
Computer Methods and Programs in Biomedicine 200 (2021) 105856 

Contents lists available at ScienceDirect 

Computer Methods and Programs in Biomedicine 

journal homepage: www.elsevier.com/locate/cmpb 

A robust ECG denoising technique using variable frequency complex 

demodulation 

Md-Billal Hossain 

a , Syed Khairul Bashar a , Jesus Lazaro 

b , Natasa Reljin 

a , Yeonsik Noh 

c , 
Ki H. Chon 

a , ∗

a Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247 Storrs, CT 06269-3247, USA 
b Aragon Institute for Engineering Research, University of Zaragoza, Spain 
c College of Nursing/Department of Electrical and Computer Engineering, University of Massachusetts Amherst, USA 

a r t i c l e i n f o 

Article history: 

Received 12 March 2020 

Accepted 16 November 2020 

Keywords: 

VFCDM 

ECG 

Armband 

QRS complex 

EMG 

AWGN 

PLI 

a b s t r a c t 

Background and objective: Electrocardiogram (ECG) is widely used for the detection and diagnosis of car- 

diac arrhythmias such as atrial fibrillation. Most of the computer-based automatic cardiac abnormality 

detection algorithms require accurate identification of ECG components such as QRS complexes in order 

to provide a reliable result. However, ECGs are often contaminated by noise and artifacts, especially if 

they are obtained using wearable sensors, therefore, identification of accurate QRS complexes often be- 

comes challenging. Most of the existing denoising methods were validated using simulated noise added 

to a clean ECG signal and they did not consider authentically noisy ECG signals. Moreover, many of them 

are model-dependent and sampling-frequency dependent and require a large amount of computational 

time. 

Methods: This paper presents a novel ECG denoising technique using the variable frequency complex de- 

modulation (VFCDM) algorithm, which considers noises from a variety of sources. We used the sub-band 

decomposition of the noise-contaminated ECG signals using VFCDM to remove the noise components so 

that better-quality ECGs could be reconstructed. An adaptive automated masking is proposed in order 

to preserve the QRS complexes while removing the unnecessary noise components. Finally, the ECG was 

reconstructed using a dynamic reconstruction rule based on automatic identification of the severity of 

the noise contamination. The ECG signal quality was further improved by removing baseline drift and 

smoothing via adaptive mean filtering. 

Results: Evaluation results on the standard MIT-BIH Arrhythmia database suggest that the proposed de- 

noising technique provides superior denoising performance compared to studies in the literature. More- 

over, the proposed method was validated using real-life noise sources collected from the noise stress test 

database (NSTDB) and data from an armband ECG device which contains significant muscle artifacts. Re- 

sults from both the wearable armband ECG data and NSTDB data suggest that the proposed denoising 

method provides significantly better performance in terms of accurate QRS complex detection and signal 

to noise ratio (SNR) improvement when compared to some of the recent existing denoising algorithms. 

Conclusions: The detailed qualitative and quantitative analysis demonstrated that the proposed denoising 

method has been robust in filtering varieties of noises present in the ECG. The QRS detection performance 

of the denoised armband ECG signals indicates that the proposed denoising method has the potential to 

increase the amount of usable armband ECG data, thus, the armband device with the proposed denoising 

method could be used for long term monitoring of atrial fibrillation. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

The electrocardiogram (ECG) has been widely used for detec- 

ion and classification of different life-threatening cardiac arrhyth- 

ias. For accurate detection of cardiac abnormalities, ECG signals 

ust retain their morphological components in order to provide 
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eliable and essential information about cardiac activity. However, 

CGs are most often contaminated by a wide variety of noise 

ources including motion artifacts, bad electrode contact to the 

kin, and muscle and power line interference that can distort the 

CG morphologies and lead to misdetection of cardiac arrhyth- 

ias. Noise is more acute in ECGs from wearable devices sim- 

ly because of movement artifacts. Therefore, it is very important 

nd necessary to remove noise and artifacts from ECG signals in 

rder to increase the usability of ECGs. However, denoising ECG 

ignals is very challenging, especially if the noise frequency over- 

aps with the signal’s frequency. There have been several denoising 

ethods proposed in the literature in the last few decades. The 

ost well-developed methods are based on discrete wavelet trans- 

orm (DWT) decomposition [1–3] , adaptive filtering [ 4 , 5 ], em- 

irical mode decomposition (EMD) and ensemble empirical mode 

ecomposition (EEMD) [6–9] , FIR filtering [ 10 , 11 ], Kalman filter- 

ng [12] , principal component analysis (PCA) [13] , independent 

omponent analysis (ICA) [14] , nonlocal means (NLM) [15] , and 

eural networks [ 16 , 17 ]. While many methods showed promis- 

ng denoising performance, they have their own advantages and 

isadvantages. 

The wavelet-based approaches [1–3] use soft and hard thresh- 

lding, which are popular for denoising non-stationary signals. 

owever, wavelet-based methods cannot preserve the edges and 

re sensitive to intra-subject and inter-subject variations. Adaptive 

ltering approaches [ 4 , 5 ] are often used for removing electromyo- 

ram (EMG) and motion artifacts. The main drawback of an adap- 

ive filtering approach is that it requires a reference signal which 

s not often available. 

The EMD-based approaches [ 6 , 7 ] performed better when com- 

ared to wavelet-based thresholding methods, but they cannot 

ompletely remove noise. An adaptive switching mean filtering was 

roposed with EMD and DWT in [8] and a better result was shown 

hen compared with previous EMD-based approaches. However, 

his approach needs an external QRS detector to preserve the QRS 

omplexes. In addition, the EMD has a mode mixing problem [18] ; 

s a result, the intrinsic mode functions (IMFs) extracted can be 

ncorrect, decreasing the denoising performance. 

The Kalman filtering approaches for denoising [12] are effec- 

ive in preserving the edges of the signal. However, they require 

anual initialization of the parameters that are associated with 

he amplitude, width, and phase of the components of a complete 

CG cycle. The PCA [13] and neural network [16] approaches re- 

uire multiple leads to obtain better denoising performance using 

orrelation. However, their performance is suboptimal for a single 

ead ECG. For ICA-based denoising [14] , visual inspection of the 

ndependent components is essential, but this is not feasible for 

ong-term applications. The non-local means (NLM) [15] method is 

 popular denoising technique that provides improvements in SNR. 

he main disadvantage of this approach is that its performance de- 

ends on the choice of a parameter’s bandwidth, which depends 

n the noise standard deviation that might not be available in real 

ime. 

Some new ECG denoising techniques have been proposed in 

ecent years such as the variational mode decomposition (VMD) 

ethod [19] and adaptive Fourier decomposition (AFD) [20] . An 

igenvalue decomposition-based denoising is proposed in [21] , 

here eigenvalue decomposition of the Hankel matrix approach 

s used for the baseline drift and powerline interference removal. 

 multi-lead model-based ECG signal denoising with an adaptive 

uided filter is proposed in [22] . Finally, convolutional encoder- 

ecoder approaches were proposed in [ 17 , 23 ]. However, the per- 

ormance of these methods has not been compared with existing 

ethods. Moreover, the deep learning-based approaches function 

s a black box, which requires more data for training and can be 

omputationally expensive. Therefore, deep learning based denois- 
2 
ng may not be suitable in real time scenarios, especially for wear- 

ble device applications. 

Most of the previously developed denoising methods were not 

alidated using the realistic scenario of motion artifacts and mus- 

le noise data; rather, they were tested on synthetically generated 

dditive white Gaussian noise (AWGN) or random noise that were 

dded to clean ECG signals. 

In this paper, we propose a novel ECG denoising technique us- 

ng the variable frequency complex demodulation (VFCDM) decom- 

osition algorithm [24] . While a preliminary study of this method 

as published in the IEEE EMBC conference proceedings [25] , this 

aper contains detailed results with a slight modification of pa- 

ameters. We used the sub-band decomposition of a noisy ECG 

ignal via the VFCDM to reconstruct a cleaner ECG signal by re- 

oving subcomponents that are associated with noise dynamics. 

inally, we removed the baseline drift and abrupt noise compo- 

ents to achieve the final desired denoised signal. The performance 

f the proposed denoising technique was validated on the MIT- 

IH arrhythmia database and the noisy ECG data obtained using 

 wearable armband device which was developed in the Chon lab 

26] . We considered different types of noise sources both real and 

imulated to validate the proposed denoising technique. The sim- 

lated noises were used to compare the denoising performance 

ith the existing denoising techniques since most of the denoising 

ethods were validated using simulated noise. We used additive 

aussian white noise (AWGN), colored noise (blue, pink and vio- 

et), and powerline interference (PLI) to contaminate the ECGs and 

ompared denoising performances of the proposed method with 

ome of the existing denoising techniques. Moreover, the proposed 

ethod was tested using different real-life noisy conditions such 

s baseline wander, muscle noise, and electrode noises collected 

rom the noise stress test database (NSTDB) [27] . Finally, the pro- 

osed method was successfully applied on the wearable armband 

CG data corrupted by substantial amount of muscle artifact and 

he algorithm’s performance was compared with some of the ex- 

sting denoising techniques. 

The rest of the paper is organized as follows: in the Materi- 

ls and Methods section, we describe our dataset and present our 

roposed denoising algorithm. The performance of the proposed 

enoising technique is discussed in the Results section and per- 

pective is provided in the Discussion section. Finally, a summary 

f the outcomes of our work is provided in the Conclusions sec- 

ion. 

. Materials and methods 

.1. Description of datasets 

We considered ECG recordings from MIT-BIH arrhythmia 

atabase (MITDB), and our own wearable armband ECG database 

26] to validate our proposed denoising technique. In addition, we 

ollected the real noise sources from MIT-BIH noise stress test 

atabase (NSTDB) to contaminate the ECG records. The datasets are 

escribed below. 

) MIT BIH Arrhythmia Database 

The MIT-BIH arrhythmia database is a well-known publicly 

vailable database. It consists of 48 half-hour long datasets of two- 

hannel ambulatory ECG recordings which were obtained from 47 

ifferent subjects [ 27 , 28 ]; 25 out of the 47 patients were male

ged 32 to 89, and 22 were female aged 22 to 89. This database 

ontains ECGs with a variety of waveforms and different abnor- 

alities such as complex ventricular, junctional, and supraventric- 

lar arrhythmias and conduction abnormalities. The ECG record- 

ngs were digitized with a sampling frequency of 360 Hz and res- 

lution of 11 bits over an 11mv range. Each recording consists of 
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wo leads, one of which is modified limb lead II and the other was

ny of the following: V1, V2, V4, or V5. 

B) Wearable Armband ECG Data 

The armband ECG data were collected using a wearable arm- 

and device which has been developed in our lab at the University 

f Connecticut [ 26 , 29 ]. This device has three pairs of hydrophobic

lectrodes, also developed in our lab [30] , which are sequentially 

rranged for recording three different ECG channels. Because of the 

ydrophobic electrodes and the ease of wearability, this device is 

ore comfortable than a typical Holter monitor that uses obtrusive 

eads and wet electrodes which are known to cause skin irritation. 

CGs were obtained continuously for 24 hours with the armband 

orn on the upper left arm. The database contains 24 hours of 

ontinuous ECG recordings from each of the 16 healthy subjects 

ged 27.56 ±8.82 years (mean ± standard deviation). The subjects 

ere instructed to carry out their regular activities but without any 

ntense exercise. In addition to the armband ECG, a simultaneous 

eference ECG was recorded with a very widely available Holter 

onitor (Rozinn RZ 153 + , Glendale, NY, USA). All ECGs were ob- 

ained at a sampling frequency of 10 0 0 Hz which were then down- 

ampled to 256 Hz. 

C) The MIT-BIH Noise Stress Test Database 

The MIT-BIH Noise Stress Test Database consists of 12 half hour 

CG recordings and 3 half-hour recordings of noise in typical am- 

ulatory ECG recordings [ 27 , 28 ]. The noises include baseline wan- 

er, muscle artifact and electrode motion artifact which were made 

sing physically active volunteers and standard ECG recorders, 

eads, and electrodes; the electrodes were placed on the limbs 

n positions in which subjects’ ECGs were not visible. Calibrated 

mounts of different levels of noise were added to the two clean 

CG recordings (118,119) from the MIT-BIH Arrhythmia Database. 

ifferent levels of noise were added to each of the recordings to 

ake 6 different signals with different signal-to-noise ratios (SNRs) 

24, 18, 12, 6, 0, and 6 dB). All the ECG signals were sampled with

 sampling frequency of 360 samples per second. 

.2. VFCDM decomposition of noisy ECG signals 

VFCDM is a high-resolution time-frequency analysis technique 

24] that has been used for a variety of physiological signal pro- 

essing [31–33] . While providing a high-resolution time-frequency 

pectrum (TFS), VFCDM also retains accurate amplitude distribu- 

ion of the signal. Using VFCDM, we decomposed the noisy ECG 

nto N c ( = 12) number of modes or subbands. 

 n ( t ) = 

N c ∑ 

i =1 

C i ( t ) (1) 

In this equation, Y n ( t ) is the noisy ECG signal, C i represents the

 th frequency component, and N c is the total number of subbands 

omponents (here, N c = 12). In this study, we decomposed the 

oisy ECG signal into 12 non-overlapping frequency bands using 

FCDM. Given that the sampling frequency of the ECG was 360 

z, the sub-band frequencies were equally spaced between 0 and 

80 Hz. 

.3. Signal reconstruction 

Fig. 1 shows an ECG segment of 20 0 0 samples on which ad- 

itive Gaussian white noise (AWGN) with a 20 dB signal-to-noise 

atio level was superimposed, and its 12 VFCDM sub-band compo- 

ents. As can be seen from the figure, the frequency components 

fter the 4 th sub-band are noisy, with low amplitudes. It is also ob- 

ervable from Fig. 1 that most of the ECG components, especially 
3 
he P and T waves, are retained in the first component C 1 . How-

ver, the QRS complex is attenuated and relatively wider than in 

he original ECG shown in Fig. Therefore, higher-frequency compo- 

ents (2-4) mostly contribute to the QRS complexes. We used only 

he first 4 components for our signal reconstruction. 

To summarize again, the first component C 1 preserves most of 

he ECG information and components 2 to 4 contribute to the mor- 

hology of the QRS complex. To reconstruct the de-noised signal, 

e compute an automated mask that preserves the values around 

nly a small window of the QRS complex. We multiply components 

 to 4 by that mask to add them to the first component to obtain

he final reconstructed signal. We start with reconstructing an in- 

ermediate signal, 
� 

Y (t) , using the first two components. We per- 

orm a soft thresholding-based wavelet [2] denoising on the sec- 

nd component and added it to the first component to obtain an 

ntermediate ECG signal, 
� 

Y (t) . 

� 

 ( t ) = C 1 ( t ) + 

˜ C 2 ( t ) (2) 

 

 2 (t) represents the wavelet-denoised C 2 ( t ). Next, we compute an 

utomatic threshold using an approach similar to the one de- 

cribed in [ 34 , 35 ]. A histogram is computed from the local max-

ma of 
� 

Y (t) , from which the centroid is calculated using the fol- 

owing equation: 

 = 

∑ N 
i =1 x i y i ∑ N 

j=1 y j 
(3) 

here x i is the signal magnitude, y i is the distribution value of the 

ignal, and r is the centroid of the histogram. Based on the cen- 

roid, we define a threshold, th = αr , where α is a multiplying fac- 

or (in this paper we used α = 1). Once the threshold is calculated, 

e determine all local maxima that satisfy the threshold criterion. 

s mentioned in [35] , these local maxima correspond to the QRS 

omplex peaks. The QRS complex peaks are then used to create a 

ask, m ( t ), which is defined as follows: 

 ( t ) = 

{
Tukey ( N, γ ) , R ( i ) − ε ≤ t ≤ R ( i ) + ε 
0 , else where 

(4) 

here Tukey ( N , γ ) stands for a tapered Tukey window of length 

 ( = 50 ) with the tapering parameter γ , R ( i ) represents the i th 
RS complex position, i varies from 1 to the total number of QRS 

omplexes ( N R ), and the ε determines the spread of the Tukey win- 

ow from the R peak. Depending on the noise level, the 2nd com- 

onent C 2 ( t ) of VFCDM can be either noisy or clean. In the case of

 less-noisy ECG signal, C 2 ( t ) will also be mildly affected by noise,

ence, we want to use the entire C 2 ( t ). On the other hand, for a

oisy ECG signal, C 2 ( t ) is also noisy, consequently, we want to use

nly the QRS contribution to C 2 ( t ). In order to resolve this issue of

sing either the entire component or only the QRS part of C 2 ( t ),

e define a power ratio P r as follows: 

 r = 

P ower of ( C 2 ( t ) × m ( t ) ) 

P ower of ( C 2 ( t ) ) 
(5) 

Based on the power ratio we use the following scheme for re- 

onstruction of the signal: 

 r ( t ) = { 
C 1 ( t ) + 

4 ∑ 

i =2 

C i ( t ) × m ( t ) , P r < 0 . 9 

C 1 ( t ) + C 2 ( t ) + 

4 ∑ 

i =3 

C i ( t ) × m ( t ) , P r > 0 . 9 

(6) 

A higher power ratio means most of the power of C 2 ( t ) is con-

entrated around the QRS complex, so we use the entire C 2 ( t ) in

he reconstruction. On the other hand, a lower power ratio implies 

hat C 2 ( t ) has a substantial amount of power in the masked region,

hich is the case when C ( t ) is noisy. Therefore, we use masked
2 



M.-B. Hossain, S.K. Bashar, J. Lazaro et al. Computer Methods and Programs in Biomedicine 200 (2021) 105856 

Fig. 1. VFCDM decomposition of a noisy ECG segment: a noisy ECG signal with a 20 dB SNR (record 106m from MITDB) (black line), VFCDM subcomponents: 1 to 12 (red 

lines). 
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A) Qualitative Analysis 
 2 ( t ) when the power ratio is low. Figure 2 shows the denoising

teps performed, where the mask itself (m(t) in panel d) and the 

asked VFCDM components (in the panels e-g) are plotted in red 

o make them more distinguishable. 

. Results 

The performance of the proposed denoising method was vali- 

ated on the MIT-BIH arrhythmia database and the wearable arm- 

and ECG data obtained in our laboratory [26] . The performance 

f our proposed denoising technique on the MIT database will be 

ompared with three other existing methods, namely NLM [15] , 

avelet soft thresholding [2] , and EMD ASMF [8] . We define three 

erformance metrics: SNR improvement ( SNR imp ), percentage root 

ean square difference (PRD), and mean square error (MSE), as 

hese have been used as to evaluate other algorithms’ performance 

 6 , 8 , 15 ]. The performance parameters are defined as follows: 

N R imp = 10 log 10 

∑ N 
n =1 ( Y n [ n ] − Y [ n ] ) 

2 ∑ N 
n =1 ( Y d [ n ] − Y [ n ] ) 

2 
(7) 

 RD = 

√ ∑ N 
n =1 ( Y d [ n ] − Y [ n ] ) 

2 ∑ N 
n =1 Y 

2 [ n ] 
× 100 (8) 
4 
SE = 

1 

N 

N ∑ 

n =1 

( Y d [ n ] − Y [ n ] ) 
2 (9) 

here Y n [ n ] denotes noisy ECG, Y [ n ] stands for the original ECG,

 d [ n ] represents the denoised ECG, and N is the length of the

CG signal. However, these performance metrics cannot be used 

o evaluate the denoising performance on the armband ECG data 

ince we did not add noise by ourselves, rather, the armband’s ECG 

ontains the subject’s muscle artifacts. 

.1. Results on MIT-BIH arrhythmia database 

In order to conform with most of the existing denoising meth- 

ds [ 6 , 8 , 15 ], we considered ECG recordings 100m, 101m, 103m,

05m, 106m, 115m, 215m, and 230m from the MIT database for 

enoising performance comparison. We simulated different noise 

ources such as Gaussian white noise, powerline interference, and 

ifferent colored noises (pink, blue, violet, and red) at 5 different 

NR levels (-5 decibels (dB), 0 dB, 5 dB, 10 dB, 15 dB, and 20 dB).

he powerline noise was simulated by producing a sinusoidal sig- 

al of 50 Hz using the approach described in [1] and the colored 

oise was generated using the method presented in [36] . 
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Fig. 2. Denoising steps: (a) original ECG (subject 105) (b) ECG with AWGN noise at 10 dB SNR (c) first component of VFCDM decomposition (d) mask ( m ( t )) (e-g) masked 

VFCDM components 2 to 4 (h) final reconstructed signal 
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We evaluate the quality of the denoised signal. Fig. 3 shows 

he denoised ECG signal using different methods on record 101m 

orrupted with blue noise at 0 dB SNR. Panel (f) of this figure 

eveals that the proposed denoising method provides discernible 

CG waveforms while preserving ECG morphologies (i.e. P wave, 

 wave, and QRS complex) even at a low SNR. Note that in some 

ases, P and T waves can be of low amplitude. Even in those cases, 

he low-amplitude waves can be recovered, albeit this depends on 

he original state of the ECG morphology. A second denoising ex- 

mple is shown in Fig. 4 , The ECG record 103m was corrupted with

ower line noise at -5 dB SNR. It can be observed that even at a

ery low SNR, the proposed method is able to obtain a relatively 

oise-free ECG segment while the EMD-ASMF method [8] shown 

n the panel (c) is unable to remove noise, and it distorts the QRS 

omplexes at several time points. 

In addition to adding synthetic noise, we also evaluated the 

roposed method with often-encountered noise artifacts such as 

aseline wander, muscle noise, and electrode noise, which are all 

ound in the NSTDB. As can be seen from Fig. 5 , the proposed

ethod can effectively remove the baseline drift and muscle ar- 

ifacts even at very low SNR (i.e. -5 dB). The performance of the 

ethod even on electrode noise is also reasonably good, given that 

lectrode noise is considered to be one of the most difficult to re- 

ove. 

The efficacy of the proposed method on ECG segments with ar- 

hythmia is also visible from Fig. 5 , which shows premature ven- 

ricular contraction (PVC) with bigeminy and trigemini patterns, 

nd atrial flutter/fibrillation. All ECG records with these arrhyth- 

ias were corrupted by AWGN at 0 dB SNR and then the proposed 

enoising was applied. 

As shown in Fig. 5 , in each case the denoised and original ECG 

prior to AWGN contamination) nearly overlap, which illustrates 
m

5 
hat the proposed denoising technique is also effective even for 

CGs with arrhythmias. 

B) Quantitative Analysis 

For quantitative analysis, we used the performance metrics de- 

ned in Eqs. (7 )–(9) . At a particular SNR level, a better denoising

ethod is expected to provide higher SNR imp , and lower PRD and 

SE. 

Fig. 6 shows the SNR imp for all methods, at different SNR lev- 

ls of added GWN, for the ECG records considered. It can be 

bserved that the proposed denoising technique provided better 

NR imp at almost all SNR levels. Figs. 7 and 8 present a compar- 

son of PRD and MSE results, respectively, for different denoising 

ethods when GWN was added. These plots indicate that the pro- 

osed denoising method provides lower PRD and MSE than do the 

ther methods considered. 

As mentioned earlier, the proposed method performed well in 

emoving power line interference. This is also visible from the per- 

ormance metrics as well. Figs. 9 and 10 show SNR imp and PRD 

esults, respectively, using different denoising methods at differ- 

nt levels of power line noise. These figures show that the pro- 

osed denoising method has significantly higher SNR imp and lower 

RD when compared with the other denoising techniques. Fig. 11 . 

hows a comparison of MSE results using different denoising meth- 

ds for different levels of power line noise. It should be noted that 

he figure compares only two methods (the proposed and EMD- 

SMF). The other methods were not used because of their high 

SE values. 

Finally, we considered three different colored noise scenar- 

os, namely blue, pink, and violet to contaminate the ECG sig- 

als at different SNR levels and evaluated the denoising perfor- 

ance of the all methods considered. The detailed results are 



M.-B. Hossain, S.K. Bashar, J. Lazaro et al. Computer Methods and Programs in Biomedicine 200 (2021) 105856 

Fig. 3. Blue noise removal in ECG: (a) original signal (record 101m from MIT database) (b) ECG with blue noise added at 0 dB SNR, and denoised ECG using (c) wavelet soft 

thresholding (d) NLM (e) EMD-ASMF (f) proposed method 

Table 1 

SNR improvement using three different types of additive colored noise 

SNR in DB 

Methods 

Blue Noise 

20 15 10 5 0 -5 

Proposed work 5.0944 9.3574 12.7024 14.8720 16.4165 18.4695 

EMD-ASMF 2.3103 6.7723 10.9340 14.2621 16.3226 17.2903 

NLM 4.6744 5.8900 6.8032 7.8960 9.3034 10.3026 

DWT 2.1952 5.0942 7.5028 9.6625 11.8605 14.2818 

Pink Noise 

Proposed work 0.4829 0.9825 3.4747 5.2371 6.4866 7.6391 

EMD-ASMF -1.0678 0.4826 1.1685 1.4352 1.5253 1.5213 

NLM 1.5708 2.1777 2.9078 3.6712 4.2021 4.1623 

DWT -1.6188 -0.5260 0.1608 0.6376 0.9905 1.2164 

Violet Noise 

Proposed work 5.4434 10.2839 14.8359 18.7309 21.5255 23.2784 

EMD-ASMF 2.4810 7.1487 11.8377 16.3480 20.1929 22.8851 

NLM 4.4247 5.5835 6.4479 7.4529 8.7023 9.5548 

DWT 3.5503 7.1352 10.2412 12.8445 15.1321 17.6662 
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hown in Tables 1 , 2 , and 3 , respectively. Table 1 presents the

NR imp for all the denoising techniques, at different levels of col- 

red noise. It can be observed from Table 1 that for blue and vi-

let noise, most of the denoising techniques performed well and 

rovided higher SNR imp . The proposed method has the highest 

NR improvement at almost all SNR levels. In the case of pink 

oise, most of the methods failed to provide good denoising per- 

ormance, which can be observed from the SNR imp values. The 

able shows that even in the case of pink noise, the proposed 

ethod provided reasonably higher SNR imp .The same conclusion 
6 
an be drawn from Tables 2and 3, which show the PRD and MSE 

alues, respectively. The proposed method provided significantly 

ower PRD and MSE values when compared with the other existing 

echniques. 

In addition to SNR imp , PRD , and MSE as performance metrics, we 

ave also used the wavelet energy diagnostic distortions (WEDD) 

etric, as proposed in [37] . WEDD is a standard and popular diag- 

ostic distortion measure that has been used previously in a recent 

CG denoising literature [38] . The lower the WEDD, the better the 

enoising performance. According to the criteria given in [37] , the 
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Fig. 4. Power line interference removal: (a) original signal (record 103 from MITDB) (b) ECG with added PLI at -5 dB SNR (c) denoised ECG using EMD-ASMF (d) denoised 

ECG using the proposed method 

Fig. 5. Proposed denoising applied on arrhythmic ECGs: (a) PVCs with bigeminy (record 106 from MITDB) (b) PVC with ventricular trigeminy (record 201 from MITDB) (c) 

Atrial Flutter/fibrillation (record 222 from MITDB) 

7 
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Table 2 

PRD using three different types of additive colored noise 

SNR in dB 

Methods 

Blue noise 

20 15 10 5 0 -5 

Proposed work 6.3162 6.6447 7.6078 10.0169 15.2195 20.9380 

EMD-ASMF 7.8622 8.3507 9.1443 10.9798 15.3075 24.3119 

NLM 6.1321 9.0661 14.4856 22.7010 34.4293 55.1862 

DWT 8.0125 10.0851 13.5351 18.8132 25.9923 34.8458 

Pink Noise 

Proposed work 10.8961 16.3299 21.4156 30.6806 47.5306 74.1099 

EMD-ASMF 11.8464 17.2420 27.6528 47.9171 84.0416 149.2678 

NLM 9.3620 14.2122 22.6752 36.9512 61.8522 110.3761 

DWT 12.1424 18.9401 31.0743 52.2812 89.2512 154.6188 

Violet Noise 

Proposed work 6.1790 6.2344 6.4198 6.9632 8.4366 11.8962 

EMD-ASMF 7.7177 8.0254 8.3177 8.7559 9.9083 12.8178 

NLM 6.0433 9.3884 15.0879 23.8854 36.8617 59.9528 

DWT 6.9331 8.0521 9.9215 13.0995 17.8841 23.9432 

Fig. 6. Comparison of SNR imp for different denoising methods with Gaussian white 

noise contamination. 

Fig. 7. Comparison of PRD for different denoising methods with Gaussian white 

noise contamination. 

d

4

(

1

o

b

Fig. 8. Comparison of MSE for different denoising methods with Gaussian white 

noise. 

Fig. 9. Comparison of SNR imp with different denoising methods for removal of 

power line interference. 

W

d

m

n

m

a  
enoising performance can be ranked as (1) excellent (WEDD < 

.517%), (2) very good ( WEDD is within 4.517% - 6.914%), (3) good 

WEDD is within 6.914% - 11.125% ), (4) not bad (WEDD is within 

1.125% - 13.56%), (5) Bad ( WEDD > 13.56%),). 

Table 4 shows the denoising performance comparison in terms 

f WEDD at different levels of SNR. It can be seen from the ta- 

le that the proposed VFCDM-based denoising results in smaller 
8 
EDD in most of the SNR cases (especially at higher SNR). At 20 

B, the NLM has slightly lower WEDD than the proposed denoising 

ethod. However, this smaller WEDD is insignificant since the sig- 

al at 20 dB is not considered to be noisy. The proposed denoising 

ethod was able to remove the power line interference noise even 

t a very low SNR level (e.g. < 0 dB). In terms of WEDD, the pro-
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Fig. 10. Comparison of PRD with different denoising methods for removal of power 

line interference. 

Fig. 11. Comparison of MSE of different denoising methods for power line interfer- 

ence. 

Table 3 

MSE ( × 10 −3 ) on three different additive colored noise types 

SNR in dB 

Methods 

Blue Noise 

20 15 10 5 0 -5 

Proposed work 0.058 0.063 0.079 0.130 0.259 0.508 

EMD-ASMF 0.067 0.075 0.089 0.129 0.253 0.643 

NLM 0.047 0.089 0.227 0.566 1.290 3.310 

DWT 0.071 0.110 0.197 0.381 0.731 1.310 

Pink Noise 

Proposed work 0.137 0.291 0.497 1.040 2.460 5.880 

EMD-ASMF 0.139 0.307 0.834 2.490 7.720 24.500 

NLM 0.095 0.278 0.566 1.500 4.200 13.400 

DWT 0.16 0.389 1.050 2.980 8.700 26.200 

Violet Noise 

Proposed work 0.054 0.057 0.060 0.068 0.096 0.177 

EMD-ASMF 0.064 0.069 0.075 0.083 0.105 0.176 

NLM 0.040 0.095 0.247 0.626 1.480 3.900 

DWT 0.055 0.072 0.107 0.185 0.344 0.623 

p

a  

d

m

t

Table 4 

Diagnostic distortion comparison (WEDD) 

SNR in dB 

Methods 

AWGN 

20 15 10 5 0 -5 

Proposed work 5.01% 6.79% 11.01% 15.28% 22.41% 43.21% 

EMD-ASMF 6.87% 8.63% 12.34% 19.64% 33.27% 58.51% 

NLM 4.68% 6.90% 11.21% 17.27% 25.74% 47.99% 

DWT 8.51% 10.79% 18.08% 24.58% 38.79% 59.68% 

Power line interference (PLI) 

Proposed work 4.13% 5.76% 5.78% 5.90% 6.28% 7.31% 

EMD-ASMF 5.85% 6.00% 6.44% 7.57% 10.17% 15.57% 

Table 5 

Performance on NSTDB 

SNR in dB 

Parameter 

Baseline wander 

20 15 10 5 0 -5 

SNR _ imp 3.8918 7.8178 12.4083 16.5442 20.0098 22.44 

PRD 5.04% 6.77% 7.58% 8.37% 9.99% 11.43% 

WEDD 4.81% 5.01% 6.31% 6.83% 7.13% 9.05% 

Muscle Noise 

SNR_imp 4.1701 7.5015 9.7676 10.8946 12.5031 13.9935 

PRD 5.79% 7.44% 10.93% 15.71% 23.82% 41.05% 

WEDD 4.82% 6.52% 8.94% 13.72% 20.32% 35.67% 

Electrode Noise 

SNR_imp 3.8092 6.9039 7.8119 8.8452 9.3541 9.9778 

PRD 7.01% 9.81% 12.01% 21.09% 32.57% 56.91% 

WEDD 5.36% 8.61% 11.07% 19.85% 29.71% 48.67% 

b
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n

p

n

3

t

s

osed denoising method performs excellently at 20 dB, very good 

t 15 dB, 10dB, 5 dB, and 0 dB, and good at -5 dB, according to the

efined criteria [37] . 

Finally, we analyzed the performance of the proposed denoising 

ethod on MIT-BIH’s NSTDB. This database contains three different 

ypes of noise sources commonly encountered in practice, namely, 
9 
aseline wander (BW), muscle noise (MN), and electrode motion 

rtefact (EM) [27] . We added these three noise sources at 6 dif- 

erent SNR levels to the ECG records from the MITDB. The perfor- 

ance of the proposed denoising method was evaluated in terms 

f both non-diagnostic distortion ( SNR imp , PRD ) and diagnostic dis- 

ortion (WEDD). The proposed method’s performance is shown in 

able 5 . As shown, the proposed method was able to remove the 

aseline wander even at very low SNR, providing higher SNR imp , 

nd lower PRD and WEDD values. The worst WEDD is 9.05% (at - 

 dB) which still falls in the “good” range (6.914% - 11.125%). The 

roposed denoising method showed promising results in removing 

uscle noise as well. It should be noted that many of the previous 

tudies [ 8 , 39 ] simulated muscle noise using random noise gener- 

tion, however, in this study, we used true muscle noise data. Re- 

oving electrode noise is considered the most troublesome since it 

an mimic the appearance of ectopic beats and the noise frequency 

omponents’ dynamics significantly overlap with the ECG compo- 

ents [10] . The proposed denoising technique performed satisfac- 

orily in removing electrode noise, as also shown in Table 5 . 

The overall results suggest that the proposed method has supe- 

ior denoising performance in almost all noisy conditions. The NLM 

15] method is quite effective in removing GWN but it does not 

ork well on other noise types such as PLI and colored noise. On 

he other hand, the EMD-ASMF [8] works well in removing power 

ine noise, but its performance is poor with pink noise. DWT-based 

enoising [2] could not fully remove the noise when the ECG sig- 

al was highly corrupted. Note that all of these compared methods 

erformed poorly on NSTDB noise, which is why their results were 

ot included in Table 5 . 

.2. Results on the armband ECG data 

In order to evaluate the performance of the proposed denoising 

echnique on the armband ECG, we randomly chose 40 ten-second 

egments of both noisy and clean ECG channels from the arm- 
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Fig. 12. QRS complex detection on (a) armband ECG segment with muscle artifact (b) the same segment, denoised. 

Table 6 

QRS detection performance comparison 

Denoising Method Correctly detected R peaks SNR imp ( mean ± sd ) 

DWT 79.4871% 0.0569 ± 0.0376 

EMD-ASMF 92.8826% 1.0568 ± 0.6342 

Proposed method 92.9577% 1.4595 ± 0.6326 
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and ECG database [26] . Adjudication of clean versus noisy ECG 

ata was determined visually by three of the authors (N.R., K.H.C., 

nd J.L.) based on the presence of P, Q, R, S, and T waves in the

CG segments. The denoising performance on the ECG segments 

as evaluated and compared in terms of accurate R peak detec- 

ion and SNR improvement. For R peak detection, we used the Pan 

nd Tompkins R-peak detection algorithm [40] on the denoised se- 

uences. Detected R peaks were visually inspected by three inde- 

endent experts and the majority vote was taken as the correct 

ecision. SNR improvement was calculated by subtracting the noisy 

ignal SNR from the denoised signal SNR, as described in [23] . 

QRS complex detection on the representative segments of noisy 

rmband and denoised armband ECG signals is shown in Fig. 12 . 

t can be observed that due to excessive EMG noise artifacts, there 

re several R peak misdetections and false positives in the noisy 

rmband data (upper panel), which are avoided in the denoised 

rmband ECG (bottom panel). The summary of the denoising per- 

ormance and comparison on the armband ECG data is provided 

n Table 6 . As we can see from the table, the proposed denois-

ng method provides the highest percentage (92.9577%) of correctly 

etected R peaks. EMD-ASMF provides nearly the same percent- 

ge of correctly detected R peaks. However, this method requires 

n external QRS complex detector in order to preserve them in 

he process of denoising, and hence, the performance of EMD- 

SMF is quite dependent on QRS complex detection algorithm. 

able 6 also shows that the proposed denoising method provides 

ignificantly higher SNR improvement (1.4595) when compared to 

hat of the DWT and EMD-ASMF denoising methods. As stated 

arlier, the NLM has a parameter bandwidth which is dependent 

n the noise standard deviation, which is unknown in the noisy 

CG data. Therefore, we could not compare the proposed denois- 

ng method with NLM for the armband ECG data. 
10 
. Discussion 

The results presented in this paper demonstrate that the pro- 

osed denoising method provided better denoising performance 

hen compared to other denoising techniques in a variety of 

oise-corrupted scenarios. We showed that the VFCDM-based sub- 

and decomposition of noisy ECG signals was more effective than 

MD or wavelet-based denoising techniques in separating noisy 

omponents from the clean ECG. The proposed denoising method 

rovided cleaner ECG segments and also retained ECG morpholo- 

ies (i.e. P wave, T wave, and QRS complexes). 

We considered ECG signals corrupted with different types of 

oise at different levels of SNR to evaluate the denoising perfor- 

ance on a variety of noisy conditions. The results in this paper 

ndicate that most of the existing methods considered in this pa- 

er did not perform adequately in removing noise from a wide 

ange of sources. For example, NLM [15] provided good denois- 

ng performance in AWGN noise but its performance on remov- 

ng PLI and colored noise was found to be poor. The EMD-ASMF 

8] technique provided poor denoising performance on ECG signals 

orrupted with pink colored noise while the wavelet soft thresh- 

lding method [2] could not remove noise entirely in most of the 

ases. 

The qualitative and quantitative analysis of the denoising results 

ndicate that the proposed denoising technique can provide better- 

uality denoised ECG with higher SNR imp as well as lower PRD and 

SE values than the existing denoising techniques considered. In 

CGs contaminated with AWGN, the proposed denoising method 

rovided higher SNR _ imp , and lower PRD and MSE at almost all 

NR levels than NLM, EMD-ASMF and DWT-based techniques. At 

0 dB SNR, the SNR improvement using the NLM method [15] was 

lightly higher than our proposed method, however, this improve- 

ent was not significant because it had negligible effect on the 

CG quality. The same was true for PRD and MSE as well. 

The denoising performance of our proposed method on the PLI- 

orrupted ECG signals was found to be better than any of the 

ethods compared. The sub-band decomposition of the noisy sig- 

als enabled the noise-free reconstruction of the ECG at a low SNR 

evel. The SNR imp resulting from the proposed denoising method 

as significantly larger than that of the existing methods. More- 

ver, the PRD and MSE values were almost constant across differ- 
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nt levels of SNR, which indicates that the proposed method can 

emove PLI noise almost equally good at different levels of SNR. 

ven though the EMD-ASMF method can remove PLI to a great ex- 

ent, this method failed to retain the QRS amplitudes, especially at 

ower input SNR levels. Moreover, it was not able to remove noise 

omponents, especially at low SNR levels. 

Similar to the AWGN and PLI cases, the proposed method also 

howed superior denoising performance on ECGs corrupted with 

olored noise, when compared to the existing denoising tech- 

iques. While the other methods showed low SNR imp and higher 

RD and MSE values for the ECGs contaminated with pink noise at 

ow input SNR levels, in this case the proposed method provided 

ufficient SNR imp , and reasonable PRD and MSE values. 

The major advantage of the proposed method is that it has 

een tested using different noise sources that are often observed 

n practice, such as baseline wander, muscle noise, and electrode 

oise, whereas most of the existing denoising methods were eval- 

ated using synthetic noise. The proposed method was shown to 

emove baseline wander even at very low SNR levels without any 

ignificant distortion of the ECG morphologies (WEDD is a max- 

mum of 9.05% at -5 dB SNR). Sufficiently good results were ob- 

ained in the case of muscle noise as well. Moreover, the ap- 

lication of the proposed denoising algorithm on the wearable 

rmband ECG data which are contaminated with muscle artifacts 

howed significantly better performance when compared to the 

ther methods considered in this study. 

The proposed method showed a moderate performance in the 

ase of electrode noise situations. This is because electrode noise 

an mimic the appearance of ectopic beats and the dynamics of 

he noise are highly overlapped with the ECG components. Thus, 

emoving electrode noise is known to be difficult. 

Finally, the application of the proposed denoising method on 

he noisy armband ECG data did improve the QRS complex de- 

ection accuracy. This result indicates that the proposed denois- 

ng method can significantly enhance the accuracy of R-R interval 

ased cardiac arrhythmia (e.g. atrial fibrillation (AF) [41] ) detec- 

ion. 

. Conclusions 

We presented a novel ECG denoising technique using a high 

ime-frequency resolution method. The proposed method was val- 

dated on the standard MIT-BIH arrhythmia database with a vari- 

ty of noise (i.e. AWGN, colored noise (blue, pink, and violet), PLI, 

aseline wander, electrode noise, and muscle artifacts) at different 

NR levels, and its performance was compared with three other 

xisting denoising methods. In most of the noisy scenarios, the 

roposed method showed better denoising performance over the 

ther methods. The application on the arrhythmic ECGs suggest 

hat the proposed denoising method is equally applicable for both 

egular and arrhythmic ECGs. Finally, the proposed method was 

uccessfully applied to the armband ECG signals and it was able to 

emove significant EMG artifacts, consequently providing more ac- 

urate R-peak detection. The QRS complex detection results on the 

enoised armband data demonstrate that the proposed denoising 

ethod could significantly enhance the potential of the armband 

evice to be used for continuous monitoring of AF, and without 

he skin irritation that has been a problem for Holter monitors be- 

ause of their hydrogel electrodes. 
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