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Abstract

An objective measure of pain remains an unmet need of people with chronic pain, estimated to be 1/3 of the adult population in
the United States. The current gold standard to quantify pain is highly subjective, based upon self-reporting with numerical or
visual analog scale (VAS). This subjectivity complicates pain management and exacerbates the epidemic of opioid abuse. We
have tested classification and regression machine learning models to objectively estimate pain sensation in healthy subjects
using electrodermal activity (EDA). Twenty-three volunteers underwent pain stimulation using thermal grills. Three different “pain
stimulation intensities” were induced for each subject, who reported the “pain sensation” right after each stimulus using a VAS
(0–10). EDA data were collected throughout the experiment. For machine learning, we computed validated features of EDA
based on time-domain decomposition, spectral analysis, and differential features. Models for estimation of pain stimulation inten-
sity and pain sensation achieved maximum macroaveraged geometric mean scores of 69.7% and 69.2%, respectively, when
three classes were considered (“No,” “Low,” and “High”). Regression of levels of stimulation intensity and pain sensation
achieved R2 values of 0.357 and 0.47, respectively. Overall, the high variance and inconsistency of VAS scores led to lower per-
formance of pain sensation classification, but regression was better for pain sensation than stimulation intensity. Our results pro-
vide that three levels of pain can be quantified with good accuracy and physiological evidence that sympathetic responses
recorded by EDA are more correlated to the applied stimuli’s intensity than to the pain sensation reported by the subject.
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INTRODUCTION

Pain is an unpleasant sensory and emotional experience
associated with actual or potential tissue damage (1).
Currently, clinicians and researchers use self-rating tools
based on either numerical or visual scales as the gold stand-
ard for pain sensation assessment (2). These methods work
for alert and cooperative patients; however, they are highly
subjective in nature. An objective and accurate assessment
of pain sensation level is of increased interest, as it would
facilitate the delivery of appropriate doses of medications
especially for those cases when the self-reported pain inten-
sity cannot be either communicated or trusted. In our
attempt to overcome this limitation, we tested the feasibility
of an objective biomarker of pain sensation based on electro-
dermal activity (EDA).

Chronic pain is considered a disease (3). It affects one in
three adults in the United States (4, 5) and represents a
huge economic burden, costing $560–$635 billion annu-
ally, which is more than heart disease, cancer, and diabe-
tes (6). Treatment for chronic pain is often conducted by
prescribing opioids; however, the abuse of opioid prescrip-
tions has become a national epidemic as they are highly
addictive (7, 8), with a cost of about $500 billion per year

including medical, economic, social, and criminal costs
(9). A reliable biomarker of pain that does not rely on a
subjective report for pain assessment will enable the objec-
tive quantification of pain levels and detection of attenua-
tion (or not) of pain after treatment. The development of
an effective treatment for chronic pain has been hampered
by the lack of such an objective measure.

The autonomic nervous system (ANS) is the primary path-
way for brain-gut communication and controls the body’s
emotional and psychological states (10). This makes it partic-
ularly relevant to pain, which also has a strong emotional
component. The ANS includes the sympathetic and parasym-
pathetic nervous systems, and chronic pain reportedly corre-
lates with an unchecked predominance of sympathetic and
desensitized parasympathetic activity (11). Thus, assessing the
dynamics of the ANS, especially the sympathetic branch, is a
promising target for developing sensitive and robust bio-
markers for chronic pain. Electrodermal activity (EDA) is a
marker of sympathetic autonomic control (12). The EDA is a
simple measure and has shown to be highly sensitive to sym-
pathetic arousal (13–15). EDA has been recently used to assess
subjects’ response to pain stimulation (12, 16–21).

We hypothesize that indices that exhibit differences in
response to different pain stimulation intensities can be

* H. F. Posada–Quintero and Y. Kong equally contributed to this paper.
Correspondence: H. F. Posada–Quintero (h.posada@uconn.edu).
Submitted 30 March 2021 / Revised 1 June 2021 / Accepted 16 June 2021

R186 0363-6119/21 Copyright © 2021 the American Physiological Society. http://www.ajpregu.org

Am J Physiol Regul Integr Comp Physiol 321: R186–R196, 2021.
First published June 16, 2021; doi:10.1152/ajpregu.00094.2021

Downloaded from journals.physiology.org/journal/ajpregu at Univ of Connecticut Hlth Ctr (067.221.072.176) on August 9, 2021.

https://orcid.org/0000-0003-4514-4772
https://orcid.org/0000-0001-5409-3888
mailto:h.posada@uconn.edu
https://crossmark.crossref.org/dialog/?doi=10.1152/ajpregu.00094.2021&domain=pdf&date_stamp=2021-06-16
http://www.ajpregu.org
https://doi.org/10.1152/ajpregu.00094.2021


used to develop a quantitative pain diagnosis via a
machine learning model. In this study, we collected EDA
recordings from healthy volunteers undergoing pain-evok-
ing stimuli delivered to their skin but without any tissue
damage using thermal grills and documented subject-
reported pain scores. We used statistical analysis and
machine learning algorithms to evaluate the feasibility of
indices of EDA to estimate both the pain sensation
reported by subjects and the pain stimulation intensity
delivered using thermal grills.

MATERIALS AND METHODS

Subjects

All human study protocols were approved by the
University of Connecticut Institutional Review Board.
Twenty-three healthy volunteers (11 males and 12 females)
of ages ranging from 19 to 34 yr old (24.5 ± 4.8; means ± SD)
were enrolled in this study. All volunteers provided writ-
ten informed consent to participate in the study.
Participants were asked to avoid caffeine and alcohol dur-
ing the 24h preceding the test and instructed to fast for at
least 3 h before the test. The study was conducted in a
quiet and dimly lit room (ambient temperature, 26–27�C)
to avoid any external stimuli. Throughout the stimulus
protocols, EDA data were collected from each subject’s
left-hand fingers and data were processed post hoc in both
time and frequency domains to assess and quantify differ-
ent levels of sympathetic activities.

Devices

A galvanic skin response device was used to collect EDA
(FE116, ADInstruments) using reusable stainless-steel elec-
trodes placed on subjects’ left index and middle fingers. The
skin of the subject was cleaned with alcohol before placing
the EDA electrodes. The EDA signals were recorded at
500Hz.

Protocol

To ensure hemodynamic stabilization, subjects were
asked to stay still before the test, resting in a chair for 5min.
Stimulation of the hand’s glabrous skin was delivered by a
set of three customized thermal grills (Fig. 1), labeled TG1,
TG2, and TG3. Each thermal grill consists of interlaced tubes
that are set at a warm (40–50�C) or cool (18�C) temperature.
By creating an illusion of pain in the brain by presenting the
warm and cold stimuli collectively (22–25), the thermal grill
provokes a sensation of pain commensurate with higher
temperatures in the warm tubes without causing tissue
injury (18). We perfused the cool tubes of all grills with ice
water flowing through a controlled coil to maintain a tem-
perature of 18�C in the grill bars and the warm tubes with
water from a temperature-controlled water bath. For each
subject, we adjusted the temperature in the warm tubing in
TG2 until the subject reported a pain score of 5 to 6 out of 10
on visual analog scale (VAS). This temperature was labeled
as Tm. The temperature of water in the warm tubing of TG1
and TG3 was adjusted to Tm � 2�C and Tm þ 2�C, respec-
tively. Thermal grills (TGs) TG1, TG2, and TG3 were used to
deliver “Level 1,” “Level 2,” and “Level 3” pain stimulation
intensities, respectively (Table 1). For safety reasons, we con-
firmed that the temperature of all tubes was always below
50�C. Each individual stimulus consisted of asking the sub-
ject to put their right hand on a specific TG and maintain it
there for as long as the subject could bear the pain (<10s).
We generated a train of 21 stimuli, consisting of 7 stimuli for
each TG, with randomized sequence and interstimulus inter-
val of 1min.

Subjects reported pain levels using a VAS ranging from 0
(no pain) to 10 (worst pain possible) immediately after each
stimulus (18). For the classification of pain sensation, we
defined the following ranges based on VAS scores: 0 �
VAS< 1 as “No pain”; 1 � VAS<4 as “Low”; 4 � VAS�6 as
“Medium”; and 6� VAS� 10 as “High.”

EDA Signal Processing

The raw EDA signals were decomposed into tonic and
phasic components (13) as indicated in Fig. 2 (top and mid-
dle). The tonic component reflects the slow transients in the
skin conductance amplitude. The phasic component is the
rapid transient visible in the raw EDA signal, i.e., the skin
conductance responses (SCRs) that are caused by the rapid
reaction of the sympathetic nervous system to a certain
external or internal triggering event (26). Several methods

Figure 1. Thermal grill used to induce heat sensation pain on each sub-
ject’s right hand; the left hand was used to collect EDA data. EDA, electro-
dermal activity. n = 23 subjects.

Table 1. Categorization for pain level and VAS

Pain Stimulation Intensity

Level 0

(Pre-TG)

Level 1

(TG1)

Level 2

(TG2)

Level 3

(TG3)

Three-class classification No Low High
Four-class classification No Low Medium High

Pain Sensation Level (VAS)

0 (Pre-TG) 1–3 4–6 7–10

Three-class classification No Low High
Four-class classification No Low Medium High

TG, thermal grill stimulation; VAS, visual analog scale.
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have been implemented for obtaining tonic EDA and phasic
EDA (14), including the convex optimization approach
(cvxEDA) (27) and the sparse deconvolution approach
(sparsEDA) (28). cvxEDA and sparsEDA also provide an esti-
mation of the phasic drivers that elicit the individual SCR.
Note that in Fig. 2, sparsEDA was used to obtain the tonic
EDA, phasic EDA, and the estimation of the phasic drivers
for illustration purposes.

From the phasic EDA obtained from each approach, we
computed the derivative of the phasic component of EDA
(dphEDA) as an index of pain (Fig. 2, middle), which has
been reported as an EDA feature that is sensitive to pain (29).
The dphEDA for each of the five approaches was computed
by using the 5-point stencil central finite differences equa-
tion (30), for each sample n, as follows:

dphEDA nð Þ ¼

P n� 2ð Þ � 8 � P n� 1ð Þ þ 8 � P n þ 1ð Þ � Pðn þ 2Þ
12 � ð1=fsÞ ð1Þ

where fs is the sampling frequency (4Hz) and P is the phasic
component of EDA.

As illustrated by the red trace in Fig. 2 (bottom), we imple-
mented a novel EDA index in this study, the time-varying
index of EDA (TVSymp) (31), which has been shown by our
previous studies to be more sensitive and consistent than
time-domain measures of EDA derived from counting SCRs
and computing the mean value (level) of the signal for a given
period of time (15). We computed the TVSymp using variable
frequency complex demodulation, an algorithm that we
developed in characterizing dynamics of biosignals (32). To
optimize the calculation of TVSymp, we extracted the fre-
quency powers from 0.08 to 0.24Hz from the EDA signal, fol-
lowing a protocol we recently reported (31). Amplitudes of the
time-varying components in this band are summed together
to obtain an estimated reconstruction of the EDA signal while
suppressing other frequencies that are not part of the

sympathetic responses. The reconstructed signal is then uni-
varianced and the instantaneous amplitudes of the resulting
signal are computed using the Hilbert transform (33). The
modified TVSymp (MTVSymp) was obtained by computing
the difference in value of TVSymp with respect to the mean
value of TVSymp of the previous 5-s window. Negative values
of MTVSymp were set to 0. MTVSymp enhances the changes
in the sensitivity of the TVSymp signal to pain, by removing
other possible sources of arousal (e.g., underlying stress) (29).

The mean levels of the phasic EDA, tonic EDA, dphEDA,
TVSymp, and MTVSymp in a time window of 5 s were meas-
ured before and after each stimulus. The subject-reported
pain sensation was considered to be pain sensation level 0,
“no pain,” for prestimulus signal segments. The prestimulus
values are meant to capture any changes in EDA, slow and
fast (SCRs), expected to be spontaneously elicited by other
stimuli-like anticipation and underlying stress. Incorporating
these changes in the EDA not produced by pain act in the
model as a control response to improve the accuracy of pain
assessment. The signal segments right after each stimulus
were associated to the VAS score reported by the subject.

Statistics

Normality of the VAS and measures of EDA were tested for
the different pain stimulation intensities and pain sensation
levels using the Kolmogorov–Smirnov test (34–36). Repeated-
measures analysis was performed to test the difference in the
VAS and measures of the EDA at different stimulation inten-
sities and sensation levels. In normally distributed data, two-
way analysis of variance (ANOVA) was performed to test for
significant differences between measures. If nonnormality
was found in a specific index, we used the Dunn’s test (37).
The Bonferroni method was used for correction of multiple
comparisons.

Machine Learning Modeling

We used classification and regression machine learning
algorithms to evaluate the feasibility of indices of EDA to

Figure 2. Decomposition of EDA. Tonic EDA, phasic EDA, phasic driver, dphEDA, TVSymp, and MTVSymp. dphEDA, derivative of the phasic component
of electrodermal activity; EDA, electrodermal activity; MTVSymp, modified TVSymp; TVSymp, time-varying index of electrodermal activity.
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estimate both the pain sensation reported by subjects and
the pain stimulation intensity delivered using thermal grills.
In machine learning, classification algorithms are used
when the outputs are limited to certain categorical values
(classes), whereas regression algorithms are used when the
outputs to be predicted are continuous and may have a nu-
merical value within a range. For instance, a classification
algorithm that detects a given disease based on physiological
parameters, the input would be the set of physiological fea-
tures, and the output would be the diagnosis of each subject
(positive or negative) (38).

In general, in regression algorithms, the estimation target
(dependent variable) is modeled a function of the independ-
ent variables called the regression function. Many techni-
ques for carrying out regression analysis have been
developed. The most common form of regression is the lin-
ear regression, where the dependent variable is specified as a
linear combination of the independent variables and the
best fit is defined according to a mathematical criterion such
as least squares. Linear regression is considered parametric,
as the regression function is defined in terms of a finite num-
ber of unknown parameters that are estimated from the
input data. In contrast, techniques that allow the regression
function to lie in a specified set of functions (which may be
infinite-dimensional) are referred as nonparametric regres-
sion. Nonparametric regression includes regression trees,
support vector regression, neural networks, among others.

Both pain stimulation intensity and pain sensation based
on VAS scores are ordinal targets and integers, respectively.
If the levels are defined as “No pain,” “Low,” “Medium,” and
“High,” the labels can be considered classes and the estima-
tion is a classification problem. If levels are defined as ordi-
nal numerical targets, that is, “No pain” corresponding to 0,
“Low” corresponding to 1, “Medium” corresponding to 2,
and “High” corresponding to 3, the estimation can be seen as
a regression problem. As seen, our prediction can be
approached as an ordinal regression or classification prob-
lem. Therefore, to study objective pain estimation in more
detail, we tested both approaches machine learning classifi-
cation and regression.

Classification.
First, to test the feasibility of the detection of pain stimula-
tion intensity and pain sensation with a resolution of 3 and 4
levels, we performed classification with two different target
associations: 1) three-class (“No,” “Low,” and “High”) and 2)
four-class (“No,” “Low,” “Medium,” and “High”), as shown in
Table 1. All segments before each stimulus were set as class 1
(class “No”). For three-level classification, segments from the
low andmedium pain-inducing thermal grills or with VAS 1–
6 were considered as class 2 (low pain), and from the high
pain thermal grill or with VAS � 7 was set as class 3 (high
pain). For the four-class approach, segments from the low
pain thermal grill or with VAS 1–3 were set as class 2 (low
pain), from the medium pain thermal grill or with VAS 4–6
as class 3 (medium pain), and from the high pain thermal
grill or with VAS� 7 as class 4 (high pain).

We tested four machine learning classifiers using the
leave-one-subject-out cross-validation strategy, including
support vector machine with linear kernel (SVML), support
vector machine with radial basis function kernel (SVMR),

multilayer perceptron (MLP), and random forest (RF). We
selected the maximum and mean values of the following
EDA features: phasic, TVSymp, MTVSymp, and dPhEDA
(29). Random forest classifiers were configured with 100 as
the number of estimators and Gini criterion. MLP classifiers
were set with a rectified linear unit activation function,
Adam optimizer (39), and 0.001 for the learning rate.
Moreover, parameters C of SVML, C and gamma of SVMR,
and hidden unit and layer structures of MLP were selected
using a grid-search cross-validation technique with group
fourfold cross validation. C parameters for SVML and SVMR
were chosen among 0.01, 0.1, 1, 10, 100, and 1,000. Gamma
parameter for SVMR was selected among 10, 1, 0.1, 0.01,
0.001, and 0.0001. The hidden unit and layer structure were
chosen among the three candidates: 1 layer and 100 units, 2
layers and 50 units, and 3 layers and 20 units. Data were nor-
malized with zero mean and unit variance. We applied class
weights, as the data set is not balanced. We used Python 3.6
with Scikit-learn library (40).

To evaluate the performance of each classifier, we calcu-
lated macroaveraged geometric mean scores, which is a met-
ric that penalizes misclassifications. Each class of geometric
mean scores is calculated by the root mean square of the
multiplication of sensitivity and specificity. As our data set is
not balanced, we averaged each class of geometric mean
scores (i.e., macroaveraged), as follows:

Macroaveraged geometric mean score

¼
PNclass

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sensitivityi � specificityi

p

Nclass
ð2Þ

Regression.
We also conducted regression for both pain stimulation in-
tensity and pain sensation. We used the same designations
of the four-class classification approach described in Table 1
to have the scales with the same number of elements, which
is necessary for a fair comparison of different regressors of
pain stimulation intensity and pain sensation. We tested sev-
eral regressors and found that MLP and SVMR outperformed
others. We obtained features by computing the maximum
and mean values of EDA features: phasic driver, TVSymp,
MTVSymp, and dPhEDA (29). We used the same parameters
for both SVMR and MLP for classifications. We handled the
imbalance of the data set using SVM-Synthetic Minority
Oversampling Technique (SMOTE) (41–43). To evaluate the
performance of regressors, we calculated three indices: coef-
ficient of determination (R2), macroaveraged root mean
square error (M-RMSE), and macroaveraged mean absolute
error (M-MAE). M-RMSE and M-MAE were calculated by
averaging RMSE and MAE of each class, as they provide bet-
ter evaluation for imbalanced ordinal regression datasets
(44, 45).

RESULTS

Figure 3 shows a segment of raw EDA data for a subject
undergoing pain stimulation using thermal grills. Notice the
three stimulation intensities and the VAS reported by the
subject after each stimulus. The width of each bar in
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the stimuli trace represents the time the subject held their
right hand to the thermal grill. EDA typically exhibits an
SCR right after the onset of the pain stimulus. Nevertheless,
other SCRs are also observed before stimuli.

Statistical Analysis

Tables 2 and 3 include the values for phasic and tonic
EDA, dphEDA, phasic driver, TVSymp, and MTVSymp for
the different levels of thermal grill stimulation and pain sen-
sation levels reported by the subjects, respectively. Also, the
values of VAS for different stimulation intensities and the
values of level intensity for the different pain sensation lev-
els are reported in Table 2. Pain stimulation “Level 0” and
pain sensation “No” correspond to the segments before stim-
ulation. We observed significant differences in VAS between
all stimulation intensity levels in Table 2, and in stimulation
level between all pain sensation levels, shown in Table 3.
Significant differences are marked as superscript numbers.

As for the indices of EDA, tonic EDA did not exhibit signifi-
cant differences between stimulation intensity levels. The
tonic component obtained with cvxEDA exhibited signifi-
cant differences only between “Medium” and “No pain” sen-
sation levels. All other indices that are associated with the
higher-frequency dynamics of EDA (phasic EDA, dphEDA,
TVSymp, and MTVSymp) exhibited more differences
between levels of stimulation intensity and pain sensation
than the tonic component. The indices that exhibited more
differences than the others between levels of stimulation in-
tensity were dphEDA from sparsEDA, phasic driver from
cvxEDA and sparsEDA, and MTVSymp. None of the indices
exhibited significant differences between level 2 and level 3
of stimulation intensity.

As for the levels of pain sensation (Table 3), the indices
that exhibited more differences than the other measures
were dphEDA from cvxEDA, phasic driver from sparsEDA,
TVSymp, and MTVSymp. dphEDA for cvxEDA and

Figure 3. Segment of raw EDA and stimuli for a given subject. EDA, electrodermal activity.

Table 2. Indices for different levels of thermal grill stimulation intensity

Level 0 Level 1 Level 2 Level 3

VAS 0 ±0 3.5 ± 1.90 5.9 ± 1.3 0,1 7 ± 1.30,1,2

cvxEDA
Phasic, mS 1.3 ± 2.8 1.4 ± 2.6 1.7 ± 3.60 1.7 ± 2.50,1

Tonic, mS 7.8 ± 8.4 8.1 ± 8.3 8 ± 8.9 7.6 ± 8.2
dphEDA � 0.066 ±0.18 0.15 ± 0.250 0.23 ±0.280 0.29 ±0.320,1

Phasic driver (a.u.) 2.4 ± 5.2 3.4 ± 3.80 4.4 ± 4.20, 1 5 ± 4.70, 1

sparsEDA
Phasic, mS 0.31 ± 0.97 0.57 ± 2.3 0.77 ± 1.1 0, 1 0.58 ± 1 0

Tonic, mS 8.8 ± 7.3 8.9 ± 7.1 8.8 ± 7.3 8.7 ± 7.4
dphEDA � 0.082 ±0.17 0.17 ± 0.520 0.23 ±0.27 0,1 0.3 ± 0.30,1

Phasic driver (a.u.) 0.094 ±0.53 0.54 ± 1.60 1 ± 1.6 0,1 1.2 ± 1.60,1

Spectral
TVSymp 0.79 ±0.62 0.98 ±0.76 1.3 ± 0.8 0,1 1.4 ± 0.910,1

MTVSymp 0.13 ± 0.18 0.26 ±0.290 0.34 ±0.3 0,1 0.39 ±0.380,1

Superscript numbers denote significant differences to the given levels of stimulation intensity. cvxEDA, convex optimization of electroder-
mal activity; dphEDA, derivative of the phasic component of electrodermal activity; MTVSymp, modified time-varying index of electrodermal
activity; sparsEDA, sparse deconvolution of electrodermal activity; TVSymp, time-varying index of electrodermal activity; VAS, visual analog
scale. Repeated-measures analysis using ANOVA or Dunn’s test for normal or non-normal distributed data, respectively.
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sparsEDA, and phasic driver from sparsEDA were the only
indices significantly different between “Low” and “No pain”
levels of pain sensation. Similar to the case of the stimulation
intensity, none of the indices of EDA exhibited significant
differences between “High” and “Medium” levels of pain
sensation.

As shown, compared with the indices of EDA, MTVSymp is
one of the indices that exhibits more significant differences
between levels of pain stimulation intensity and pain sensa-
tion. For illustration purposes, Figs. 4 and 5 present the en-
semble average of MTVSymp for different levels of pain
stimulation intensity and pain sensation, respectively, for a
given subject. The solid and dashed lines indicate the mean
and its standard deviation bounds, respectively. The onset of
stimulation is marked with a vertical line. It is apparent
that MTVSymp slightly increases with ascending stimulus
intensity and pain sensation. However, for this specific

subject, it is apparent that a slight increase between “high”
and “medium” levels of pain sensation (although not sig-
nificant) is seen, but not as much can be observed between
level 3 and level 2. This is in agreement with results exhib-
ited in Tables 2 and 3.

Classification

Table 4 shows comparison of classifiers for the three-class
and four-class approaches, for pain stimulation intensity
and pain sensation. For the three-level classification, the
highest macroaveraged geometric mean scores for pain stim-
ulation intensity and pain sensation were 69.7% and 69.2%,
respectively, with features of TVSymp, MTVSymp, phasic
and driver components obtained with sparsEDA, and MLP
classifier. For the four-class classification, except for the
SVML classifier with features of TVSymp, MTVSymp, and
cvxEDA components of EDA, which showed poorer

Figure 4. Ensemble average of MTVSymp for a given subject, for the different levels of pain stimulation. Solid and dashed lines represent the mean and
standard deviation, respectively. MTVSymp, modified time-varying index of electrodermal activity.

Table 3. Indices for different levels of subject pain sensation after thermal grill stimulation based on VAS

No Low Medium High

Level 0.0085 ±0.092 1.1 ± 0.340 1.9 ± 0.750,1 2.6 ± 0.530,1,2

cvxEDA
Phasic, mS 1.2 ± 2.8 1.3 ± 2.5 2 ± 3.60 1.2 ± 22

Tonic, mS 7.8 ± 8.4 9.9 ± 9.7 6.8 ± 8.51 8.3 ± 7.6
dphEDA �0.065 ±0.18 0.14 ± 0.240 0.22 ±0.30 0.27 ± 0.30,1

Phasic driver (a.u.) 2.4 ± 5.2 3.3 ± 3.7 4.9 ± 4.70 4 ± 40

sparsEDA
Phasic, mS 0.31 ± 0.96 0.67 ± 3.1 0.66 ± 1.20 0.6 ± 0.89
Tonic, mS 8.8 ± 7.3 11 ± 8.7 8.2 ± 6.7 8.9 ± 7.1
dphEDA �0.081 ± 0.17 0.19 ± 0.680 0.22 ±0.270 0.27 ± 0.290

Phasic driver (a.u.) 0.1 ± 0.59 0.57 ± 2.10 0.94 ± 1.60 1.1 ± 1.40,1

Spectral
TVSymp 0.78 ±0.62 0.88 ±0.67 1.2 ± 0.890,1 1.4 ± 0.820,1

MTVSymp 0.13 ± 0.18 0.21 ± 0.25 0.33 ±0.330,1 0.4 ± 0.340,1

“No”: 0 � VAS< 1; “low”: 1 � VAS<4; “medium”: 4 � VAS< 7; “high”: 7 � VAS� 10. Superscript numbers denote significant differences
to the given pain sensation levels. cvxEDA, convex optimization of electrodermal activity; dphEDA, derivative of the phasic component
of electrodermal activity; MTVSymp, modified time-varying index of electrodermal activity; sparsEDA, sparse deconvolution of electro-
dermal activity; TVSymp, time-varying index of electrodermal activity; VAS, visual analog scale. Repeated-measures analysis using
ANOVA or Dunn’s test for normal or non-normal distributed data, respectively.
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performance than the others, pain stimulation intensity clas-
sification showed higher macroaveraged geometric mean
scores than for pain sensation. The highest macroaveraged
geometric scores were 56.9% and 51.6%, respectively, with
sparsEDA andMLP.

Table 5 shows the confusion matrices of the classifiers
that showed the highest macroaveraged geometric mean
scores for each category. No stimulation/pain segments were
classified with higher accuracy than the other classes in all
classifiers. In the four-class approach, the number of cor-
rectly classified instances was higher than the number of
instances incorrectly assigned to other individual classes;
however, this was not the case for four-class pain sensation
classification, in which sometimes the number of instances
incorrectly assigned to other classes was higher than for the
correct class.

Regression

Table 6 shows a comparison of regression models for pain
stimulation intensity and pain sensation. Regressors showed

higher R2 and lower M-RMSE and M-MAE for pain sensation
than for pain stimulation intensity. For regressors of pain
stimulation intensity, SparsEDA with SVMR showed the
highest R2 of 0.357 with the lowest M-RMSE and M-MAE of
0.936 and 0.762. For regressors of pain sensation, SparsEDA
with MLP showed the highest R2 of 0.470 with the lowest M-
RMSE and M-MAE of 0.853 and 0.705. Figure 6 illustrates
the correlation analysis and Bland–Altman density plots of
the regressors that showed the highest R2 for each category.
Each true value group for pain sensation showed denser dis-
tribution than for pain stimulation intensity.

DISCUSSION

We have trained and tested machine learning models on
EDA features for the objective measure of stimulation pain
intensity and pain sensation. Overall, good classifications of
different levels of pain stimulation and pain sensation were
found to be feasible using features derived from EDA. In
addition, classification of pain stimulation intensities had

Table 4. Comparison of classifiers for three-class and four-class approaches using macroaveraged geometric mean
scores for pain stimulation intensity and pain sensation

Features Classifier

Three-Class Classification Four-Class Classification

Pain stimulation Intensity Pain sensation (VAS) Pain stimulation intensity Pain sensation (VAS)

cvxEDA components, TVSymp,
MTVSymp

SVML 0.605 0.598 0.331 0.346
SVMR 0.649 0.664 0.541 0.511
MLP 0.665 0.674 0.529 0.501
RF 0.658 0.658 0.523 0.490

sparsEDA components, TVSymp,
MTVSymp

SVML 0.632 0.594 0.381 0.341
SVMR 0.664 0.686 0.549 0.447
MLP 0.697 0.692 0.569 0.516
RF 0.689 0.681 0.526 0.511

cvxEDA, convex optimization of electrodermal activity; MLP, multilayer perceptron; MTVSymp, modified time-varying index of elec-
trodermal activity; RF, random forest; sparsEDA, sparse deconvolution of electrodermal activity; SVML, support vector machine linear
kernel; SVMR, support vector machine with radial basis function kernel; TVSymp, time-varying index of electrodermal activity; VAS, vis-
ual analog scale. The classifier with the highest macroaveraged geometric mean scores is boldface.

Figure 5. Ensemble average of MTVSymp for a given subject, for the different levels of pain sensation based on VAS. Solid and dashed lines represent
the mean and standard deviation, respectively. MTVSymp, modified time-varying index of electrodermal activity; VAS, visual analog scale.
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better performance than classification of pain sensation lev-
els based on features obtained from EDA. This is in agree-
ment with previous studies that found a higher correlation
of sympathetic function to stimulus intensity as compared
with perceived pain intensity (46, 47). However, the regres-
sion of pain sensation levels achieved an apparently better
fit, as a higher R2, and lower M-RMSE and M-MAE were
achieved than the regression of stimulus intensity. A possi-
ble reason for this better fit is that the pain stimulation
intensities 0 and 1 do not cause significant difference in
EDA, whereas the difference between pain sensation associ-
ated to VAS=0 (segments of no stimulation previous to ev-
ery stimulus) and VAS={1,2} is more prominent. For this
reason, the regression of VAS 0 does a better job than the
regression of “No” in the regression of pain stimulation in-
tensity (Fig. 6). Adaptation is another possible reason for the
lower performance in regression for stimulation intensities,
as low stimulation levels that initially caused some reaction
in the subjects were perceived as less or not painful as the
experiments progressed.

Furthermore, the estimation of pain sensation is ham-
pered by the subjectiveness and variation of pain reported
by the subjects using VAS or other similar scale. For exam-
ple, assigning a VAS value of 5, 6, or 7 to a given perceived
pain sensation is a fuzzy decision and these scores vary
among subjects due to their different pain tolerance.

For pain stimulation, we have delivered different levels of
pain intensity, and evoked pain sensations reported to be as
high as VAS=10 (e.g., subjectively perceived as the “worst
pain possible”) without causing tissue damage (temperature
was maintained below 45�C, insufficient to burn the glabrous
skin) using an array of thermal grills. The differences in VAS
scores between the levels of stimulation support the effective-
ness of thermal grills to elicit different levels of pain. Previous
studies have suggested that thermal grills evokemore consist-
ent pain stimulation across subjects, as compared with tradi-
tional methods for pain stimulation like electric shocks (18).

A significant correlation between pain sensation and the
elevation of the dynamics of the autonomic nervous system
(ANS) has been reported before (48). In the brain, the peria-
queductal gray, amygdala, hypothalamus, anterior cingulate,
and insular cortex intervene in both autonomic responses
and pain (49, 50). Although an understanding of the multiple
mechanisms of interplay between ANS and pain is not fully
elucidated, a noxious painful stimulus is known to cause auto-
nomic reactions and autonomic activity affecting pain
responses (51, 52). Although multiple studies have looked into
the relationship between ANS reactions and stimulus inten-
sity (53–56), some years ago, researchers were able to deter-
mine a hierarchy in the relationship between ANS and pain
and determine that ANS sympathetic responses are more cor-
related to the intensity of the stimulus applied than to the
subjective sensation of pain elicited by the stimulus (46, 47).
Another study found that the response observed in the skin
sympathetic nerve activity was irrespective of the difference
in sensation elicited by stimulating either the muscle or the
skin (57). In that study,muscle pain induced by hypertonic sa-
line injections was reported to have a deep, dull poorly local-
ized quality, whereas skin pain was sharp, burning, and
highly localized. Despite the differences in sensation, both
types of pain elicited seemingly identical responses. In agree-
ment with such findings, we also observed that stimulation
intensity is easier to classify than pain sensation.

The statistical analysis indicated than indices of EDA
associated with higher frequencies (phasic EDA, dphEDA,
phasic drivers, TVSymp, and MTVSymp) showed more sig-
nificant differences between stimulation levels than did the
other indices of EDA. This suggests that the elicited pain also
evoked a concomitant sympathetic physiological reaction.
Also, the differences between stimulation and no stimula-
tion on dphEDA, TVSymp, and MTVSymp are in agreement
with previous studies that validated the sensitivity of the
index to sympathetic arousal and pain stimulation (18, 29,
31, 58).

Table 5. Confusion matrices for three-class and four-class classification approaches for pain stimulation intensity
and pain sensation

Three-Class Classification Four-Class Classification

Estimated Intensity Estimated Sensation Estimated Intensity Estimated Sensation

0 1 2 0 1 2 0 1 2 3 0 1 2 3

Trueclass 0 0.83 0.14 0.03 0.83 0.13 0.04 0.77 0.15 0.07 0.02 0.75 0.17 0.05 0.03
1 0.21 0.52 0.27 0.21 0.42 0.37 0.20 0.39 0.25 0.17 0.27 0.26 0.24 0.23
2 0.15 0.40 0.45 0.14 0.33 0.53 0.13 0.25 0.38 0.24 0.13 0.27 0.26 0.34
3 N/A N/A 0.09 0.24 0.31 0.36 0.10 0.17 0.23 0.50

Table 6. Comparison of regressions of pain stimulation intensity and pain sensation

Pain Stimulation Intensity Pain Sensation (VAS)

Features Regressor R2 M-RMSE M-MAE R2 M-RMSE M-MAE

cvxEDA components, TVSymp,
MTVSymp

MLP 0.146 1.071 0.850 0.378 0.937 0.765
SVMR 0.297 0.983 0.827 0.419 0.906 0.756

sparsEDA components, TVSymp,
MTVSymp

MLP 0.333 0.957 0.770 0.470 0.853 0.705
SVMR 0.357 0.936 0.762 0.429 0.897 0.749

The 0–3 scale for regression was defined the same way as for the four-class classification approach. cvxEDA, convex optimization of
electrodermal activity; M-MAE, macroaveraged mean absolute error; MLP, multilayer perceptron; M-RMSE, macroaveraged root mean
square error; MTVSymp, modified time-varying index of electrodermal activity; sparsEDA, sparse deconvolution; SVMR, support vector
machine with radial basis function kernel; TVSymp, time-varying index of electrodermal activity; VAS, visual analog scale.
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Describing the fundamental grounds of pain perception is
a centuries-old field of study (59). Several pain theories have
been proposed to explain individuals’ pain sensation, why
and how (60). Although none of those theories completely
accounts for all aspects of pain perception, the model that
comprehensively considers the interactions among the bio-
logical, psychological, and social components unique to each
individual (biopsychosocial), and the issues embedded in
such interactions, is considered to provide the most success-
ful explanation of the etiology of pain (61). Another widely
accepted theory is the intensity theory of pain (62). This
theory defines pain as an emotion that occurs when a stimu-
lus is stronger than usual, rather than as a unique sensory ex-
perience. In other words, pain occurs when sufficient
intensity is reached rather than being a stimulus modality. In
this study, we have found evidence supporting that when a
stimulus intensity reached certain threshold, it produced an
objective and measurable reaction in the body and the sum-
mation effect produced by the increased intensity can be
used to assess the level of pain perceived by human subjects.

Perspectives and Significance

We have tested the feasibility of objective pain assessment
using machine learning models trained on EDA features. We
evaluated the classification and regression of pain stimulation
intensity and pain sensation in healthy subjects. We computed

features of EDA previously reported to be sensitive to sympa-
thetic tone and pain, based on time-domain decomposition,
spectral analysis, and differential analyses. Overall, classifica-
tion of pain stimulation intensity achieved better results than
pain sensation, possibly the latter due to the high variance and
inconsistency of VAS scores reported by the subjects. Models
for classification of pain stimulation intensity and pain sensa-
tion achieved maximum macroaveraged geometric mean
scores of 69.7% and 69.2%, respectively, when three classes
were considered (“No,” “Low,” and “High”). Regression of
stimulation intensity and pain sensation achieved maximum
values. Interestingly, regression of pain sensation achieved
lower error compared with pain stimulation intensity (R2 val-
ues of 0.47 and 0.357, respectively). Our results constitute addi-
tional physiological evidence that autonomic responses are
more correlated to the applied stimuli’s intensity than to the
pain sensation reported by the subject.
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