
sensors

Article

Automated Condition-Based Suppression of the CPR Artifact in
ECG Data to Make a Reliable Shock Decision for AEDs
during CPR

Shirin Hajeb-Mohammadalipour 1,*, Alicia Cascella 2, Matt Valentine 2 and Ki H. Chon 1

����������
�������

Citation: Hajeb-Mohammadalipour,

S.; Cascella, A.; Valentine, M.; Chon,

K.H. Automated Condition-Based

Suppression of the CPR Artifact in

ECG Data to Make a Reliable Shock

Decision for AEDs during CPR.

Sensors 2021, 21, 8210. https://

doi.org/10.3390/s21248210

Academic Editor: Marco Di Rienzo

Received: 20 September 2021

Accepted: 3 December 2021

Published: 8 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Biomedical Engineering Department, University of Connecticut, Storrs, CT 06269, USA; ki.chon@uconn.edu
2 Defibtech, LLC, Guilford, CT 06437, USA; acascella@defibtech.com (A.C.); mvalentine@defibtech.com (M.V.)
* Correspondence: shirin.hajeb@uconn.edu

Abstract: Cardiopulmonary resuscitation (CPR) corrupts the morphology of the electrocardiogram
(ECG) signal, resulting in an inaccurate automated external defibrillator (AED) rhythm analysis.
Consequently, most current AEDs prohibit CPR during the rhythm analysis period, thereby de-
creasing the survival rate. To overcome this limitation, we designed a condition-based filtering
algorithm that consists of three stop-band filters which are turned either ‘on’ or ‘off’ depending
on the ECG’s spectral characteristics. Typically, removing the artifact’s higher frequency peaks in
addition to the highest frequency peak eliminates most of the ECG’s morphological disturbance
on the non-shockable rhythms. However, the shockable rhythms usually have dynamics in the
frequency range of (3–6) Hz, which in certain cases coincide with CPR compression’s harmonic
frequencies, hence, removing them may lead to destruction of the shockable signal’s dynamics.
The proposed algorithm achieves CPR artifact removal without compromising the integrity of the
shockable rhythm by considering three different spectral factors. The dataset from the PhysioNet
archive was used to develop this condition-based approach. To quantify the performance of the
approach on a separate dataset, three performance metrics were computed: the correlation coefficient,
signal-to-noise ratio (SNR), and accuracy of Defibtech’s shock decision algorithm. This dataset,
containing 14 s ECG segments of different types of rhythms from 458 subjects, belongs to Defibtech
commercial AED’s validation set. The CPR artifact data from 52 different resuscitators were added
to artifact-free ECG data to create 23,816 CPR-contaminated data segments. From this, 82% of the
filtered shockable and 70% of the filtered non-shockable ECG data were highly correlated (>0.7)
with the artifact-free ECG; this value was only 13 and 12% for CPR-contaminated shockable and
non-shockable, respectively, without our filtering approach. The SNR improvement was 4.5 ± 2.5 dB,
averaging over the entire dataset. Defibtech’s rhythm analysis algorithm was applied to the filtered
data. We found a sensitivity improvement from 67.7 to 91.3% and 62.7 to 78% for VF and rapid VT,
respectively, and specificity improved from 96.2 to 96.5% and 91.5 to 92.7% for normal sinus rhythm
(NSR) and other non-shockables, respectively.

Keywords: chest compression; CPR; AED; ECG; shockable; non-shockable; cardiac arrest

1. Introduction

Out of hospital cardiac arrest (OHCA) affects more than 325,000 people in the United
States each year. This occurs either due to shockable rhythms, such as rapid ventricu-
lar tachycardia (RVT) and ventricular fibrillation (VF), or non-shockable rhythms such
as asystole and pulseless electrical activity (PEA) [1]. Two-thirds of OHCAs start as a
non-shockable rhythm [2]. The most effective treatment for non-shockable rhythms is
cardiopulmonary resuscitation (CPR). For shockable RVT and VF, applying electrical shock
with an automated external defibrillator (AED) in conjunction with CPR is critical to reset
heart activity, according to the American Heart Association’s (AHA) 2020 guidelines [3].
Most AEDs’ algorithms automatically make shock versus no-shock decisions. However,
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during CPR, chest compressions (CCs) induce severe artifacts in ECG that can destroy
the morphology of the waveforms. CPR artifact on shockable rhythms can resemble a
regular rhythm with a rate equal to CCs. Consequently, an AED’s arrhythmia detection
algorithm may be fooled by the rhythmicity of the CPR artifact and make an incorrect
non-shock decision for a shockable rhythm. Conversely, CCs may also add fast and dis-
organized components to non-shockable rhythms which may lead to misclassification as
shockable. Hence, to reduce inaccurate shock versus non-shock classification, most current
AEDs require preshock CPR interruptions to make reliable rhythm analyses [4–6]. These
interruptions increase the severity of the ischemic injury both to the heart and to the brain.
Moreover, resuming CPR after interruption does not promptly lead to the full restoration
of forward blood flow [7]. Consequently, CPR interruptions reduce the survival rate of
OHCA patients.

Various filtering methods using numerous signal processing techniques have been
developed during the last two decades to suppress CPR artifacts [5,6,8]. The majority of
studies are based on Kalman filters [9,10], different adaptive filtering methods such as
least mean square (LMS) [11,12], the enhanced adaptive method [13,14], and recursive least
squares (RLS) [15,16]. Almost all of the above-noted methods require one or more reference
signals (such as chest pressure, chest displacement, chest acceleration, compression depth,
or thoracic impedance). As most of the current AEDs do not have the hardware availability
to capture the reference signal, the dependency on the reference signal is a deficiency of the
available methods [17]. Unfortunately, only a few algorithms have been developed without
reference signals. Therefore, despite all the complicated filtering methods that have been
introduced in the literature, the sensitivity (SE) and specificity (SP) of AED rhythm analysis
need to be further improved in the absence of a reference signal.

In this study, we aimed to provide a condition-based filtering approach that could
effectively work for both shockable and non-shockable rhythms using only ECG data.
In all past studies, major efforts to suppress CPR artifact, in the absence of a reference
signal, involved filtering only the fundamental frequency. However, the chest compression
rate is not perfectly sinusoidal, hence, harmonic frequency peaks are present, and they
consequently obfuscate ECG morphology. Hence, to address this issue, we propose a
condition-based filtering algorithm which not only suppresses the fundamental frequency
component of the CPR artifact but, depending on the type of rhythm (e.g., non-shockable),
harmonics associated with CPR artifacts are also removed. However, the spectral peaks
associated with the harmonics of the CPR artifacts are not removed for shockable rhythms
as their frequency content overlaps with the dynamics of the shockable signal. The question
is then how to determine if the CPR artifact-contaminated signal is shockable or non-
shockable. This is a difficult problem, as the whole premise of filtering is to remove as
much of the CPR artifact as possible but knowing, a priori, the type of rhythm (shockable
or non-shockable) is difficult and yet the key problem to solve. To address this issue,
we implemented three different stop-band filters and they are used when predefined
conditions are met. These condition-based filter criteria were derived from diverse and
extensive development datasets consisting of the PhysioNet Physio bank archive and
CPR artifact from Defibtech commercial AED log files. We tested the proposed condition-
based filtering approach on an independent test dataset. Details of the filtering algorithm
approaches based on different conditions are provided in the next section.

2. Materials and Methods
2.1. ECG Databases

Several different data sources have been used in this study to create development and
separate validation data sets:

2.1.1. Development Set

To create our development data set, ECG recordings from the PhysioNet Physiobank
online archive were used, including Massachusetts Institute of Technology–Beth Israel
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hospital (MIT–BIH) malignant ventricular arrhythmia database (VFDB) [18], Creighton
University tachyarrhythmia database (CUDB) [19], and the sudden cardiac death Holter
database (SDDB) [18]. All these recordings have a sampling frequency of 250 Hz with
12-bit resolution over a 10-mV range. Using annotation files, 50 subjects’ non-shockable
and 45 subjects’ shockable ECG rhythms were used. All recordings were resampled at
a sampling rate of 125 Hz. We only used 14 s samples of each subject’s data. CPR-
contaminated ECG data were created by adding CPR artifacts to the clean ECG rhythms
using the following equation [20]:

ECGCorrupted = ECGClean + [std (ECGClean)× 10(
−SNR

20 ) × CPR
std(CPR)

] (1)

It is based on the assumption that CPR artifact is an additive noise independent of
the underlying ECG. In this equation the terms ECGClean, ECGCorrupted, and CPR stand
for artifact-free ECG, CPR-contaminated ECG, and CPR artifact, respectively. Fifty-two
different CPR performers created their own unique signature of CPR artifacts, and they
were added to every 14 s ECG segment to create 2340 shockable and 2600 non-shockable
CPR-contaminated ECG data segments. The signal-to-noise ratio (SNR) of the development
dataset was set to −3 dB These samples were used in the development phase to design our
filtering algorithm, and the decision process on when to use certain types of filters.

2.1.2. Separate Validation Set

ECG recordings prepared by Defibtech were used as an independent validation
set to evaluate the algorithm’s performance. This dataset contained 396 subjects’ non-
shockable rhythms including normal sinus rhythm (NSR), supra VT, rapid supra VT,
sinus bradycardia, atrial fibrillation (AF), atrial flutter (AFL), heart block, and premature
ventricular contractions (PVCs), and 72 shockable subjects including rapid VT and VF. The
AEDs’ sampling frequency was 125 Hz. In total, we created 20,592 non-shockable, and
3744 shockable CPR-contaminated ECG data.

All human-induced CPR artifacts were obtained from Defibtech AED devices during
asystole. Since there is no cardiac contraction during asystole, any electrical activity in
recorded ECG during the CPR process can be considered as a true CPR artifact. The artifacts
used in this study are from 52 different resuscitators. The SNR of the CPR-contaminated
ECG was set to −3 dB. In Figure 1, black dashed lines indicate the power spectral density
(PSD) of each CPR artifact and the red line shows the averaged PSD of all artifact samples.
As shown in Figure 1, CPR artifacts are diverse in terms of compression depths and rates.
Different SNRs were also used to create a validation set with multiple corruption levels.
Details will be discussed in the Results section.
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Figure 1. PSD of different CPR artifacts and the averaged PSD are shown in black dashed lines and
red line, respectively.
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2.2. The Condition-Based Filter

The condition-based filtering algorithm contains three stop-band filters. The status of
each filter can be active or non-active depending on the output of the defined condition.
The cutoff frequencies of the filters are not fixed but are updated according to the char-
acteristics of the ECG data segment. In order to develop the condition-based approach,
different characteristics of the shockable and non-shockable rhythms as well as the features
of the CPR artifacts have been inspected and characterized in the development phase.
Consequently, the development dataset was used to define proper conditions based on the
following factors:

i To suppress the CPR components from the underlying ECG time series, the dominant
frequency of CPR artifact needs to be detected and removed. According to [21], the
recommended rate for performing chest compressions during CPR is 100–120 com-
pressions per minute. However, CPR’s fundamental frequency can be observed as
high as 3 Hz when performed too quickly. PSD plots of different CPR artifact samples
for both shockable and non-shockable rhythms shown in Figure 1 demonstrate that
the fundamental frequency of the chest compressions is localized within (1–3) Hz. In
this figure, the red line is the averaged PSD of all CPR samples.

ii It is widely recognized that the spectral content of non-shockable ECG rhythms is
distributed over a wider frequency band than that of shockable rhythms (Figure 2a) [5].
The shockable rhythms’ spectral power is largely concentrated within (3–6) Hz, as
reported in [12,22], and also shown in Figure 2b. In Figure 2, the averaged PSD for
both non-shockable and shockable rhythm types are shown in the left and right panels,
respectively. PSDs of both rhythm types are similar when they are contaminated with
CPR artifact (red lines in Figure 2a,b).

iii For most non-shockable rhythms, removing CPR harmonic peaks in addition to the
CPR fundamental frequency results in the recovery of the uncontaminated ECG data,
but this is not always the case for shockable rhythms. According to our comprehen-
sive analysis in the development phase, the best filtering approach would remove
artifacts’ first- and second-largest spectral peaks for non-shockables and only the
largest frequency peak for shockables (unless the largest spectral peak does not appear
within (3–6) Hz). Figure 3 shows representative examples for CPR-contaminated
non-shockable and shockable rhythms after removing artifact frequency peaks. How-
ever, in real-life scenarios, this decision process is not feasible because the type of
underlying rhythm is unknown. To solve this issue, we propose a solution that defines
a set of conditions to avoid shockable rhythm distortion as much as possible.

iv If the artifact’s largest spectral peak is below 1.5 Hz, the first harmonic spectral peak
would not fall close to shockable samples’ dominant frequency ((3–6) Hz). Therefore,
the algorithm removes this harmonic component.

v Non-shockable samples have spectral power in the higher frequency bands (above
10 Hz) whereas the shockable samples do not share this characteristic [12]. After
suppressing the frequency of the largest spectral peak of the CPR artifact for non-
shockable data, the total power within (10–15) Hz is determined; it is then used to
determine whether or not a second filter is needed to remove the second largest
spectral peak.
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Figure 4 shows the block diagram of the condition-based filtering algorithm we
designed. The above-noted process is succinctly summarized as follows:

1. Preprocess ECG data segment by applying a 2nd order infinite impulse response (IIR)
notch filter to remove 60 Hz electrical noise; also apply wavelet implementation plus
averaging to remove glitches and achieve a smoother signal. Use Daubechies 6-tap
wavelet to perform signal decomposition at 10 different levels. Subsequently, subtract
the reconstructed approximation signal from the original signal.

2. Estimate PSD using Welch’s overlapped segment averaging spectral estimator. Use the
Hamming window. Average the modified periodograms to obtain the PSD estimate.

3. Look for the three highest peaks in the PSD of the CPR-contaminated ECG data
segment.

4. Sort the detected peaks in descending order: Peak 1, Peak 2, and Peak 3.
5. Find the frequencies that are associated with each of the detected spectral peaks: F1,

F2, and F3.
6. Find which of the F1, F2, and F3 are within (1–3) Hz and label this frequency as

Noise-comp1.
7. Turn on the first stop-band filter with the cutoff frequency of Noise-comp1.
8. Determine the spectral power in the frequency band (10–15 Hz) of the resulting

filtered signal.
9. Evaluate condition 1: If any of the remaining frequency peaks are divisible by Noise-

comp1, then define Noise-comp2 (in case both are divisible, select the frequency
component with the highest power), else skip step 10 and move forward to step 11.

10. Evaluate condition 2: If Noise-comp2 is not within (3–6) Hz or spectral power within
(10–15) Hz satisfies the threshold value, then turn on stop-band 2 with the cutoff
frequency of Noise-comp2. -> END. (Details on the derivation of the spectral power
value threshold are provided in the Development Phase of the Results section below).

11. Evaluate condition 3: If spectral power within (10–15) Hz satisfies the threshold value
or Noise-comp1 is less than 1.5, then turn on stop-band 3 with cutoff frequency of 2*
Noise-comp1. -> END.

In addition to the proposed filtering method, we have also implemented and tested
the machine learning-based algorithm that was introduced in [23]. This approach is based
on extracting 21 features from the CPR-contaminated ECG signal. Subsequently, only
13 significant features were selected to train the back propagation (BP) neural network
classifier. More detail about the type of features as well as the feature selection method
can be found in the original study [23]. This algorithm is considered as the category of
approaches that directly analyzes and classifies CPR-contaminated ECGs with no prefilter-
ing stage. Given the promising results via BP neural network for shock versus no-shock
classification (SE and SP > 99%) on unfiltered ECG, we used ECG recordings from our
validation dataset to examine our condition-based filtering technique combined with the
BP neural network method.
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3. Results

This section includes results of the development phase and testing phase.

3.1. Development Phase

During the development process, a development dataset was analyzed in order to
design the proposed filtering algorithm. Our development set contains different types
of non-shockable and shockable rhythms from 50 and 45 different subjects, respectively.
This dataset is diverse, as ECG recordings were acquired from three different databases:
CUDB, VFDB, and SDDB. The results of suppressing the CPR artifacts’ first and second
largest spectral peaks in the non-shockable and shockable ECG rhythms are shown in the
left and right columns of Figure 3, respectively. The first, second, third, and fourth rows
of Figure 3a,b represent the artifact-free ECG, CPR-contaminated ECG, filtered ECG after
removing the artifacts’ highest spectral peak, and filtered ECG after removing the artifacts’
first and second largest spectral peaks, respectively. The PSD of the data in Figure 3a,b
are plotted for the artifact-free ECG (blue lines), CPR-contaminated ECG (red lines), ECG
after removal of the highest spectral peak (purple lines), and ECG after removal of the
highest (2.44 Hz) and the second largest spectral (7.32 Hz) peaks (in green) in Figure 3c,d.
Comparing artifact-free ECG with filtered ECGs, it is shown that, in the case of non-
shockable rhythm, the PSD of the ECG after removing the two largest spectral peaks is
most correlated with the PSD of the non-shockable artifact-free ECG (compare blue and
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green lines in Figure 3c as well as the bottom vs. the first row in Figure 3a). However,
in the case of shockable rhythms, removing the artifacts’ second highest spectral peak
(3.41 Hz) appears to be detrimental, as it introduced spectral distortion. This is because
the fundamental frequency component of the shockable rhythms overlapped with the
harmonic frequencies of the chest compressions. Figure 3d demonstrates that in the case of
shockable ECG, the highest PSD correlation is achieved between ECG after removing only
the highest spectral peak (purple) and the artifact-free ECG (blue).

Table 1 shows Pearson’s correlation coefficient values between PSDs of artifact-free
ECGs and filtered ECGs for both shockable (45 subjects) and non-shockable (50 subjects)
rhythms for the development dataset. Our analysis shows that 64% of the artifact-free non-
shockable rhythms are highly correlated (>0.7) with the filtered signal when we remove
only the highest spectral peak of the artifact. However, this value is increased up to nearly
76% when we remove the two largest spectral peaks. However, this observation is invalid
for the shockable rhythms. By removing only the main frequency component of the artifact,
78% of filtered samples are highly correlated with the artifact-free ECG. However, this
correlation value drops to 66% by removing the second highest spectral peak. The proposed
condition-based algorithm can solve this issue.

Table 1. Percentage of high correlation coefficient values between PSD of the artifact-free ECG and the corresponding
corrupted and filtered signals.

Rhythm Type
% of Correlation Coefficient
> 0.7 between Artifact-Free

and CPR-Contaminated ECG

% of Correlation Coefficient >
0.7 between Artifact-Free and
ECG after Removing Artifacts’

Highest Frequency Peaks

% of Correlation Coefficient > 0.7
between Artifact-Free and ECG

after Removing Artifacts’ 1st and
2nd Frequency Peaks

Non-shockable 18.1% 64% 75.4%

Shockable 18.5% 77.7% 66.5%

To determine the threshold value for the spectral power in the frequency band
(10–15) Hz, their boxplots are plotted for both shockable and non-shockable samples
(Figure 5). Mean standard deviation values are also shown in Table 2. According to
Figure 5 the upper limit of the spectral power in the frequency band (10–15) Hz for shock-
able samples is 0.072. For example, only 6% of shockable samples have spectral power
above 0.072 and they are the outliers (shown as “+” marks). Therefore, a threshold value of
0.07 Watt/Hz was set to avoid removing the artifacts’ second highest spectral peak from
the shockable rhythms.
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Table 2. Estimated power (watt/Hz) in the development samples for frequencies within (10–15) Hz.

Rhythm Type Power within (10–15) Hz (Average ± std)

Shockable 0.027 ± 0.022

Non-shockable 0.084 ± 0.047

3.2. Testing Phase

The performance of the algorithm was further evaluated on an independent validation
data set. Figure 6 and Table 3 indicate that the defined threshold value for the spectral
power in the frequency band (10–15) Hz is also valid for the unseen ECG data. Our analysis
showed that nearly 80% of the non-shockable samples have total spectral power higher
than the defined threshold value while only 12% of the shockables breach this threshold.
Figures 7 and 8 show representative results of applying the condition-based algorithm
on four different shockable and non-shockable data segments. In order to quantify the
performance of the proposed condition-based filtering algorithm on the validation data
set, three different criteria have been evaluated: (1) SNR improvement, (2) correlation
coefficient, and (3) results of the AED’s rhythm classification algorithm.
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Figure 6. Box plots for comparing spectral power in the frequency band (10–15) Hz for shockable
and non-shockable samples for the validation set.

Table 3. Estimated power (watt/Hz) in the validation samples for frequencies within (10–15) Hz.

Rhythm Type Power within (10–15) Hz (Average ± std)

Shockable 0.037 ± 0.028

Non-shockable 0.120 ± 0.059
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Rhythm Type Power within (10–15) Hz (Average ± std)  
Shockable 0.037 ± 0.028 

Non-shockable 0.120 ± 0.059 

Figure 7. (a–d) Show the performance of the condition-based filter on four different representative non-shockable ECG
rhythm types (test set). Each panel represents the ECG data segment of a different subject.

Using the proposed algorithm, the SNR value improved for all rhythm types (Table 4).
The average SNR improvement was 4.8 dB for NSR and 4.5 dB for other rhythm types of
non-shockables. In the case of shockables, the SNR improvement was 4.08 dB for VF and
3.68 dB for fast VT.
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Figure 8. (a–d) Show the performance of the condition-based filter on four different representative shockable ECG rhythm
types (test set). Each panel represents the ECG data segment of a different subject.

Table 4. Results of the proposed filtering algorithm on the validation set.

Rhythm Type AHA’s
Goal

SNR
Improvement

after Applying
Proposed

Algorithm

% of Highly Correlated
Samples with Desired

Clean ECGs
before-after Applying
Proposed Algorithm

Classification
Performance

before Applying
Proposed

Algorithm

Classification
Performance after

Applying
Proposed

Algorithm

Shockable

Coarse VF >90% 4.1 ± 2.4 dB 8.1–83.5% 67.7% 91.3%

Rapid VT >75% 3.7 ± 2.6 dB 20–80% 62.7% 78%

Non-shockable

NSR >99% 4.8 ± 2.5 dB 9–70% 96.2% 96.5%

Other non-shockables >95% 4.5 ± 2.5 dB 15.7–69% 91.5% 92.7%

Computing the correlation coefficient between the PSD of the artifact-free ECG and
the filtered ECG, 70% of the filtered non-shockable and 82% of filtered shockable data were
highly correlated (>0.7) with the artifact-free ECG. The correlation value greater than 0.7
was only about 12% and 13% between the CPR-contaminated ECG and the corresponding
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artifact-free ECG for non-shockables and shockables, respectively. These values are shown
in the fourth column of Table 4 for each rhythm category.

The third performance evaluation metric was the determination of shockable versus
non-shockable classifications. The last column of Table 4 represents the results of applying
our filtering method on the validation set followed by the Defibtech AED’s classification
algorithm. It should be noted that, Defibtech’s shock decision algorithm uses standard ECG
processing techniques similar to other commercial AEDs. These techniques as well as the
algorithm performance of the different commercial AEDs have been previously described
in [24–26]. Comparing the values in the last column with column 4, the proposed filtering
method improved the classification outcome, as the SE of the shockable rhythm detection
for VF and rapid VT increased from 67.7 to 91.3%, and from 62.7 to 78%, respectively.
These improved SE values of shockable rhythm detection satisfy the American Heart
Association’s AED requirement [27].

Since the true SNR level of the CPR artifact is not known, we also evaluated the
performance of the proposed algorithm on four different SNR levels. Figure 9a,b represents
the SE and SP values before and after applying the proposed filter on different SNR levels
including 0, −3, −6, and −9 dB. As shown, there is a notable SE improvement for all SNR
levels when our proposed filtering algorithm is applied. For example, for an SNR of −9 dB
(which can be considered as a severe corruption level [28]) the SE increased from 56.2%
to 85% (see Figure 9a). For both pre- and postfiltering approaches, the differences in their
performances for SP values for all SNR were negligible, albeit they all show decreased
values with decreasing SNR (see Figure 9b). Cases 1–2 in Table 5 demonstrate the averaged
SE, SP, and ACC values for all corruption levels for applying Defibtech’s AED classification
algorithm without and with our proposed filtering algorithm, respectively.
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Figure 9. (a–d) represent results of two rhythm analysis algorithms on different corruption levels before and after applying
the proposed filtering approach.

Table 5. Averaged results on different SNR levels.

Case SNRs Method SE SP ACC

1 [0, −3, −6, −9] Defibtech classification algorithm 62.1% 88.3% 84.3%

2 [0, −3, −6, −9] Proposed filtering method + Defibtech
classification algorithm 85.5% 89.6% 88.8%

3 [0, −3, −6, −9] Machine learning (BP) 86.3% 87.8% 87.6%

4 [0, −3, −6, −9] Proposed filtering method + machine learning (BP) 94.5% 88.3% 89.2%

In order to further represent the impact of our condition-based filtering method in
improving the results of rhythm analysis algorithms, we also combined the proposed
method with the backpropagation (BP) neural network approach introduced in [23] for
shockable vs. non-shockable classification. Results of this combined approach are shown in
Figure 9c,d and the cases 3–4 in Table 5. All ECG samples were split into training and test
datasets. The 52 CPR artifact samples were also divided randomly into two parts, having
26 CPR artifact samples for both training and test datasets. These CPR-contaminated
samples were added to the clean data so that different SNR levels of 0, −3, −6, and −9 dB
were achieved. Consequently, the training (with 4914 non-shockable and 910 shockable
samples) and test (with 5122 non-shockable and 962 shockable samples) datasets were
created. A weighting technique was used to make a more balanced training dataset. Using
this technique, a higher error weight was assigned to the class with the lower number
of samples [23]. Overall training and testing processes were repeated five times and the
results were then averaged. Figure 9 and Table 4 demonstrate the SE values for shockable
and SP values for non-shockable rhythms. According to panel c of Figure 9, when our
proposed filtering algorithm was combined with the BP neural network classification
algorithm, the higher SE values (>96%) were achieved. More importantly, this is still true
for low SNR level of −6 dB, as well. As expected, SE values decrease with lower SNR
levels. However, the filtering approach performed well despite severe corruption levels
as SE increased from 77 to 85.7% for SNR level of −9 dB (see Figure 9c). As shown in
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Table 5, the averaged SE, SP, and the overall accuracy (ACC) of the BP classifier for all SNR
corruption levels are 86.3, 87.8, and 87.6%, respectively; applying the proposed filtering
approach increased these values to 94.5, 88.3, and 89.2%, respectively. The results in Table 5
indicate that when our proposed filtering algorithm (fourth row) was combined with the
BP neural network classification algorithm instead of Defibtech’s classification algorithm,
this combined approach provided the best results in shockable rhythm detection with the
averaged SE value of 94.5% for all SNR corruption levels. However, the Defibtech classifier
has a slightly better performance for non-shockable rhythm detection.

4. Discussion

This paper introduced a condition-based filtering method to remove CPR motion
artifact using a series of stop-band filters. We investigated PSDs of the clean and corrupted
shockable and non-shockable rhythms to create filters that perform efficiently for different
types of ECG rhythms. Our algorithm was effective in suppressing the CPR artifact from
ECG data. Depending on the type of rhythm, the method is designed to filter only CPR
artifact without removing the dynamics of the signal of interest. This was accomplished by
the algorithm checking three different conditions to decide whether to suppress the PSD’s
second largest spectral peak in addition to the first highest spectral peak (the artifacts’
fundamental frequency) of the CPR-contaminated ECG data. The condition-based filter
approach as well as the choice of a threshold value for the total spectral power in the
frequency range of (10–15) Hz were derived from a development dataset and tested with
an independent validation dataset.

The validation data results demonstrate that the proposed condition-based filter was
effective in suppressing CPR artifacts, which led to improved accuracy of AED rhythm
analysis when compared to without the use of the filters. Our filtering method does not use
any reference signals to filter CPR artifacts. Hence, a comparison to methods that do is not
provided. However, it is likely that most methods that use a reference signal may provide
better results than provided with the proposed work, albeit with higher computational
complexity. To increase survival after cardiac arrest, the next generation of AEDs require
real-time rhythm analysis without halting CPR, hence, a simple and effective algorithm is
needed [6]. Our algorithm’s implementation in MATLAB 2021a on a Dell XP workstation
using a 14 s data segment takes only 90 to 168 msec depending on the number of times
a band-stop filter is activated. Hence, with further optimization, certainly, the proposed
algorithm is real-time realizable. We were not able to find any published reports stating
the computational time of other methods, but most mentioned that the reference-based
algorithms were computationally intensive.

Filtering methods based on removing the frequency associated with the CPR artifact
have been introduced in the past [5,29–31]. For example, in [29], the objective was to design
an algorithm to suppress CPR artifacts on VF cases. The algorithm consisted of a single
stop-band filter that adapted to the fundamental frequency of the CPR artifact which was
obtained from the spectral analysis of the ECG signal. They were able to improve only
the SE of VF detection by having the designed filter prior to the shock advice algorithm.
However, they did not evaluate their algorithm’s efficacy on shockable VT as well as
non-shockable rhythms. One of the first studies dealing with CPR artifacts using only
ECG data was published in 2008 [30]. In [30], a spectral filtering approach to remove CPR
artifacts in both shockable and non-shockable rhythms was used. In this work, the CPR
artifact was modeled as the fundamental frequency of the chest compressions via spectral
analysis of the ECG. The first harmonic was only considered in the case of low CC rates
(<1.9 Hz). Kalman filtering was then used to suppress the modeled CPR artifacts. The
SE improved after applying the filtering method, but the SP decreased by 18.7 points for
asystole and by 11 points for all other types of non-shockable rhythms. Subsequently, in
2012, a method based on wavelet analysis and morphology consistency was introduced to
detect VF rhythm types [32]. They achieved SE of 91% and SP of 85%. The main limitation
of such techniques is that the algorithm was effective mostly on NSR but it was less accurate
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for PVC beats or other types of ectopic beats [33]. In 2016 [34], a new filtering method
was introduced based on adaptively incorporating noise-assisted multivariate empirical
mode decomposition to estimate the model of CPR artifacts in VF rhythms. Subsequently,
back propagation (BP) neural network (NN) was used to perform the shock/non-shock
decision [34]. The authors used 24 different CPR artifact samples from pig data to create
CPR-contaminated ECGs with different SNR levels. The SE and SP of the classification on
unfiltered data with noise level of −3 dB were 99.7 and 98.6%, respectively. Using their
filter method, the SE and SP values of 99.5 and 100% were found.

In 2019 [23], the same research group introduced a new algorithm to directly analyze
CPR-contaminated ECG data to perform shock/no-shock classification. Table 5 in the
Results section shows the results of the combined methods on a same independent dataset.
There is a big difference between the results of the BP-based algorithm on our test data set,
as SE of 88% and SP of 91.3% (for SNR level of −3 dB), and that reported in [23]. There are
several possible reasons for this difference. First, the test dataset used in [23] did not have
much variety in the rhythms. Our test dataset contained various types of non-shockable
rhythms including NSR, supra VT, rapid supra VT, sinus bradycardia, AFib, AFL, heart
block, and PVCs, which the other study did not. Second, the other study’s CPR artifacts
were gathered from swine. Third, and most importantly, the trained model was not fully
tested using an independent test dataset. Therefore, it is likely that the results reported in
their study were biased to the specific subjects’ data which led to higher SE and SP values.

Recently, methods have been introduced based on deep learning approaches to directly
analyze CPR-contaminated ECG rhythms without filtering the CPR artifact [17,28]. These
algorithms provide a relatively accurate shock versus no-shock classification. However,
they require significant training data and computational time of which the latter will require
hardware modifications in the current AED devices. The proposed filtering algorithm,
because it is computationally simple, can be easily embedded into current AEDs to provide
a reliable shock/no-shock decision by the AED’s rhythm classification algorithm. Moreover,
the proposed filtering algorithm provides the capability of restoring corrupted shockable
and non-shockable ECG data, which may be later used for other clinical applications.

Limitations

Several limitations need to be acknowledged and addressed for future studies. First,
in this study, the chosen length of the ECG data is 14 s and it was assumed that for this
duration the chest compression rate stayed constant. We chose a 14 s data length as this was
the maximum required length for the Defibtech AED’s classification algorithm (which was
used here to evaluate the proposed method) for a shock/no-shock decision. However, our
filtering algorithm also works for a segment as low as 8 s length. Fortunately, we observed
that CPR chest compression rates do not deviate significantly in the 14 s interval. Second,
we assume that the CPR signal is periodic or quasi-periodic, which led to our approach to
examine the fundamental and harmonic frequencies. This was a valid assumption, however,
as shown in our results. Third, the proposed algorithm does not suppress greater than 3rd-
order harmonics but this did not negatively affect the performance, as the magnitude values
of these higher harmonics are inconsequential. However, in order to increase the efficiency
of the algorithm in higher SNR levels (−9 dB) further investigations is required. Fourth,
removing CPR artifacts from asystole data is a challenging problem. This is because in
order to achieve the underlying flatline characteristics of asystole, all CPR-related frequency
components need to be suppressed (in addition to the first and second peak frequencies).
We only had 52 examples of CPR-contaminated asystole data. Therefore, we were not
able to investigate and improve the performance of the proposed filtering algorithm on
asystole rhythms. However, multiple representative examples of suppressing both first
and second peak frequencies on CPR-contaminated asystole (comprised of successful and
failed filtering results) are demonstrated in the Figure S1. Fifth, although we were able to
create separate ECG recordings with CPR artifacts as a validation dataset, the performance
of the proposed filtering algorithm needs to be further evaluated on real-life ECG data from
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AED devices during CPR. This is because the source of the CPR-related artifact during CCs
has not yet been well addressed and CPR may have more than just an additive effect of
CCs on underlying ECG. We hope to address this issue in our future work.

5. Conclusions

Analyzing CPR-contaminated ECG signals may lead to erroneous shock decisions by
an AED. This work introduced a computationally simple and yet efficient ECG filtering
approach which can be used to determine shock versus no-shock decisions while CPR is
performed without stoppage. Our method does not require a reference signal and solely
uses only 14 s ECG signal segments. Since the algorithm is efficient and real-time realizable,
it can be easily implemented on current AED devices without any hardware modifica-
tion or additional reference signal requirements. Two different databases were used to
design and test the algorithm. The SNR-improvement and correlation coefficient metrics
indicated that our condition-based filtering algorithm is effective in providing accurate
shockable and non-shockable decision via a separate classification algorithm. The SE for
CPR-contaminated VF and rapid VT detection was only 67 and 62.7%, applying Defibtech’s
rhythm analysis algorithm when no filter was applied, but these values increased to 91.3
and 78%, respectively, with our designed filter. The obtained values meet the AHA’s SE
requirement (SE> 90% for VF and > 70% for rapid VT). Although the results are nearly at
the AHA threshold of SP, it did not quite meet the requirements. The recently introduced
machine learning BP-based classification algorithm was also implemented and tested. The
SE and SP of this BP-based method for different corruption levels were 86.3 and 87.8,
respectively. When our filter and the BP-based classification algorithm were combined, the
SE and SP increased to 94.5 and 88.3%, respectively. Hence, the proposed condition-based
filtering algorithm is able to improve the classification results and provide more reliable
shockable versus non-shockable decisions for existing AED rhythm analysis algorithms
by prefiltering the ECG. However, due to the data unavailability we could not perform
enough investigation and provide improvement on asystole cases. We hope to solve this
issue in our future work.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s21248210/s1, Figure S1: Applying the proposed condition-based filtering approach on
representative examples asystole rhythms during CPR.
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