brow raise showed noticeably higher values in the last
three sessions except for the particularly high value in the fifth
session, but not significantly different (possibly due to the
high SEM). Inner brow raise, eye closure, and lid tighten
showed higher values in the last three sessions than those in
the other sessions. Inner brow raise and eye closure showed a
noticeable drop in the 12th session, while lid tighten showed
the slightly higher value in the 12th session than in the two
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adjacent sessions. The 11th and 13th sessions of eye closure
were significantly different from first, third, fifth, seventh, and
eighth sessions, and the 12th session of lid tighten was signif-
icantly different from second, third, fifth, and seventh-ninth
sessions. Lid tighten was revealed to have the highest corre-
lation coefficients with AVRT, MaL, and FS (0.89, 0.83, and
0.87, p < .001) among facial expression indices (even MiL
showed a significant correlation of 0.86, p < .001) and the
highest AUC with AvRT (0.79).

Figure 6 shows that the lower facial expression indices
(near the mouth) strongly correlated with the PVT indices.
These indices exhibited a similar pattern—the changes of the
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first six or seven sessions are irregularly lower than those of
the last one to three sessions, followed by stable movements
during the next two to four sessions showing noticeable in-
creases in the rest of the sessions. The values in the last three
sessions of Lip Corner Depress were higher than those of the
other sessions with a dip in the 12th session, and the values in
the 11th and 13th sessions of that were significantly different
from those in the eighth session. Nose Wrinkle and Upper Lip
Raise exhibited similar changes throughout all sessions, with
noticeably higher value in the last session. Mouth Open
showed higher values in the last two sessions, possibly due
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to yawning. Although shown high SEM, chin raise showed
higher values in the 11th and 12th sessions with recovering in
the 13th session, possibly due to nodding off. Both Lip Pucker
and Dimpler (Dimpling) showed a particularly high value in
the fourth session. Lip pucker showed the higher values in the
last two sessions, and the value in the last session was signif-
icantly higher than in the sixth session. Dimpler (Dimpling)
showed the higher values in the last three sessions. Jaw Drop
showed noticeable higher values in the last two sessions, and
the value in the last session was significantly higher than in the
fifth and sixth sessions.
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Table 4 Correlation coefficients between PVT and facial indices

Average RT Major lapses Minor lapses False starts

R 95% CI R 95% CI R 959% CI R 95% CI

Head movement
Pitch 0.77" 0.38,0.93 0.64" 0.14, 0.88 0.84™ 0.54, 0.95 0.73" 0.30, 0.91
Yaw -0.21 -0.68, 0.39 -0.18 -0.67, 0.41 -0.23 -0.69, 0.37 -0.04 -0.58, 0.52
Roll —0.44 -0.80, 0.15 -0.38 -0.77,0.22 -0.46 —0.81,0.12 -0.36 -0.76, 0.24
Interocular Distance 0.16 —0.43, 0.65 0.01 -0.54, 0.56 0.00 —0.55, 0.55 -0.02 -0.56, 0.54

Facial expression
Brow Furrow 0.56" 0.01, 0.85 0.39 -0.21,0.77 0.43 -0.16, 0.79 0.65" 0.15, 0.88
Brow Raise 0.82" 0.49, 0.94 0.63" 0.12,0.88 0.85" 0.56, 0.95 0.80" 0.45,0.94
Inner Brow Raise 0.89™ 0.67, 0.97 0.62" 0.10, 0.87 0.86™ 0.59, 0.96 0.80" 0.45,0.94
Eye Closure 0.88™ 0.64, 0.96 0.75" 0.34,0.92 0.89" 0.67,0.97 0.82" 0.49, 0.94
Lid Tighten 0.89™ 0.67, 0.97 0.83"" 0.51,0.95 0.86" 0.59, 0.96 0.87" 0.61,0.96
Eye Widen 0.20 -0.39, 0.68 0.24 -0.36, 0.70 0.14 —0.45,0.64 0.16 -0.43, 0.65
Cheek Raise -0.07 -0.60, 0.50 -0.19 -0.67, 0.40 -0.26 -0.71,0.34 -0.15 —0.65, 0.44
Lip Corner Depress 0.72" 0.28,091 0.52 -0.04, 0.83 0.67" 0.19, 0.89 0.59" 0.06, 0.86
Nose Wrinkle 0.85™ 0.56, 0.95 0.52 —0.04, 0.83 0.73" 0.30, 0.91 0.76" 0.36, 0.92
Upper Lip Raise 0.75" 0.34,0.92 0.30 -0.30, 0.73 0.58" 0.04, 0.86 0.67° 0.19, 0.89
Mouth Open 0.86" 0.59, 0.96 0.49 -0.08, 0.82 0.73" 0.30, 0.91 0.79" 0.42,0.93
Chin Raise 0.61" 0.09, 0.87 0.51 -0.06, 0.83 0.61" 0.09, 0.87 0.59" 0.06, 0.86
Lip Pucker 0.80" 0.45,0.94 0.66" 0.17,0.89 0.83™ 0.51,0.95 0.70" 0.24, 0.90
Dimpler (Dimpling) 0.70" 0.24, 0.90 0.57" 0.03, 0.85 0.73" 0.30, 0.91 0.59" 0.06, 0.86
Smirk 0.44 -0.15, 0.80 0.37 -0.23,0.77 0.38 -0.22,0.77 0.27 -0.33,0.71
Lip Suck 0.12 —0.46, 0.63 0.23 -0.37, 0.69 0.21 -0.39, 0.68 0.05 -0.52, 0.58
Lip Press 0.51 -0.06, 0.83 0.47 -0.11, 0.81 0.51 -0.06, 0.83 0.39 -0.21,0.77
Lip Stretch 0.23 -0.37, 0.69 0.20 -0.39, 0.68 0.34 -0.26,0.75 0.07 -0.50, 0.60
Jaw Drop 0.86" 0.59, 0.96 0.66" 0.17,0.89 0.85" 0.56, 0.95 0.72" 0.28,0.91
Smile 0.11 —0.47,0.62 -0.07 -0.60, 0.50 -0.08 —0.60, 0.49 0.01 -0.54, 0.56

Perceived facial emotion
Joy -0.01 -0.56, 0.54 -0.22 -0.69, 0.38 -0.21 -0.68, 0.39 -0.14 —0.64, 0.45
Anger 0.79" 0.42,0.93 0.29 -0.31,0.73 0.61" 0.09, 0.87 0.80" 0.45,0.94
Surprise 0.82" 0.49, 0.94 0.50 -0.07, 0.82 0.86™ 0.59, 0.96 0.71" 0.26, 0.91
Fear 0.45 -0.13, 0.80 0.40 -0.19,0.78 0.32 -0.28,0.74 0.53 -0.03, 0.84
Contempt 0.45 -0.13, 0.80 0.35 -0.25,0.76 0.38 -0.22,0.77 0.34 -0.26,0.75
Sadness 0.85™ 0.56, 0.95 0.38 -0.22,0.77 0.71" 0.26, 0.91 0.90" 0.69, 0.97
Disgust 0.89™ 0.67, 0.97 0.54 -0.02, 0.84 0.83" 0.51,0.95 0.79" 0.42, 0.93

Composite
Valence -0.52 -0.83, 0.04 -0.52 -0.83,0.04 -0.58" -0.86, —0.04 -0.57" -0.85,-0.03
Engagement 0.75" 0.34, 0.92 0.48 -0.10, 0.82 0.60" 0.07, 0.87 0.70" 0.24, 0.90
Attention -0.39 -0.77,021 —0.54 -0.84, 0.02 -0.56" -0.85,-0.01 -0.36 -0.76, 0.24

*p < .05. **p < .001. Bonferroni correction was used

Figure 7 shows the four perceived emotions—Anger,
Surprise, Sadness, and Disgust—highly correlated with the
PVT indices except for MaL. Perceived emotion indices
showed positive correlation coefficients with PVT indices,
except for Joy. Especially, Surprise, Sadness, and Disgust
correlated highly with all PVT indices, except for the Mal
(0.82, 0.85, and 0.89, respectively, p <.001). Anger, Sadness,
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and Disgust exhibited noticeable drops in the last two ses-
sions, while values in the last three sessions of Surprise were
higher than in the other sessions.

Figure 8 shows the composite indices, valence, engage-
ment, and attention are highly correlated with all PVT indices,
except for MaL.. All composite indices had no significant dif-
ference between sessions. Valence and attention showed
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Table 5 AUC:s of facial indices with PVT indices

Average RT Major lapses Minor lapses False starts

AUC 95% CI AUC 95% CI AUC 95% CI AUC 95% CI

Head movement
Pitch 0.62 0.51,0.73 0.62 0.51,0.73 0.61 0.52,0.70 0.62 0.52,0.72
Yaw 0.51 0.40, 0.62 0.52 041, 0.63 0.42 0.33,0.51 0.49 0.39, 0.59
Roll 0.46 0.35,0.57 045 0.35,0.55 0.46 0.37, 0.55 0.47 0.37,0.57
Interocular Distance 0.58 047, 0.69 0.62 0.51,0.73 0.59 0.50, 0.68 0.58 0.48, 0.68

Facial expression
Brow Furrow 0.50 0.39, 0.61 0.57 0.46, 0.68 0.49 0.40, 0.58 0.54 0.44, 0.64
Brow Raise 0.76 0.66, 0.86 0.79 0.69, 0.89 0.69 0.60, 0.78 0.70 0.60, 0.80
Inner Brow Raise 0.73 0.62, 0.84 0.73 0.63, 0.83 0.69 0.60, 0.78 0.64 0.54,0.74
Eye Closure 0.78 0.68, 0.88 0.77 0.67, 0.87 0.72 0.63, 0.81 0.71 0.61, 0.81
Lid Tighten 0.79 0.69, 0.89 0.77 0.67, 0.87 0.71 0.62, 0.80 0.66 0.56, 0.76
Eye Widen 0.60 0.49, 0.71 0.60 0.49, 0.71 0.57 0.48, 0.66 0.59 0.49, 0.69
Cheek Raise 0.54 0.43, 0.65 0.54 043, 0.65 0.55 0.46, 0.64 0.53 0.43,0.63
Lip Corner Depress 0.75 0.65, 0.85 0.76 0.66, 0.86 0.65 0.56, 0.74 0.64 0.54,0.74
Nose Wrinkle 0.70 0.59, 0.81 0.70 0.60, 0.80 0.65 0.56, 0.74 0.66 0.56, 0.76
Upper Lip Raise 0.68 0.57,0.79 0.68 0.57,0.79 0.62 0.53,0.71 0.64 0.54,0.74
Mouth Open 0.71 0.60, 0.82 0.70 0.60, 0.80 0.64 0.55,0.73 0.70 0.60, 0.80
Chin Raise 0.56 045, 0.67 0.56 045, 0.67 0.60 0.51, 0.69 0.59 0.49, 0.69
Lip Pucker 0.75 0.65, 0.85 0.76 0.66, 0.86 0.66 0.57,0.75 0.71 0.61, 0.81
Dimpler (Dimpling) 0.63 0.52,0.74 0.65 0.54, 0.76 0.62 0.53,0.71 0.66 0.56, 0.76
Smirk 0.64 0.53,0.75 0.65 0.54,0.76 0.62 0.53,0.71 0.59 0.49, 0.69
Lip Suck 0.49 0.38, 0.60 0.53 042, 0.64 0.58 0.49, 0.67 0.59 0.49, 0.69
Lip Press 0.65 0.54,0.76 0.65 0.54,0.76 0.62 0.53, 0.71 0.63 0.53,0.73
Lip Stretch 0.54 0.43, 0.65 0.56 045, 0.67 0.62 0.53,0.71 0.56 0.46, 0.66
Jaw Drop 0.74 0.64, 0.84 0.75 0.65, 0.85 0.69 0.60, 0.78 0.66 0.56, 0.76
Smile 0.61 0.50, 0.72 0.60 0.49, 0.71 0.61 0.52,0.70 0.57 0.47,0.67

Perceived facial emotion
Joy 0.59 0.48, 0.70 0.58 0.47,0.69 0.58 0.49, 0.67 0.58 0.48,0.68
Anger 0.55 0.44, 0.66 0.62 0.51,0.73 0.54 0.45, 0.63 0.62 0.52,0.72
Surprise 0.73 0.62, 0.84 0.72 0.62, 0.82 0.68 0.59, 0.77 0.69 0.59, 0.79
Fear 0.54 0.43, 0.65 0.60 0.49,0.71 0.47 0.38, 0.56 0.59 0.49, 0.69
Contempt 0.61 0.50, 0.72 0.62 0.51,0.73 0.62 0.53,0.71 0.57 0.47,0.67
Sadness 0.54 0.43, 0.65 0.62 0.51,0.73 0.54 0.45, 0.63 0.55 0.45, 0.65
Disgust 0.67 0.56, 0.78 0.66 0.55,0.77 0.66 0.57,0.75 0.63 0.53,0.73

Composite
Valence 0.45 0.34, 0.56 0.44 0.34, 0.54 0.46 0.37, 0.55 0.45 0.35,0.55
Engagement 0.58 0.47, 0.69 0.64 0.53,0.75 0.57 0.48, 0.66 0.63 0.53,0.73
Attention 0.37 0.27,0.47 0.38 0.28,0.48 0.42 0.33, 0.51 0.35 0.26, 0.44

negative correlation coefficients with PVT indices, while en-
gagement showed positive correlation coefficients with PVT
indices. Valence showed a noticeable decrease in not only the
last three sessions but also the sixth session. Engagement ex-
hibited higher values in the last three sessions than in the other
sessions, with a slight drop at the last session. Attention did
not show significant correlation coefficients with AvRT and
FS (=0.39 and —0.36).

Table 6 shows results of machine learning models evaluat-
ed with LOSO cross validation. Note that geometric mean
scores are in the range of 0—1, and the higher values indicate
more accurate predictive power for both classes (performance
deterioration vs. normal). Linear classifiers (SVM with a lin-
ear kernel and logistic regression) performed better than did
the other machine learning models throughout all PVT indi-
ces. We discovered that the best geometric mean scores for

@ Springer



Atten Percept Psychophys

Table 6 Geometric mean score of machine learning models. Boldface fonts represent the highest score of each PVT index

Feature sets SVM linear SVMRBF  SVMpoly Random forest KNN (K=5) Logistic Number of
regression  features

All indices AVRT  0.6850 0.5428 0.5601 0.1792 0.3567 0.7302 34

MaL 0.6696 0.6237 0.5137 0.4244 0.4509 0.6556 34

MiL 0.6294 0.6004 0.3981 0.4354 0.3529 0.6317 34

FS 0.6330 0.4459 0.3468 0.3845 0.1558 0.6036 34
Correlation-based indices ~ AvRT ~ 0.7058 0.6157 0.6326 0.4719 0.4369 0.7241 19
p<.05 MaL  0.8062 07156 0.6011 0.5389 0.5389 0.7702 7

MiL 0.7001 0.6279 0.4837 0.3792 0.4705 0.7159 20

FS 0.6124 0.4732 0.4332 0.2215 0.1551 0.5747 20

PVT indices AVRT, MaL, MiL, and FS were logistic regres-
sion with all facial indices (0.7302), linear SVM with
correlation-based facial indices (0.8062), logistic regression
with correlation-based facial indices (0.7159), and linear
SVM with all facial indices (0.6330). SVM with nonlinear
kernels (RBF and polynomial kernels) showed lower geomet-
ric scores with all PVT indices than linear classifiers, for both
features sets consisting of all indices and correlation-based
indices. Random forest and KNN showed poorer performance
for all PVT indices when compared with any other classifiers,
achieving less than 0.5 geometric scores for AVRT, MiL, and
FS with both feature sets, except for the value of 0.5389 for
MalL with the correlation-based facial indices.

Moreover, most feature sets trained using the correlation-
based indices showed higher performance than using all indi-
ces. SVM with a linear kernel showed higher geometric scores
for PVT indices AvRT, MaL, and MiL with correlation-based
indices feature set (0.7058, 0.8062, and 0.7001, respectively)
than with all indices’ feature set (0.6850, 0.6696, and 0.6294,
respectively); the geometric scores for FS were 0.6330 and
0.6124 with all indices and correlation-based indices, respec-
tively. Logistic regression exhibited higher geometric scores
with correlation-based indices for PVT indices MaL. and MiL
(0.7702 and 0.7159, respectively) than with all indices
(0.6556 and 0.6317). Geometric scores of logistic regression
for AvRT were 0.7302 and 0.8241 with all indices and
correlation-based indices, respectively, and 0.6036 and
0.5747 were obtained for FS. SVM with RBF and polynomial
kernels showed higher geometric scores with correlation-
based indices than with all indices. For random forest and
KNN, classifiers trained with the correlation-based indices
showed higher geometric scores for AVRT and MaL (also
KNN for MiL).

To evaluate the best models for each index, we calculated
Shapley additive explanations (SHAP) values of the models,
as they show the best performance for each PVT index, as
shown in Fig. 9. The features are sorted by the mean of abso-
lute SHAP values in descending order, indicating the
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importance of each feature. Eye closure was the most impor-
tant feature for MaL. and was the top four most important
feature for the others. Lip Suck, Engagement, and Lip
Pucker were shown to be the most important features for
AVRT, ML, and FS, respectively. Although Lid Tighten
was the five most important feature for AvRT, MaL, and
MiL, it was less essential than 10 features for FS. Lip
Pucker showed as an important feature in the top five for all
PVT indices.

Discussions and conclusions

In this paper, we analyzed the correlation between facial fea-
tures obtained using a webcam and PVT indices of perfor-
mance. We observed 34 facial indices obtained using a web-
cam, including head movements, facial expressions, perceived
facial emotion, and composite indices. A total of 21 out of 34
indices were highly correlated with at least one PVT index,
including eye-related, mouth-related expressions, Pitch from
head movements, and Anger, Surprise, Sadness, and Disgust
from perceived emotion features. Similar to other studies, our
work also showed deterioration of PVT indices during
prolonged wakefulness (Basner & Dinges, 2011; Basner
et al., 2011; Posada-Quintero et al., 2018). Our PVT results
exhibit stable PVT performance during the first nine to 11
sessions (0 to 17-21 hours awake), followed by significant
performance deterioration in the last two to four sessions (fol-
lowing 25 hours awake). Our results show that facial indices
are effective measurements to assess individuals' deterioration
of performance and cognition during prolonged wakefulness.

To date, there have been only a few publications that com-
pared facial features and fatigue (Knoll, Attkiss, & Persing,
2008; Sundelin et al., 2013). Sundelin et al. (2013) showed
that hanging eyelids and more droopy comers of the mouth
correlated with prolonged wakefulness. Similarly, our results
also show that Lid Tighten and Lip Corner Depress (corre-
sponding to the features hanging eyelids and droopy corners
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Fig.9 SHAP summary plots showed the best model for each PVT index,
sorted in descending order by the average of the absolute SHAP values. a
Logistic regression with all facial indices for AVRT. b SVM-linear kernel

of the mouth) strongly correlated with PVT indices AvRT and
FS. Sundelin et al. (2013) also found that sadness was signif-
icantly associated with fatigue rating which is in agreement
with our finding since there were high correlations between
Sadness and PVT indices. However, their study examined
only one perceived emotion, Sadness, and did not measure
cognitive performance. Knoll et al. (2008) modified photo-
graphs of an upper face using digital imaging software to exam
the influence of eyebrow position and shape, eyelid position,
and facial rhytids with the perception of tiredness. They ob-
served significant differences between tiredness scores and the
two modifications on the face: lowering the upper eyelid and
depressing the lateral brow. These two features correspond to
our features of Lid Tighten and Brow Raise, and they were
highly correlated with PVT indices. However, their study in-
vestigated only eye-related indices and did not measure cogni-
tive performance at all.

In our study, we found that many eye-related features
(Brow Furrow, Brow Raise, Inner Brow Raise, Eye Closure,
Lid Tighten) and mouth-related features (Lip Corner Depress,
Upper Lip Raise, Mouth Open, Lip Pucker, Dimpler, Jaw
Drop) were significantly correlated with PVT indices. Chin
Raise and Nose Wrinkle were also significantly correlated
with PVT indices AvRT, MiL, and FS. Five indices from
facial expressions—Eye Closure, Lid Tighten, Lip Corner
Depressor, Lip Pucker, Jaw Drop—showed that a few values
in the last three sessions were significantly different from a
few of the first nine sessions. Especially, Lid Tighten and Eye
Closure showed more than five stable sessions significantly
different from the last three sessions. With regard to using

EyeClosure
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with correlation-based facial indices for MaL. ¢ Logistic regression with
correlation-based facial indices for MiL. d SVM-linear kernel with all
facial indices for FS

head movement as a detector of prolonged wakefulness-
induced performance degradation, Pitch is the only index that
we tested that shows practical promise. Not surprisingly, the
correlation between pitch and PVT indices is significant (0.84
for MiL, p < .001 and .77, .64 and .72 for AvRT, MaL, and
FS, p <.05) since it is affected by nodding off. No significant
difference was observed between sessions of Pitch.

Four perceived facial emotion indices (Anger, Surprise,
Sadness, and Disgust) showed high correlation coefficients
with the PVT indices. Note that this does not mean that par-
ticipants genuinely felt emotions, as the emotion indices indi-
cate the likelihood of perceived emotions based on the emo-
tional facial action coding system (Friesen & Ekman, 1983).
The explanation of these four perceived facial emotions—
Anger, Surprise, Sadness, and Disgust—which were highly
correlated with PVT indices, can be expanded to intense levels
of annoyance, distraction, pensiveness, and boredom, respec-
tively, according to Robert Plutchik’s Wheel of Emotions
(Plutchik, 2001). Interestingly, these expanded emotions are
also known to be affected by sleepiness (Anderson & Horne,
2006; Bodin, Bjork, Ardo, & Albin, 2015; Li et al., 2017;
Weinger, 1999). The composite indices Valence and
Attention showed strong negative correlation with the PVT
indices. The composite index Engagement correlated with
the PVT indices. No significant difference was observed be-
tween sessions of each feature from perceived emotion indices
and composite indices.

Our machine learning results exhibited feasibility of clas-
sifying performance deterioration during prolonged wakeful-
ness. We tested six machine-learning classifiers and found that
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linear classifiers (SVM with a linear kernel and logistic regres-
sion) outperformed others for all PVT indices, with 73.02,
80.62, 71.59, 63.30 % of geometric mean scores of AVRT,
MaL, MiL, and FS, respectively. The linear classifiers with
correlated features resulted in higher geometric mean scores
for MaL, MiL than with all features. Although we found lower
geometric mean scores with correlated features for AVRT and
FS, the geometric mean scores with all features and correlated
features for AVRT and FS were comparable with less than 3%
of difference. We then calculated feature importance of the
linear classifiers using SHAP. The rankings of the importance
were different from those of the correlation coefficients in
machine learning models. For example, correlation coeffi-
cients of MaL index with Eye Closure and Lid Tighten were
0.75 and 0.83, respectively; however, it was shown that for
MaL the importance of Eye Closure is higher than that of Lid
Tighten in Fig. 9b. Likewise, Interocular Distance, Eye
Widen, Smirk, Lip Suck from facial expression indices
showed no significant correlation with PVT indices, but were
the top 10 important features in the classifiers. This is possibly
because redundant features rather than correlation are more
important for machine learning approaches.

We found that some facial indices correlate with working
and cognitive performance deterioration during prolonged
wakefulness, which was also found with other indices such
as electrodermal activity (EDA), electrocardiogram (ECG;
Posada-Quintero et al., 2018), and voice (McGlinchey et al.,
2011). Facial features are practical in applications since they
can be obtained using a webcam that is noninvasive and easy
to collect data. Many facial indices highly correlated with
working and cognitive performance on PVT. However, we
need more careful approaches to select features rather than
relying on only correlation in practice. For instance, using
Pitch from head movement indices to detect and predict per-
formance deterioration in the driving situation may not be a
good option, as observing frequent Pitch during prolonged
wakefulness can cause accidents before detection. Also, exter-
nal validity of our classifiers may be limited as some real-life
tasks may engage specific facial features that PVT may not
invoke. For example, some tasks by medical providers (e.g.,
surgeon) may include frequent head movements. Moreover,
some facial features cannot be observed in some cases (e.g.,
mouth-related features from surgeons wearing masks). This
must be properly considered in the feature selection criteria
as well. By comparing our indices directly to the working
performance on PVT, future works can use highly correlated
facial indices found in this work to detect and predict the
deterioration of working and cognitive performance in practi-
cal operations (e.g., driving) so that irrevocable consequences
are prevented.
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