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a b s t r a c t 

We propose model order selection methods for autoregressive (AR) and autoregressive moving average 

(ARMA) time-series modeling based on ImageNet classifications with a 2-dimensional convolutional neu- 

ral network (2-D CNN). We designed two models for two realistic scenarios: (1) a general model which 

emulates the scenario that validation and test datasets do not necessarily have the same dynamics as the 

training data, (2) a specific model which emulates the opposite scenario—the validation and test datasets 

share the dynamics of the training data. The results were compared to those of both Akaike Informa- 

tion criterion (AIC) and Bayesian Information criterion (BIC). Using simulation examples, we trained 2-D 

CNN-based Inception-v3 and ResNet50-v2 models for either AR or ARMA order selection for each of the 

two scenarios. The proposed ResNet50-v2 to use both time-frequency and the original time series data 

outperformed AIC and BIC for all scenarios. For the general model, the average of relative error reduc- 

tion (ARER) when compared to the BIC method in the clean and three noisy environments was 19.07% 

( ±14.22%) for the AR order for an AR process, and 5.67% ( ±2.83%) for the ARMA order for an ARMA pro- 

cess. The ARERs significantly improved to 73.92% ( ±30.95%) and 65.58% ( ±38.61%) for the AR and ARMA 

models, respectively, for the specific model scenario. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

In this paper, we propose parametric model order selection 

ethods for autoregressive (AR) and autoregressive moving aver- 

ge (ARMA) time-series models using ImageNet classifications with 

 2-dimensional convolutional neural network (2-D CNN). The AR 

nd ARMA models are very well-known statistical methods for the 

nalysis of stochastic processes in many diverse fields such as spec- 

ral estimation, time series forecasting and prediction, and biomed- 

cal engineering [1–3] . In the physical realm, a variety of natural 

ignals such as speech, electrocardiogram (ECG), and seismic sig- 

als are formulated by an underlying AR structure since any time- 

eries signal can be modeled by an AR process in the real world 

 1 , 6 ]. 

These models enable accurate statistical analysis for a better 

nderstanding of a physical system and to predict the next ob- 

erved values in a time series [8] . One of the most popular meth-

ds is to compute the power spectral density based on an AR 

odel [4] . The ARMA model is another popular parametric ap- 

roach, which uses the input and output signal to model the dy- 

amics of physiological systems via either transfer function anal- 
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sis or impulse response functions (IRF). For example, measure- 

ents of heart rate (HR) and instantaneous lung volume (ILV) fluc- 

uations were used to estimate a linear impulse response function. 

imilarly, renal blood flow and arterial blood pressure data were 

sed to estimate renal autoregulatory mechanisms [ 2 , 5 , 32 , 33 ].

n addition, for short-term prediction and forecasting, autoregres- 

ive integrative moving average (ARIMA), one variant of the ARMA 

odel, provides more accurate results when compared to some 

f the popular machine learning methods such as the multi-layer 

erceptron, support vector machine, and long short-term memory 

LSTM) [3] . 

To estimate model parameters, selecting the correct model or- 

er for either an AR or an ARMA model is of utmost important [6] ,

s the performance of AR and ARMA models is critically affected 

y the model order selection [ 7 , 8 ]. Model order identification is 

 crucial step in the process of estimating accurate AR/ARMA pa- 

ameters [9] . There are many techniques for AR and ARMA or- 

er selection, including the well-known Akaike Information Cri- 

erion (AIC) [10] , Bayesian Information Criterion (BIC) [11] , min- 

mum description length (MDL) [12] , cumulant-based determina- 

ion [13] , minimum Eigen value criterion (MRV) [14] , final predic- 

ion error [15] , and neural networks-based order selection meth- 

ds [16–21] . Recently, the genetic algorithm ARMA (GA-ARMA) 

 6 , 22 ] and the minimum of kurtosis methods [23] were devel-
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ped for ARMA model order estimation. The GA-ARMA uses a ge- 

etic algorithm for ARMA model order selection and it is touted 

s solving the local minima issue. The kurtosis method uses a 

inimization of kurtosis criterion to identify the optimal model 

rder. 

In most of the aforementioned model order selection methods, 

he order is estimated by considering all possible combinations of 

he initially selected ARMA ( p, q ) or AR (p) parameters. For ex- 

mple, an order range ( p ) of AR and a pair order range ( p, q ) of

RMA orders must be defined prior to model order identification. 

he model order coefficients of the system are estimated based on 

he assumed values of p and q . Finally, for each of the model or-

er combinations a specific criterion, which usually entails mini- 

izing the loss function, is used to find the optimal model order 

22] . Since these approaches require calculation of the coefficients 

f either AR or ARMA models for every possible combination, the 

omputation time becomes quite expensive [22] . The higher com- 

utational time makes it more difficult to apply either AR or ARMA 

odeling to real-world applications, which often require real-time 

esults. Further complicating AR and ARMA model order estimation 

s that often data are corrupted with various noise sources which 

ffect the accuracy of the parameter estimation. Therefore, one 

eeds to develop not only the pre-trained order selection models 

or accurate model order determination but also account for noise 

ontamination. 

Recently, the convolutional neural network (CNN), a deep learn- 

ng approach, has reported good performance for classification 

asks in a variety of applications such as visual recognition, ob- 

ect detection, natural language processing, speech recognition, 

nd medical image analysis [24] . The 2-D CNN-based ImageNet 

rchitectures such as AlexNet, Inception, and ResNet were in- 

roduced and competed in classification of 1,0 0 0 labels [25–29] . 

he ImageNet-based models train informative features using large 

atasets by determining weight matrices for target labels for each 

nput. For practical applications, the pre-trained matrices can de- 

ect correlations between new input data and these large datasets, 

nd predict a correct label for the input data by considering com- 

on patterns among them as a supervised learning approach. 

hese processes enable robust applications for the real world. 

here has not been much literature on using deep learning for 

odel order estimation, however. It has been shown that when 

ultiple features derived from time-frequency analysis [ 30 , 31 ] 

e.g., partial autocorrelation, autocorrelation functions) are used as 

nput data to a CNN, better performance was achieved when com- 

ared to using a single feature (e.g. time series itself without any 

reprocessing or data transformation) for model order identifica- 

ion [ 30 , 31 ]. In another study [38] , the authors used the original

ime series data as the input to a CNN for ARMA order identifica- 

ion but their best accuracy was less than 21%. 

In this paper, we propose supervised model order selection 

ethods using a 2-D CNN-based ImageNet with transformation of 

he time series into time-frequency features as well as the origi- 

al time series as the input data to the network for AR and ARMA 

ime-series modeling. In this study, we designed two models for 

ach objective: (1) a general model for any time series in which 

oth validation and testing datasets’ coefficients are entirely dif- 

erent from those of the training data, and (2) a specific model in 

hich both validation and testing datasets’ coefficients are subsets 

f the training data. The specific model was also evaluated with 

hree types of additive Gaussian white noise (20 dB, 10 dB, and 0 

B). 

This paper is organized as follows: in Section II, our proposed 

ethods are explained. Section III describes the experimental de- 

ign to train the model order selection. Section IV and V describe 

he results and the relevant discussion, respectively. Finally, con- 

lusions are provided in Section VI. 
2 
. Proposed methods 

Our method consists of three steps: time series modeling, data 

reprocessing, and model order selection. Each of these steps is 

etailed below. 

.1. Time series modeling 

The AR ( p ) and ARMA ( p,q ) time-series signals are formulated 

s follows: 

 ( n ) = 

p ∑ 

i =1 

ϕ ( i ) y ( n − i ) + e ( n ) (1) 

 ( n ) = 

p ∑ 

i =1 

ϕ ( i ) y ( n − i ) + 

q ∑ 

j=0 

θ ( j ) x ( n − j ) + e ( n ) (2) 

In Eqs. (1) and (2) , p is the order of the autoregressive (AR) fil-

er and q is the order of the moving average (MA) filter. The two 

arameters, ϕ(i) and θ (j), represent the coefficients of the AR and 

A terms, respectively. The model orders p and q and the coef- 

cients are unknown. y (n ) is the output signal of the time series 

nd x (n ) is the input signal, where n is the total number of data

oints. The input x (n ) , which is the MA portion, is an independent

nd identically distributed Gaussian. The e (n ) term is the resid- 

al error. For simulations, we added various noise levels of ad- 

itive white Gaussian noise (AWGN). The signal-noise-ratio (SNR) 

as formulated as follows: 

N R dB = 10 lo g 10 

(
P y 

P e 

)
(3) 

In (3), P y is the variance of the time-series signal y (n ) and P e is

he variance of the AWGN. For simulations, we generated AR and 

RMA time series with p varying from 1-9 and q varying in the 0- 

 range (1 ≤ p ≤ p max , 0 ≤ q ≤ q max ), with each signal containing 

,024 points. The maximum orders were purposely chosen higher 

han the true model orders since they are unknown for real-life 

ata. Representative examples of simulated data with an AR and 

n ARMA model are shown Fig. 1 : 

.2. Data preprocessing 

In this paper, we use both the original time-series signals and 

heir log mel-scaled spectrograms as the input data to CNN archi- 

ecture, as shown in Fig. 2 . We use this approach since prior stud- 

es have shown that use of both the original signals and their de- 

ived features provides better performance than does using only 

he original time series data [ 30 , 31 ]. To compute the spectrogram,

he discrete short-time Fourier transform (STFT) is used. The STFT 

onverts a time-series signal into the time-frequency domain by 

omputing discrete Fourier transforms (DFT) over short overlap- 

ing windows [36] . For STFT, a real-valued time-series signal y that 

ontains 1,024 points is up-sampled to ȳ that consists of 3,072 

oints using reflection padding which mirrors the signal on the 

rst and last sample, respectively. The discrete STFT χ of real- 

alued signal ȳ is formulated as follows [36] : 

( n, k ) := 

N−1 ∑ 

l =0 

ȳ ( l + nH ) w ( l ) exp 

(
−2 π ik l 

N 

)
(4) 

The STFT χ is given by k ∈ [0:K], where K = N/2 is the fre-

uency index bounded by the Nyquist frequency. The n and k 

f χ( n, k ) are the k th Fourier coefficient for the n 

th time frame 

36] . We assumed a hop size H = 128 and a window length of 

= 2,048. The window w (l ) for l ∈ [0:N −1] is set to the Hanning
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Fig. 1. Input signal x (n ) and corresponding output y (n ) for AR(5) and ARMA(5, 5) models. 
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indow [36] . The spectrogram Y( n, k ) , a two-dimensional matrix 

f the magnitude of the STFT, is formulated as below: 

 ( n, k ) := | χ( n, k ) | 2 (5) 

For the mel-scaled spectrogram, we obtained the mel scale and 

 triangular overlapping filterbank matrix using Slaney’s definition 

37] . The mel scaling from Hertz to mel is linear below 1 kHz and

ogarithmic above 1 kHz. The Slaney-style mel scale is computed 

y (6). 

z _ to _ mel = 10 0 0 + lo g 2 

(
f 

20 0 0 

)
∗ 27 . 0 

log 2 64 

(6) 
3 
In (6), f is Hertz with f ∈ [0:F] where F = F s/ 2 . The sam-

ling rate F s is 48,0 0 0 Hz. The Slaney-style filter bank M( k, m ) [37]

ith k ∈ [0:K] and mel scale m ∈ [0:M = 127] uses 30 linearly-

paced filters and 98 log-spaced filters. The details for the Slaney- 

tyle filter bank are described in [ 37 ]. The mel-scaled spectrogram 

( n, m ) is achieved by implementing a dot product of the spec- 

rogram Y( n, k ) and the filter bank M( k, m ) shown in Eq. (7) . The

og scale is calculated using power-to-dB conversion. 

 ( n, m ) = Y ( n, k ) · M ( k, m ) (7) 

For data preprocessing, time-series signals and their log mel- 

caled spectrograms were subdivided as shown in Fig. 2 . Each 
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Fig. 2. Data pre-processing for ARMA identification. 
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ime-series signal, consisting of 1,024 points ( Fig. 2 (a)), was split 

nto 8 segments of 128 points ( Fig. 2 (b)). The log-scaled spectro- 

ram features ( Fig. 2 (c)), 9 segments of 128 points (lengths of time

rame 9 and mel-scaled range from 0 to 127), were extracted from 

he time-series signal ( Fig. 2 (a)). For 2-dimensional CNN, the 2-D 

epresentations of both time-series segments ( Fig. 2 (b)) and mel- 

caled spectrograms were expressed as Fig. 2 (d) and (e). Finally, 

oth Fig. 2 (d) and (e) were combined into one vector of 17 × 128

 Fig. 2 (f)) as an input vector for the model order selection. The 

ombined original time series data and spectrogram, which is de- 

oted as δ( w, m ) in Eq. (8) , is used as the model training data for

he CNN architecture. 

( w, m ) = Y ( n, m ) + + u ( l, m ) (8) 

In Eq. (8) , u ( l, m ) is the original signal which is split into l seg-

ents of m points, shown Fig. 2 . The Y( n , m ) is the mel-scaled 

pectrogram and “++ ” denotes combined signals. The spectrogram 

( w , m ) is combined based on m , thus w is the sum of n and

. This preprocessing technique enables one to train the network 

odel more efficiently by using more diverse information. Note 

hat when the input data are not large enough, the spectrogram 

ay not provide sufficient feature dynamics, hence, including the 

riginal time series prevents this. 
4 
.3. Order selection methods 

For the model order selection, we selected two popular 

mageNet classification models: Google Inception-v3 [26] and 

esNet50-v2 [28] based on 2-D CNN. Inception- and ResNet-based 

odels consist of deep convolutional layers to obtain significant 

atterns derived from large datasets. The CNN model is formed by 

any multiple layers with convolutional and pooling operations. 

hese operations are applied to each layer which generates a va- 

iety of CNN filters with stride and padding parameters. The CNN 

odel captures both low-level and high-level feature representa- 

ions between input data and output target by building deep lay- 

rs which create many features with various filters. These combi- 

ations enable capturing of significant spatial and temporal non- 

inear correlations between the data and the target. 

The Inception-v3 is built by symmetric and asymmetric blocks 

f 42 layers developed from the first GoogleNet (Inception-v1) [27] , 

sing three inception modules with 24 million parameters. Each 

nception module consists of different convolutional filters to gen- 

rate a variety of features, and the output feature maps are con- 

atenated into a vector to form the input to the next stage [26] , as

hown in Fig. 3 . The structure enables estimating more informative 

eatures using these various feature matrices, which are concate- 

ated. The details for the Inception structure are shown in [26] . 
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Fig. 3. An Inception module made by Inception-v3. 

Fig. 4. Residual module made by ResNet-v2. 
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The ResNet50-v2 [28] is composed of multiple residual module- 

2s with 26 million parameters, revised from the first residual 

odule [29] . The residual module-v2 contains batch normalization, 

eLU activation, and convolutional layers to form F (x ) , as shown in

ig. 4 . F (x ) + x is denoted as the residual module, and it is realized

y mapping an identity skip connection from the layer x to F (x ) .

he skip connection assumes identity mapping to prevent the CNN 

rom having vanishing gradients. 

The overall structure, with identity mapping, achieves higher 

erformance with increased depth of the CNN layers, which in turn 

roduces results that are better than generic CNN structures that 

se only F (x ) . The details for ResNet-v2 are provided in [26] . Both

mageNet models as described include the average and max pool- 

ng, batch normalization, dropouts, and fully connected layers as 

ell as convolutional layers. The training process for each model is 

escribed as follows: 

Algorithm : ImageNet model training process. 

Data_ X = datasets of the pre-processed signal δ( w, m ) 

if type(Data_ X) == AR: 

Label_ y = the ranges of the AR orders of Data_X 

else if type(Data_ X) == ARMA: 

Label_ y = The multiplication between the ranges of the AR and MA orders 

of Data_X 

for epoch = 0:total_epochs 

Upsampled_ X = data_upsampling(Data_ X) 

for batch = 0:(total_size(Data_ X)/batch_size) 

start_point = batch ∗batch_size 

end_point = (batch + 1) ∗batch_size 

batch _ X = Upsampled_ X(start_point:end_point,:) 

batch _ y = Label_ y (start_point:end_point) 

Training_ImageNet(input: batch _ X, output: batch _ Y ) 

Each input vector δ( w, m ) was up-sampled from 17 × 128 to 

12 × 128 to cover a large convolutional network structure. The 

arge networks include a lot of padding, stride, and pooling oper- 

tions, and they induce feature map vanishing when input size is 

oo small. The size of the output layer, Label_ y is based on the ini-
5 
ial choice of model orders. For our case, we purposely chose the 

utput size, y, of the ImageNet to be overdetermined as: 9 for AR, 

0 for MA, and 90 for ARMA since these model orders ranged from 

 to 9 for AR and 0 to 9 for MA. When trained, the ImageNet esti-

ates the model orders from the input data and the output layer, 

nd it contains the probabilities associated with each model order. 

or example, there are 9 probability numbers for an AR model or- 

er selection of 9, 10 probability numbers for an MA order selec- 

ion of 10, and 90 probability numbers for an ARMA (9, 10) model. 

here is a probability associated with each output layer, and the 

abel index of the output layer with the highest probability is cho- 

en as the estimated AR/ARMA order. 

Finally the ImageNet models train the up-sampled δ( w, m ) to 

redict output Label_ y . The predicted label was determined via 

oftmax classifier. For the model order training process, both Im- 

geNet models were initialized using the Xavier initializer. The 

oss function was Softmax cross entropy. The Adam optimizer for 

esNet50-v2 and the RMSprop optimizer for inception-v3 were se- 

ected, with a learning rate of 0.001. The epoch was 25, which de- 

otes that the entire training dataset was trained 25 times using 

he batch size of 512. These optimal values for optimizer and learn- 

ng rate were determined via trial and error to find the best hyper- 

arameters. 

. Experiment 

This section describes the datasets for training, validation, and 

esting for model order selection. We designed a set of experi- 

ents in order to evaluate the general and specific AR/ARMA mod- 

ls including noise contamination of various levels of AWGN. Each 

f these steps is detailed below. 

.1. Dataset 

We generated AR and ARMA datasets for the general and spe- 

ific models for the scenarios shown in Table 1 . 

As shown in Table 1 , we generated AR and ARMA time-series 

ata sets for (1) the general model for any time series, and (2) 

he specific model without and with various levels of AWGN. The 

ime series of AR/ARMA models were synthetically generated us- 

ng Eqs. (1) and (2) . For the general model, 362,160 datasets were 

enerated for each of the AR and ARMA signals using a total of 

62,160 coefficients. The MA portion x (n ) was created using the 

ndependent and identically distributed Gaussian distribution. For 

raining, 360,0 0 0 datasets were used. The test and validation data 

ets had 1,080 data each and they had entirely different coeffi- 

ients than those used in the training data. For both the general 

nd specific models, only the output signal y (n ) of the time series 

as used as the input vector to the two different models of the 

mageNet. 

For the specific model, we generated AR signals of 271,800 

atasets and ARMA signals of 271,800 datasets. The AR and ARMA 

odel datasets were generated using 2,718 coefficients, respec- 

ively. For each of the 2,718 coefficients, the MA portion x(n) was 

enerated 100 times using independent and identically distributed 

aussian distribution, thus resulting in 271,800 datasets. Of the 

71,800 datasets, 270,0 0 0 were used for training, 900 were used 

or validation, and 900 were used for testing, for both AR and 

RMA models. The test and validation data included the same co- 

fficients as those of the training data, but these coefficients were 

ifferent between test and validation datasets for both AR and 

RMA models. The AR/ARMA model coefficients were generated 

andomly while retaining the system’s stability and invertibility. In 

ddition, three different levels of GWN were added to both AR and 

RMA models to achieve SNR of 20 dB, 10 dB, and 0 dB. 
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Table 1 

Datasets for general and specific models for each scenario. 

Scenario /model Training Validation Test ( ∗noise) Number of coefficients 

(1)AR model 360,000 1,080 1,080 362,160 

(1)ARMA model 360,000 1,080 1,080 362,160 

(2)AR model 270,000 900 900( ∗4) 2,718 

(2)ARMA model 270,000 900 900( ∗4) 2,718 
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.2. Model training 

We trained an AR model for the AR process and separate AR, 

A, and ARMA models for the ARMA process using each ImageNet 

odel. The output size was 9 for the AR model, 10 for MA and 90

or ARMA. The input size of the models was fixed to 112 × 128, as 

escribed in Section II. We also trained both ImageNets using only 

he original time-series signal , u ( l, m ) , in Eq. (8) to compare this

pproach to our proposed input consisting of both time-frequency 

nd the original time series data. The u( l, m ) was up-sampled to 

12 × 128. The hyper-parameters of the ImageNet using u( l, m ) 

ere set with the same parameters as that of the case with the 

ombined input consisting of both time-frequency and the original 

ime series data. The models were trained using Python 3.7 with 

ensorflow 1.18.3 version. 

The best models were selected depending on the accuracies of 

he validation datasets and the chosen model’s performance was 

valuated using the test datasets. For the scenario when AWGN 

as added to the specific data sets, the training data were based 

n only the uncontaminated data. This was done to simulate the 

ealistic scenario where we do not know how much the data have 

een corrupted by various noise sources. 

. Results 

In this section, we evaluate the accuracy of each method in cor- 

ectly estimating the model orders. For proposed methods, each of 

he best order selection model is chosen based on the highest ac- 

uracy in the validation dataset post training. We also compare the 

odels made with ImageNet to the two widely used traditional 

pproaches to estimating the model order determination methods: 

he Akaike information criterion (AIC) [10] and Bayesian informa- 

ion criterion (BIC) [11] . 

Figs. 5 (a) and (b) shows the model order selection accuracies 

sing Inception-v3 and ResNet-v2 with both time-frequency and 

he original time series data, and only the original time series data, 

espectively, on the validation and test datasets that are not con- 

aminated by any noise levels. As shown in Figs. 5 (a) and (b), the

ccuracies for AR and ARMA model order determination were bet- 

er with the combined time-frequency and the original time series 

han using only the original time series data for all cases consid- 

red. These results suggest that the proposed multiple features ex- 

raction using both time-frequency and the original data provide 

ore accurate model order determination. 

Fig. 6 illustrates in detail the accuracies for training, valida- 

ion, and test at each epoch using both models using the pro- 

osed time-frequency and the original time series. One epoch in- 

icates an entire training dataset that is used at a given time, thus 

ig. 6 shows how the performance of the various model identifi- 

ations is changed for each epoch. For the AR time-series signals, 

he best accuracies of 78.24% and 80.09% were obtained by the 

nception-v3 and ResNet50-v2 models, respectively, using test sets. 

n the specific modeling case, their accuracies improved to 95.56% 

nd 95.89%. 

For the ARMA time series, we examined the accuracy in two 

ays. The first criterion was the number of combined AR and 

A orders that were correctly determined. The second criterion 
6 
as the number of separate AR and MA model orders that were 

orrectly determined. The accuracies of the general ARMA model 

rder selection using time-frequency and time series data were 

3.70% for the Inception-v3 and 30.65% for ResNet50-v2 models, 

espectively, using test datasets, per the first criterion (determi- 

ation of combined AR and MA orders correctly). For the spe- 

ific model, the accuracies for the ARMA order selection for the 

nception-v3 and ResNet50-v2 models using both time-frequency 

nd time series data were 98.44% and 98.22%, respectively, using 

he test datasets, per the first criterion. 

Figs. 5 (a) and 6 show the performance using separate AR 

47.04% for Inception-v3, 50.19% for ResNet50-v2) and MA (43.43% 

or Inception-v3, 47.76% for ResNet50-v2) model order selection for 

he general time series involving ARMA processes. The accuracies 

mproved to 99.00% (for Inception-v3) and 99.44% (for ResNet50- 

2) for AR and 98.22% (for Inception-v3) and 98.67% (for ResNet50- 

2) for MA for the specific model using the second criterion (AR 

nd MA models were separately counted). 

Tables 2 and 3 show the results for the proposed general and 

pecific models, respectively, in determining accurate model orders 

or the clean and noisy signals with AWGN at 20 dB, 10 dB, and 

 dB SNR levels. Also shown in these tables are the comparison of 

esNet50-v2 and Inception-v3 using both time-frequency and the 

riginal time series data as well as only the original time-series 

ata to both AIC and BIC methods. Table 2 shows the result of 

stimating AR model order when the output label is only the AR 

odel as well as the combined ARMA model orders when the out- 

ut label is an ARMA model. Table 3 shows the accuracies of each 

f the AR and MA models that were correctly determined for a 

iven ARMA model. 

Both the proposed general and specific models for AR and 

RMA model order determination outperformed AIC and BIC for 

early all cases. ResNet50-v2 in general had slightly better perfor- 

ance than did Inception-v3, thus, henceforth, the former method 

ill be mainly described for the results in Tables 2 and 3 . In

able 2 , the ResNet50-v2-based general models with both time- 

requency and time series data achieved accuracies of 79.11%, 

3.33%, 49.33%, and 22.78% in clean, 20 dB, 10 dB, and 0 dB con- 

itions for the AR order for a given AR process. For the ARMA 

rocess, we obtained the best test accuracies of 30.11%, 24.44%, 

4.11%, and 4.00% using the ResNet50-v2 for the clean data and the 

hree sequentially decreasing SNR levels, respectively. The perfor- 

ance of AR and ARMA model order selection using ResNet50-v2 

mproved with the specific models; the specific models obtained 

he best accuracies of 95.89% (clean data), 93.78% (SNR = 20 dB), 

6.67% (SNR = 10 dB), and 29.33% (SNR = 0 dB) for the AR or-

er in a given AR process, and accuracies of 95.89% (clean data), 

3.78% (SNR = 20 dB), 76.67% (SNR = 10 dB), and 29.33% (SNR = 0

B) for the ARMA order given an ARMA process. In addition, for 

ost cases, the proposed approach to using both time-frequency 

nd the original time series data provided more accurate model 

rder determination than using only the time series itself. 

Table 3 provides the results of separate AR and MA model or- 

er selection for a given ARMA time-series data. In Table 3 , the 

ark [ ∗] next to the model name indicates the results are ei- 

her for the AR or MA parts of the ARMA models. Other general 

nd specific models that do not include a mark [ ∗] are individual 
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Fig. 5. The performance comparison for AR, MA, and ARMA order selections (clean signals). 
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R and MA models that were trained for only the AR or MA or- 

er, respectively. The accuracies obtained by the AR and MA parts 

f ARMA models were similar to the performance of the individ- 

al AR and MA models. The ResNet50-v2-based general models 

those that do not include a mark [ ∗]) using time-frequency and 

ime series data obtained accuracies of 52.89% (clean data), 50.56% 

SNR = 20 dB), 39.67% (SNR = 10 dB), and 24.22% (SNR = 0 dB) for

he AR order, 49.00% (clean data), 43.89% (SNR = 20 dB), 29.11% 

SNR = 10 dB), and 12.33% (SNR = 0 dB) for the MA order selec-

ions. The accuracies improved using the specific ARMA model to 

8.78% (clean data), 94.33% (SNR = 20 dB), 69.78% (SNR = 10 dB), 

nd 28.67% (SNR = 0 dB) for the AR order; 98.67% (clean data), 
Table 2 

AR and ARMA order selection accuracy for each AR and ARMA proc

Order selector Model Clean (%) 20 dB

AR AIC 64.22 53.67

BIC 69.33 62.11

Inception-v3(general) 76.00 70.22

ResNet50-v2(general) 79.11 73.33

Inception-v3(specific) 95.67 94.44

ResNet50-v2(specific) 95.89 93.78

1d.Inception-v3(general) 54.07 48.61

1d.ResNet50-v2(general) 49.35 46.57

1d.Inception-v3(specific) 91.78 89.00

1d.ResNet50-v2(specific) 93.00 90.67

ARMA AIC 17.89 15.11

BIC 22.78 19.78

Inception-v3(general) 19.67 18.00

ResNet50-v2(general) 30.11 24.44

Inception-v3(specific) 98.44 93.44

ResNet50-v2(specific) 98.22 94.67

1d.Inception-v3(general) 8.89 8.52 

1d.ResNet50-v2(general) 7.13 5.93 

1d.Inception-v3(specific) 94.22 93.67

1d.ResNet50-v2(specific) 95.11 93.78

Note: “1d.” denotes ImageNet models using only the original time s

7 
3.11% (SNR = 20 dB), 62.22% (SNR = 10 dB), and 19.33% (SNR = 0

B) for the MA order selections. In addition, for most cases, the 

roposed approach to using both time-frequency and the original 

ime series data provided more accurate model order determina- 

ion than using only the time series itself. The execution times for 

ach model in Tables 2 and 3 are the average computational times 

or the four test data sets which consist of the clean and three 

ifferent SNR levels. The computational time for preprocessing to 

onvert time series into a time-frequency plot took 0.004 seconds 

or a given dataset. For these tests we used Intel(R) Xeon(R) E- 

246G CPU @3.60GHz, and 32GB memory in Windows 10. 
ess (Specific AR and ARMA Time series datasets). 

 (%) 10 dB (%) 0 dB (%) Ave. Execution Time (sec) 

 29.56 18.44 468.90 

 41.89 21.22 468.72 

 51.67 27.89 18.05 

 49.33 22.78 34.84 

 81.67 35.22 16.99 

 76.67 29.33 32.41 

 47.59 35.46 17.22 

 44.91 37.04 32.62 

 76.33 33.78 13.12 

 76.11 31.33 28.95 

 8.33 3.33 32553.77 

 10.00 1.22 32515.41 

 11.22 4.22 18.11 

 14.11 4.00 33.06 

 62.89 14.78 17.22 

 61.67 7.89 32.33 

5.19 3.24 16.01 

4.07 1.94 34.41 

 75.78 31.33 13.46 

 81.56 31.33 28.46 

eries data 
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Fig. 6. The performance of training, validating, and testing each epoch by proposed models for AR, MA, and ARMA order selection using the proposed both time-frequency 

and time series features. 
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. Discussion 

We proposed two different models of ImageNet-based deep 

earning, the Inception-v3 and ResNet50-v2, for approximating AR 

nd ARMA model orders. We also used a preprocessing technique 

hich used both the time series and its spectrogram to ensure 

iversity and enhanced feature dynamics for better accuracy of 

he model order determination. Traditional model order determi- 

ations are largely based on least-squares approaches to minimize 

he associated cost functions. Some of the well-known and widely 

sed traditional model order methods are the AIC and BIC. Given 

he advances in deep learning methods, in this work we exam- 

ned if some of the recently developed and accurate ImageNet- 

ased methods can more accurately determine the model orders 
8 
hen compared to AIC and BIC. Hence, we performed simula- 

ion examples involving various AR and ARMA models with and 

ithout noise sources. Moreover, we examined how the proposed 

eep learning methods would fare when the testing datasets’ co- 

fficients are related to those of the training data, or are not. The 

atter case represents realistic scenarios. 

We found that for all cases considered involving both AR 

nd ARMA models, the two ImageNet models, in particular the 

esNet50-v2 using time-frequency and time series data, provided 

etter accuracy in determining correct model orders when com- 

ared to either the AIC or BIC. When the testing and validation 

ata did not contain coefficients associated with the training data, 

hich we called the general model, as expected, the accuracy in 

etermining the correct model order suffered. However, the per- 



J. Moon, M.B. Hossain and K.H. Chon Signal Processing 183 (2021) 108026 

Table 3 

AR and MA order selection accuracy for ARMA processes (specific ARMA time series datasets). 

Order selector Model Clean (%) 20 dB (%) 10 dB (%) 0 dB (%) Ave. Execution Time (sec) 

AR AIC ∗ 31.78 32.11 26.00 18.56 32553.77 

BIC ∗ 36.67 36.33 27.67 12.11 32515.41 

Inception-v3(general) ∗ 40.89 42.11 34.22 25.89 18.11 

ResNet50-v2(general) ∗ 51.67 46.67 38.56 24.11 33.06 

Inception-v3(general) 47.22 44.56 36.89 25.44 18.30 

ResNet50-v2(general) 52.89 50.56 39.67 24.22 33.04 

1d.Inception-v3(general) ∗ 28.24 27.04 26.11 16.02 16.01 

1d.ResNet50-v2(general) ∗ 28.33 28.15 23.80 16.94 34.41 

1d.Inception-v3(general) 24.63 23.52 21.30 15.93 16.19 

1d.ResNet50-v2(general) 27.31 28.15 23.24 18.89 34.52 

Inception-v3(specific) ∗ 98.89 96.11 69.56 24.11 17.22 

ResNet50-v2(specific) ∗ 98.78 94.33 69.78 28.67 32.33 

Inception-v3(specific) 99.44 94.33 72.78 28.78 17.41 

ResNet50-v2(specific) 99.00 95.22 71.78 31.67 32.23 

1d.Inception-v3(specific) ∗ 24.26 22.50 15.93 14.63 13.46 

1d.ResNet50-v2(specific) ∗ 20.28 18.98 15.83 14.07 28.46 

1d.Inception-v3(specific) 89.56 88.67 74.56 34.44 13.28 

1d.ResNet50-v2(specific) 95.00 93.22 84.11 36.22 28.54 

MA AIC ∗ 30.56 29.78 20.33 12.89 32553.77 

BIC ∗ 39.00 35.22 19.89 8.89 32515.41 

Inception-v3(general) ∗ 39.67 35.11 27.89 13.33 18.11 

ResNet50-v2(general) ∗ 49.00 43.89 29.11 12.33 33.06 

Inception-v3(general) 47.22 44.56 36.89 25.44 18.30 

ResNet50-v2(general) 52.89 50.56 39.67 24.22 33.04 

1d.Inception-v3(general) ∗ 24.26 22.50 15.93 14.63 16.01 

1d.ResNet50-v2(general) ∗ 20.28 18.98 15.83 14.07 34.41 

1d.Inception-v3(general) 21.02 22.13 17.31 13.80 16.06 

1d.ResNet50-v2(general) 19.91 19.54 17.31 13.98 34.59 

Inception-v3(specific) ∗ 98.44 93.44 62.89 14.78 17.22 

ResNet50-v2(specific) ∗ 98.22 94.67 61.67 7.89 32.33 

Inception-v3(specific) 98.22 90.78 63.11 23.56 17.39 

ResNet50-v2(specific) 98.67 93.11 62.22 19.33 32.60 

1d.Inception-v3(specific) ∗ 95.33 94.56 79.89 39.78 13.46 

1d.ResNet50-v2(specific) ∗ 95.89 94.89 84.44 39.67 28.46 

1d.Inception-v3(specific) 89.56 88.22 71.89 30.89 13.26 

1d.ResNet50-v2(specific) 95.11 92.78 82.11 36.44 28.77 

Note: the results for AR and MA order selections made by ARMA models contain a mark [ ∗] next the model name 
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c

t

s

ormance of the ResNet50-v2 as well as the Inception-v3 was bet- 

er than that of either the AIC or BIC. Certainly, when the valida- 

ion and testing datasets contained coefficients from the training 

ata, which we called the specific model, the model order deter- 

ination accuracies with both ResNet50-v2 and Inception-v3 were 

uite accurate ( > 96%) for most cases when the data were not cor- 

upted with AGWN. However, the AIC and BIC were not able to 

rovide more than 39% accuracy. As expected, for both the gen- 

ral and specific model scenarios, both ImageNet-based methods’ 

erformance degraded commensurate with decreasing SNR levels, 

ut again, their accuracies were better than were those of both 

IC and BIC. We also compared ImageNets performance using both 

ime-frequency and time series data against only the time series 

ata. Only in two cases of the specific scenario, 10 dB and 0 dB, 

he input consisting of only the time series provided better re- 

ults than combined time-frequency and time series data. Other- 

ise, the ImageNet models using proposed time-frequency and the 

riginal time series data outperformed the case where the input 

ata consisted of only the original time series. Our results are con- 

istent with previous reports which showed that multiple features 

erived from time-frequency analysis as the input of the CNN pro- 

ided better performance than using only the time-domain feature 

33. 34]. 

In Tables 2 and 3 , the ResNet50-v2 model using time-frequency 

nd time series features was found to be better than all methods, 

nd BIC was better than AIC, thus, Fig. 7 reports only the percent- 

ge of relative error reduction (RER) between ResNet50 using the 

ultiple features and BIC: ( E rro r ResNet − E rro r BIC ) /Erro r BIC 
∗100 (%). 

or the AR order selection for an AR process, the general model’s 

ERs were 31.89%, 29.61%, 12.80%, and 1.98% for the clean, 20 dB, 
9 
0 dB, and 0 dB signals, respectively. For the general ARMA models, 

hen the requirement is that both AR and MA terms are correctly 

etermined, the RERs for the four conditions (clean data and 3 

NR levels) were 9.49%, 5.81%, 4.57%, and 2.81%. When only the AR 

erms were correctly determined from the ARMA process, the RERs 

ere found to be 25.61%, 22.34%, 16.59%, and 13.79% for the four 

onditions; when only the MA terms were correctly determined 

rom the ARMA process, the RERs were 16.39%, 13.38%, 11.51%, and 

.78% for the four conditions. Certainly, requiring that both AR and 

A parameters in combination be accurate is a more stringent cri- 

erion than having either only the AR or only the MA model or- 

er be accurate; hence, we see better performance with the lat- 

er. These results suggest that when only the output signal y (n ) is 

vailable but with a priori knowledge that other inputs affect the 

utput y (n ) , it is better to obtain separate AR and MA models than

he combined ARMA model. 

Unlike the general models, the specific models can be applica- 

le for cases when there exist sufficient training data or the experi- 

ental conditions generated a diverse set of data. When such con- 

itions have been met, we showed via simulation examples that 

ne obtains highly accurate model order determination results, as 

hown in Tables 2 and 3 . Again, the results are for ResNet50-v2 

nd for the clean and three levels of SNR (20, 10, and 0 dB). We

ound RERs of 95.89%, 93.78%, 76.67%, and 29.33% for the AR or- 

er for an AR process; 97.98%, 91.82%, 58.77%, and 13.73% for both 

R and MA simultaneously for an ARMA process; 99.12%, 91.09%, 

2.36%, and 18.97% for the AR order estimation for an ARMA pro- 

ess; and 97.82%, 89.36%, 52.84%, and 11.46% for the MA order es- 

imation for an ARMA process. Note that for both the general and 

pecific model simulation cases, the training data were based on 
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Fig. 7. The performance of relative error reduction between ResNet50-v2 and BIC in specific AR and ARMA processes. 
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nly the clean data. The results reported above for both scenar- 

os were based on testing data from the noise-contaminated data. 

hus, these proposed methods can potentially be used to obtain 

ccurate model order selection when the dataset is representative 

f the overall dynamics of the system. The specific model may re- 

uire extensive training data to learn the dynamics of the system. 

o this end, a data augmentation approach using the generalized 

dversarial neural network (GAN) [ 34 , 35 ] can potentially be used 

or generating more training data for deep learning. However, we 

ound that the general models that do not train with the dynam- 

cs of the system still provide better accuracies when compared to 

raditional methods. Especially, the general AR model obtained an 

ccuracy of 80% for an AR process. 

The ResNet50-v2 and Inception-v3 methods with the prepro- 

essing provided faster execution time when compared to either 

IC or BIC, leaving aside the extensive training time of the pro- 

osed approaches. Once the networks had been trained as the 

upervised models, the execution time was ~13-28 (for AR) or 

1,0 0 0-1,90 0 (for ARMA) times faster than for AIC and BIC, as 

hown in Tables 3 and IV. The faster execution time can lead to 

otential real-time application of these AR and ARMA models to 

arious physical systems, provided that training has been done a 

riori . 

The purpose of determining an accurate ARMA model order is 

hat it can be applied to real databases. However, since we do not 

now the true model order for any physiological system, we lim- 

ted our results to synthetically generated data with various SNR 

onditions to mimic real-life scenarios (noise contamination of the 

ata) as best as we can, to examine how accurately we can de- 

ermine the true model order. Note that we know the true model 

rder since the data are synthetically generated with a priori de- 

ermined model order. From the simulation examples, as the re- 

ults do provide good confidence in the accuracy of model or- 

er determination, we can then extrapolate that our approach will 

ost likely provide very close approximation of a real-life system’s 

odel order. 

. Conclusion and future work 

In this paper, we proposed supervised model order selection 

ethods for AR and ARMA time series using 2-D CNN-based 

nception-v3 and ResNet50-v2 deep learning models and a pre- 

rocessing approach which combines both the time series and its 

pectrogram for both ImageNet models. To demonstrate the per- 

ormance of these CNN-based methods, we designed two models—

ne general and one specific. The general model refers to when 

he validation and testing data are blind to the coefficients of the 

raining data, whereas in the specific model the validation and 

esting data share dynamics with the training data. The general 

odel simulates real life scenarios where only the output signal 
10 
 (n ) is available, from which one needs to estimate either the AR 

r ARMA model orders. If the output signals truly represent the 

ystem (e.g. without significant effects from other input perturba- 

ions), both the ResNet50-v2 and Inception-v3 provided good ac- 

uracies and they were both better than either the AIC or the BIC. 

f the output signals are affected by noise sources (e.g. Gaussian 

hite noise), then the deep learning methods’ performance de- 

raded, as expected. However, their performance was still far bet- 

er than that of either AIC or BIC. Moreover, these deep learning 

ethods were more tolerant of AWGN than were AIC and BIC. The 

esults of the specific model suggest that if the training data is 

omprehensive, there is a good chance that accurate model orders 

an be obtained even when only the output data is available for a 

ystem that is perturbed by other input sources. As shown in sim- 

lation examples, this is apparently not the case for either the AIC 

r BIC, as their accuracy approached only ~39% at best for clean 

ata, and this value fell precipitously with decreasing SNR levels. 

While the training time is expensive for these deep learning ap- 

roaches, the testing time is significantly faster than that of either 

he AIC or BIC. Hence, once training is completed, the model order 

etermination for any physical system can potentially be computed 

n real time. Given the superior performance of the deep learn- 

ng methods over the traditional approaches for model order de- 

ermination of AR and ARMA time series using simulation exam- 

les, future steps are to further investigate their application to var- 

ous physiological systems, including renal and cardiovascular sys- 

ems, as the results may uncover additional important dynamics 

hat have been masked with the traditional model order selection 

ethods. 
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