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Automatic motion artifact detection in electrodermal activity data using 
machine learning 
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A B S T R A C T   

Background and objective: Electrodermal activity (EDA) has gained popularity in recent years for diverse appli
cations such as emotion and stress recognition; assessment of pain, fatigue, and sleepiness; and diagnosis of 
depression and epilepsy. However, presence of motion artifacts (MA) hinders accurate analysis of EDA signals. 
This study presents a machine learning framework for automatic motion artifact detection on electrodermal 
activity signals. 
Methods: We extracted several statistical and time frequency features from EDA and investigated machine 
learning algorithms to automatically detect noisy EDA segments. To avoid incorrect adjudication due to the 
aperiodic nature of EDA signals, we collected both clean and MA-corrupted EDA from immobile and moving 
hands, respectively. The MA-corrupted EDA data were annotated by three experts as either MA-corrupted or 
clean using the criteria recommended in the literature, as well as the correlation between MA and the reference 
EDA. 
Results: We performed a subject-independent validation strategy to evaluate the performance of the machine 
learning models. The best-performing model classified the MA and clean EDA segments with 94.7% accuracy. A 
comparison of our motion artifact detection approach with two previously published methods showed that our 
best performing method outperformed them and retained its accuracy on entirely different, unseen data from a 
separate study, indicating the method’s generalizability. 
Conclusions: The current work can provide accurate and autonomous adjudication of MA-corrupted EDA signals. 
Given the lack of accurate MA detection methods for EDA signals, this work may lead to more applications of 
EDA as a physio-marker.   

1. Introduction 

Electrodermal activity (EDA) refers to the change in electrical 
conductance of the skin as a response to the opening of sweat glands in 
the human body [1–3]. EDA represents sudomotor activities innervated 
by C nerve fibers of the autonomic nervous system and, hence, has the 
potential to be used as a noninvasive measure of the sympathetic ner
vous function and cognitive arousal [4–7]. Over the last decade, there 
has been significant advancement in EDA-based research. As an unob
trusive and noninvasive measurement, EDA has been used for assess
ment of the sympathetic nervous system in various applications such as 
emotional arousal [8–11], stress [12–15], pain [16–19], decision mak
ing [20], autism [21], and panic disorder [22]. 

Despite its popularity and potential to be used as a noninvasive 
surrogate of the sympathetic function, EDA has some limitations. Similar 

to most other physiological signals, in ambulatory environments EDA is 
often affected by noise and motion artifacts. The artifacts are usually 
defined as changes in the recorded biosignal which do not stem from the 
signal source [3]. EDA can be affected by unstable electrode contact 
[3,23], environmental temperature and humidity [3,24], and an in
dividual’s activity [1,3,25,26]. Because of these factors, EDA can be 
severely affected and high-frequency perturbations in the signal may or 
may not always resemble skin conductance response (SCRs). Regardless 
of where the EDA is recorded, it can be affected by motion artifacts and 
depending on their severity, the entire recorded data can be unusable. 
For example, due to low quality signal, several weeks of EDA data have 
been discarded in [27]. A significant amount of data were also discarded 
in many others studies [10,23,28]. 

While there has been an increase in EDA research, especially in the 
last decade, there has been only a limited number of works aiming to 
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detect motion artifacts in EDA. Even though visual inspection is rec
ommended for motion artifact detection in the widely used textbook by 
Boucsein [3], it is cumbersome and time-consuming to visually inspect 
and mark motion-corrupted EDA data, especially for continuous moni
toring via wearable devices, hence, impractical for this purpose. Many 
researchers used typical signal processing techniques such as exponen
tial smoothing or lowpass filtering to avoid visual inspection. These 
techniques may smooth the high variations in the signal, however, 
sometimes they distort the original physiological responses [26] or make 
artifacts seem like genuine data [29]. 

A simple EDA data quality assessment method is proposed in [25] 
using some simple decision rules. While this method works well for spiky 
and large-amplitude motion artifacts, it fails in several other challenging 
cases. There have been some supervised [30], semi-supervised [31], and 
unsupervised [26] machine learning based approaches. Most of the 
methods were developed on specific manually annotated data and lack 
generality. Moreover, since there is no reference signal, EDA is anno
tated based on visualization, which can be difficult to discern, and the 
annotations may vary from person to person. In addition, there is also 
risk of labeling sympathetic-induced spiky SCR as motion artifacts on 
certain occasions, and vice versa. 

In this study, we designed experimental protocols to mimic a wide 
range of typical motion artifacts encountered in EDA data. We collected 
two channels of simultaneous EDA from the left and right arm. While 
one arm was immobile throughout the experiment, the other arm was 
occasionally moving to induce motion artifacts in the corresponding 
EDA channel. The arm at rest provided a clean or reference EDA signal, 
which was collected to assist the independent annotators to judiciously 
adjudicate the target EDA channel. Finally, we extracted several statis
tical, model-based, and time–frequency features and used different 
machine learning algorithms to classify the noisy and clean EDA data 
segments adjudicated by the three independent expert observers. Our 
study presents a standard and expertly annotated EDA motion artifacts 
database, which we will make public to be used by other researchers in 
this area. Fig. 1 shows the overall framework of this study. 

Preliminary results of this study have been accepted for presentation 
at the 43rd Annual International Conference of the IEEE Engineering in 
Medicine & Biology Society (EMBC) [32]. The conference paper used 
only a portion of the entire data and proposed a correlation-based 
automatic annotation criterion to adjudicate the EDA signals as clean 
or noisy. In the present study, we used manual annotation on the EDA 
data since it is more realistic and accurate. We also updated our method 
and incorporated more subjects and performed more rigorous analysis 
using many machine learning and deep learning methods. 

2. Methods and materials 

2.1. Data collection 

Twenty subjects aged 20–35 (10 male, 10 female), participated in 
this EDA motion artifact detection study. A pair of stainless steel elec
trodes were placed on the index and middle fingers of each hand to 
collect two simultaneous EDA signals. The EDA data were collected 

using ADInstrument’s galvanic skin response (GSR) modules. The GSR 
module supplies a 75 Hz square wave, low-impedance, low-voltage (22 
mv rms) signal between the electrodes and measures the corresponding 
skin conductance. The output of the GSR module was then fed to one of 
the four channels of the PowerLab, a high-performance data acquisition 
system which can digitize the signal with sampling frequency as high as 
25 kHz. The output from the PowerLab was connected to a computer and 
processed through Labchart 7 software which offers real time visuali
zation of data. We designed the data collection protocols so that the right 
hand occasionally moved, to mimic regular motion artifacts people 
could create in their daily lives, and the left hand was immobile in order 
to provide a reference EDA. The experimental protocols were reviewed 
and verified by the Institutional Review Board (IRB) for human subject 
research at the University of Connecticut. Written consent was collected 
from the subjects before participating in the experiment. 

Table 1 shows the summary of the protocol of the study. As shown in 
Table 1, the experimental protocol consisted of two parts. In part I, there 
was no significant motion other than some orthostatic and cognitive 
stress. This data helped compare EDA collected from both hands, by 
observing if the same SCRs are present in EDA data from both hands. 
Part II was designed for inducing motion artifacts in one channel of the 
EDA data, as the subjects were performing some light and regular 
movements to mimic daily life movements. Fig. 2 shows representative 
pictures of data collection and the instruments used. Fig. 2 (a), (b), and 
(c) show the ADInstrument modules (PowerLab and GSR modules), a 
subject typing on a keyboard, and the placement of electrodes on the 
fingers, respectively. 

Fig. 1. Block diagram of the proposed motion artifact detection framework.  

Table 1 
Data Collection Protocol Summary.  

Duration 
(second) 

Activity Remarks 

Part I (Stress Test) 
120 Flat table, relaxing with eyes closed Baseline 
30 Start table tilt Orthostatic Stress 
120 Subject remains in tilted position 
150 Return table to flat position, subject relaxes 
120 Perform Stroop test Cognitive Stress 
Part II (Motion Artifact Test) 
60 Sitting up in a chair with no movement Motion Artifact 

Induction 60 Sitting down and typing on the computer 
60 Sitting down and holding a mouse, clicking 

the mouse 
60 Standing up with the arm next to torso 
60 Standing up swinging arm by the side as if to 

simulate walking 
60 Standing up with arm straight out, moving 

arm up and down continuously 
60 Standing up with arm straight out moving the 

arm at the elbow allowing the wrist to come 
into the chest and then straightening out and 
repeating. 

60 Standing up with arm straight, completing a 
circle with the fingertips by rolling the 
shoulder.  
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2.2. Data labelling 

To validate our motion artifact detection algorithm, we systemati
cally adjudicated the dataset as artifacts and clean signal. Three inde
pendent observers annotated the EDA signal, and we took the majority 
opinion for the annotations. No fixed window was defined for the 
annotation, as the observers were able to mark the start and end of 
artifact segments. We first studied the literature for the existing guide
lines to label the artifacts in EDA signals, and then modified or added 
new guidelines to address common issues in manual annotations. Since 
the EDA signal does not exhibit periodicity or any regular structure like 
other biosignals (e.g. electrocardiogram (ECG) and photo
plethysmography (PPG)), manual adjudication of clean versus noisy 

EDA can be a rather difficult task. Using only existing guidelines such as 
in [25,26,30] might not be sufficient to identify all the artifacts in EDA 
signals. Moreover, sometimes there is also risk of considering fast- 
varying SCR in EDA signals as artifacts. To avoid this, we exploited 
the reference clean EDA signal. When there were no movements or 
motion artifacts, the reference and the noisy channel EDA are almost 
identical in shape, although different in amplitude. Therefore, if there 
was a significant correlation (≥0.95) between noisy and reference EDA 
channels, the observer annotated that portion as clean. Thus, we avoided 
any mislabeling of clean EDA as noisy. Fig. 3 shows two simultaneous 
EDA channels when there are no movements. The red circles show some 
challenging cases where traditional criteria such as fast rising/falling 
time might consider them as noisy. However, as can be seen from the 

Fig. 2. 2. Data collection: (a) ADInstrument PowerLab and GSR module (b) Subject typing with one hand (c) Subject wearing electrodes on both bands.  

Fig. 3. Two simultaneous EDA channels collected from two hands without any movements.  
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figure, these waveforms are consistent in both channels meaning that 
they are not motion artifacts. We considered existing guidelines in the 
literature as well as the correlation between reference and noisy EDA 
channels. Table 2 shows the guidelines we considered for labeling the 
EDA segments. 

2.3. EDA motion artifact detection framework 

We developed a binary classification framework to automatically 
detect the EDA segments with motion artifacts. The framework consists 
of a set of signal processing and machine learning techniques that dis
tinguishes motion artifacts from clean EDA signals. We first down
sampled the EDA data from 1,000 to 8 Hz, a sampling frequency used by 
the previous literature for this purpose [30,33]. To validate our 
approach, we obtained ground truth labels from three experts (first, 
second, and third authors). As mentioned earlier, we used majority 
voting for the final labeling when there was disagreement among the 
three observers. EDA signals were then divided into 5-second non- 
overlapping segments, as were used in most of the previous literature 
[25,26,30]. We extracted several common features previously used [30] 
and proposed a set of new features for the classifications. We performed 
a feature selection and trained several machine learning models using 
the features. The performance of our machine learning models was 
validated using the leave-one-subject-out (LOSO) validation method. In 
the following subsections, we describe the feature extraction methods, 
classification, hyperparameter tuning, and evaluation methods. 

1) Feature Extraction 
To appropriately characterize the EDA artifacts, we extracted 40 

different features from each 5-second segment of EDA. We extracted 
most of the features mentioned in the literature [26,30]. We further 
extracted features from EDA modeling using the autoregressive (AR (2)) 
model, and phasic and tonic decomposition of EDA. Table 3 shows the 
list of features we computed in this study. The features can be broadly 
classified into three groups. All features were standardized before 
feeding into the classifiers.  

(i) Statistical Features: We extracted 19 different statistical features 
from EDA, its derivatives, and its phasic component. We extrac
ted commonly used statistical features such as mean, standard 
deviation, minimum, maximum, and dynamic range (difference 
between the maximum and the minimum value) as suggested in 
the literature [30,34]. To characterize the change in the signal, 
we computed the mean and standard deviation of the first and 
second derivative of the EDA signal. We used the phasic decom
position of EDA to compute some statistical features that could 
identify the high frequency and spiky noise. We used a popular 
algorithm called CVXEDA [35] for the phasic-tonic decomposi
tion of EDA. CVXEDA models the EDA signal as a sum of phasic 
and tonic components, and a Gaussian noise that incorporates 
prediction errors, measurement error, and artifacts. This method 
then uses the convex optimization technique to decompose the 
signal into phasic and tonic components, minimizing the pre
diction errors. As shown in Fig. 4, when EDA is affected by motion 
artifacts, there is a higher number of large amplitude false phasic 

drivers in the phasic component of EDA. Therefore, we computed 
the energy, number of peaks, and mean value as features to 
discriminate the noisy portions from the clean EDA segments. In 
addition, we computed some common statistical features such as 
mean, standard deviation, maximum, and minimum of the ab
solute value of the first and second derivatives of EDA.  

(ii) AR model-based features: The motivation behind including 
Autoregressive (AR) modelling is that when EDA data are cor
rupted by noise, there will be more residual noise in the AR model 
than in the clean data; similarly, AR parameters show either 
decreased or increased values for the noisy vs. clean data. AR 
modeling is a common and often parsimonious approach for 
extracting informative features from a time series signal [36,37]. 

(iii) Time frequency features: To capture the non-stationary charac
teristics, we used time frequency decomposition, namely, wavelet 
transformation and variable frequency complex demodulation 
(VFCDM). Wavelet decomposition has been used previously in 
the literature and is well suited to characterize the edges and 
sharp changes in signals. VFCDM, on the other hand, is a high 
resolution time frequency technique [38] that has been success
fully used for many biosignal applications [39–42]. The differ
ence between wavelet and VFCDM is that VFCDM can decompose 
the main signal into several frequency bands with equal lengths 
of the original signal. We decomposed the EDA signal using the 
three-level wavelet transform with the ‘Haar’ wavelet and 
computed the mean and standard deviation of the approximate 
and details signals. Using VFCDM modes, we computed four in
termediate frequency bands between 1 Hz, 2 Hz, 3 Hz, and 4 Hz 
and computed the mean and variance in each band. By doing so, 
we may have included some redundant features. However, at this 
point we are not concerned about including too many features 
because we later used a feature selection algorithm to reduce the 
dimensionality curse or overfitting. 

2) Classification 
We investigated several machine learning algorithms to automati

cally identify motion artifacts in EDA signals. Particularly, we used 
machine/deep learning techniques such as the multi-layer perceptron 
(MLP), Linear Discriminant Analysis (LDA), k—Nearest Neighbors 
(KNN), Linear Support Vector Machine (l-SVM), Support Vector Ma
chine with radial basis function kernel (k-SVM), Random Forest [43], 
Adaboost [44], GradBoost [45], and XGBoost [46]. We explored all 
these classifiers to learn which one can best recognize the artifacts from 
the clean EDA. Since we have an imbalanced dataset in which the clean 
EDA is the majority class, the accuracy metric might not be sufficient to 
validate the performance of the machine learning models [47]. There
fore, we included two baseline ‘dummy’ classifiers that always predicts 
either the majority class or the minority class and compared their per
formance with the machine learning models. We compared the perfor
mance in terms of sensitivity, specificity, accuracy, and F1 score. 
Moreover, we compared our motion artifact detection approach with 

Table 2 
Guidelines for annotation of EDA signal.  

Index Criteria 

1 EDA out of range (EDA range − 10S to 40S) 
2 Quick change in EDA (if EDA changes faster than ±10S)  
3 EDA peak decays (EDA is considered noisy if EDA peak does not follow an 

exponential decay except when there are two peaks within a short period of 
time) 

4 Correlation of reference and noisy EDA channels (considered clean only if 
the correlation coefficient is ≥ 0.95)   

Table 3 
Summary of the features computed.  

Index Category Specific features 

1–3 AR(2) Modelling AR parameters and AR noise variance 
4–10 Raw EDA Mean, median, standard deviation, 

maximum, minimum, range, and Shannon 
entropy 

11–20 Absolute value of first and 
second derivative of EDA 

Mean, standard deviation, and max and 
min 

21–28 Wavelet decomposition Mean, median, standard deviation, and 
range of the wavelet coefficients 

29–32 Phasic component Energy, number of peaks, mean value, and 
Shannon entropy 

33–40 VFCDM decomposition Mean and standard deviation of the four 
intermediate reconstructed signals  
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two state of the art methods, EDAQA [25] and the method proposed in 
[30]. EDAQA is based on some simple thresholds on the EDA range, its 
derivative, and temperature, while the other method uses the support 
vector machine (SVM). The machine learning approach in [30] calcu
lated features from raw EDA data, filtered EDA and its derivative, and 
wavelet coefficients. For all the classifications we used Scikit-learn li
brary in Python [48]. 

3) Feature Selection 
Since we computed 40 features (see Table 3), we used a feature se

lection algorithm to reduce the number of features in order to avoid the 
curse of dimensionality. We used random forest (RF) as a feature se
lection algorithm [43]. Feature selection using RF is an embedded 
method that combines the quality of filter and wrapper methods. Since it 
is quite straightforward to compute how much each variable contributes 
to the decision tree, RF is a highly accurate, generalizable, and easily 
interpretable feature selection algorithm. 

4) Evaluation Procedure 
In order to evaluate the performance of the machine learning models, 

we used a LOSO validation strategy, also used in [26,49–51]. For each 
fold, we used all the subjects except one for training the classifiers and 
the remaining one for testing. We did that for every subject and the 
performance metrics were averaged over all the subjects. Since for each 
fold the training and testing data are different, due to interpersonal 
variances [14], the machine learning models are not biased by subject 
characteristics and thus, are more generalizable. 

We computed LOSO validation accuracy, sensitivity, specificity, and 
F1 score [52], to evaluate the performance of the machine learning 
models. The accuracy is the percent correctness of differentiation be
tween clean EDA and signals with motion artifacts. The sensitivity and 
the specificity are the measures of goodness of the model to correctly 
determine the positive and negative classes. In our case, the positive 
class is the motion artifact and the negative class is the clean EDA. 

5) Hyperparameter Tuning 
Within each training, we performed hyper-parameter tuning for the 

classifiers using a group 5-fold cross validation strategy where each time 
5 subjects of the training data were left for validation and the rest of the 
subjects were used for training. This was performed repeatedly for a set 
of hyperparameters of choices and the best parameter was chosen based 
on the average accuracy on the validation data. Again, we used a 
subject-independent validation scheme for the hyperparameter selection 
so that our machine learning models would not become subject-biased. 

For the kernel SVM, the parameters C and gamma were selected 
using grid search from a list of parameter candidates 1, 10, 100, and 

1000, and 0.001, 0.01, 0.1, 1, respectively. For all the tree-based ma
chine learning, we optimized the number of estimators from a list of 
choices. For MLP we applied grid-search cross validation to optimize 
four different parameters. We varied the number of hidden layers be
tween 1 and 4 and the activation functions were chosen from logistic, 
tanh, and rectified linear unit. We experimented with three different 
optimizers, namely, stochastic gradient descent [53], Adam [54], and 
limited memory Broyden–Fletcher–Goldfarb–Shanno (lbfgs) [55]. The 
initial learning rate was chosen from 0.0001, 0.001, and 0.01 and we 
fixed the maximum number of epochs to 200. 

3. Results 

In this section, we report on the performance of the machine learning 
classifications and comparison with an existing method (EDAQA) [25]. 
First, we describe the performance of the classifiers using LOSO vali
dation and compare it with the baseline classifiers. We then present a 
comparison of the proposed framework with those of Kleckner et al. [25] 
and Taylor et al. [30]. 

Table 4 shows the machine learning performance using the LOSO 
validation strategy. As can be seen, all classifiers perform better 
compared to the baseline classifiers. LDA shows the highest specificity of 
97.2%, however, the sensitivity is the lowest among the classifiers. 

Fig. 4. Noisy EDA channel and corresponding phasic component.  

Table 4 
Machine Learning Performance and Comparison with Baseline Classifiers.  

Classifier Sensitivity 
(mean ± sd%)

Specificity 
(mean ± sd%)

Accuracy 
(mean ± sd%)

F1 Score 
(mean ± sd%)

Baseline 1 0  100 ± 0  67.54 ± 13.46  0  
Baseline 2 100 ± 0  0  35.44 ± 13.46  51.05 ± 13.75  
LDA 74.80 ± 16.61  97.20 ± 6.06  90.21 ± 6.10  82.60 ± 12.84  
KNN 83.33 ± 8.84  94.76 ± 6.21  90.21 ± 6.10  85.29 ± 7.85  
Linear 

SVM 
92.03 ± 9.86  93.18 ± 6.99  92.81 ± 5.90  88.82 ± 8.32  

Kernel 
SVM 

91.28 ± 9.06  93.02 ± 7.08  92.42 ± 6.04  88.21 ± 8.67  

Random 
Forest 

90.05 ± 9.05  94.38 ± 6.44  92.98 ± 6.06  88.80 ± 8.87  

AdaBoost 89.36 ± 7.09  95.01 ± 6.90  93.17 ± 5.89  88.98 ± 8.86  
GradBoost 92.90 ± 7.86  95.75 ± 6.62  94.82 ± 5.95  91.61 ± 8.37  
XGboost 92.81 ± 7.75  95.54 ± 6.50  94.66 ± 5.91  91.37 ± 8.41  
MLP 89.28 ± 6.97  95.29 ± 6.97  93.34 ± 6.02  89.20 ± 8.65   
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Baseline 1 has the highest specificity while having zero sensitivity and 
F1 score (always predicts negative class), and baseline 2 has the highest 
sensitivity while having zero specificity (always predicts positive class). 
GradBoost has the highest sensitivity, accuracy, and F1 score among the 
classifiers. Its high accuracy suggests that our model can distinguish 
between the clean EDA and EDA with motion artifacts almost 95% of the 
time. The results suggest that our EDA motion artifact detection is 
generalizable across the subjects, largely due to LOSO training and 
testing strategy, as discussed in the Methods section. We also observed 
that the performance of all the machine learning classifiers is signifi
cantly higher than that of the baseline classifiers (p < 0.01 in t-test). 

We compared the classification results using our best performing 
machine learning model (GradBoost) with the approaches presented in 
[25] and [30]. Fig. 5 shows a comparison of the performance of the 
proposed framework with those of the two state of the art methods. 
Since EDA may vary from device to device, in order to perform a fair 
comparison we adjusted the threshold value given in [25]. We tried a 
range of thresholds for each of the rules and chose the combination that 
provided the highest performance for EDAQA. There is an online plat
form for motion artifact detection using [30], however, this only sup
ports data collected using an Empatica device or Q sensor. Therefore, to 
compare with this approach we computed the features mentioned in the 
paper and then used SVM for classification as described in the paper. For 
fair comparison, we trained the classifier using the same LOSO valida
tion strategy using our dataset. As shown in Fig. 5, the proposed method 
shows significantly higher (p < 0.05 in pairwise t-test) sensitivity, ac
curacy, and F1 score than both compared methods.  

A) Results on central nervous system-oxygen toxicity (CNS-OT) 
Dataset 

To further validate the proposed machine learning model and the 
generalizability of the approaches, we tested on an independent dataset 
called the central nervous system oxygen toxicity (CNS-OT) dataset. 
While the details of this database can be found in [56], we present a brief 
description here. We (the same three reviewers) randomly selected 10 
subjects’ data from the CNS-OT dataset and annotated them as clean or 
noisy data. The experimental protocol for this study required the sub
jects to be immersed in 28 ± 1 ◦C water to the shoulders, breathing 
100% O2 at 35 feet of seawater (oxygen partial pressure 2.06 ATA), 
while exercising on an underwater cycle ergometer at approximately 
100 W output, and executing NASA’s Multi-Attribute Task Battery-II 
(MATB-II) cognitive testing software. The experiment continued until 
symptoms of CNS-OT were observed, or until the maximum time dura
tion of two hours. EDA data were collected using a pair of stainless-steel 
electrodes placed on the index and ring fingers of each subject’s left 

hand and a galvanic skin response module FE116 (ADInstruments). The 
sampling frequency of the EDA signal was 100 Hz, which was then 
downsampled to 8 Hz. Because of the exercise and long-term moni
toring, this dataset had more motion artifacts than typical ambulatory 
EDA data. Fig. 6 shows a representative example of an EDA record from 
the CNS-OT dataset, in which the red dots mark the noisy portions. 

Table 5 shows the performance comparison of our proposed machine 
learning framework to the method proposed by Kleckner et al. [25] and 
Taylor et al. [30] on the independent CNS-OT dataset which was not 
used for training. It shows that the proposed machine learning method 
performed better than both EDAQA and the SVM classifier proposed by 
Taylor et al. [30]. 

4. Discussion 

This study presents an automatic motion artifact detection frame
work using adjudicated EDA signals. There have been some prior ma
chine learning approaches for EDA motion artifact detection [26,30]. 
However, the machine learning methods were applied to an even 
smaller dataset than our study. Moreover, these machine learning 
methods were not tested in a subject-independent fashion, hence, it is 
not clear whether or not these approaches are generalizable to other 
datasets. 

As discussed earlier, labeling EDA signals as either clean or con
taining motion artifacts is non-trivial and requires highly expert people 
who have extensive working experience with EDA signals. Even so, there 
is always a risk of incorrect annotation of the fast-varying skin 
conductance response as motion artifacts. Therefore, it is crucial to 
design a motion artifact detection algorithm on properly annotated data 
so that the model does not misclassify clean EDA, which might carry 
important physiological information, as motion artifact. In our study, we 
collected a reference EDA to assist the annotation of the target EDA 
channel. Because of the reference EDA, the annotators were aware of the 
clean EDA signals, hence, incorrect adjudication of the data was mini
mized. We believe this adjudicated dataset could be beneficial for re
searchers working on EDA signals, and so we will make this database 
along with our expert annotation available upon request. 

Another contribution of this work is the inclusion of more informa
tive features to better understand EDA signal dynamics. We included 
autoregressive (AR) modeling on the EDA segments to extract important 
features that represent the characteristics of the clean EDA and motion 
artifact segments. We also included new time frequency features using 
VFCDM decomposition. Moreover, previous researchers used EDA 
phasic component features for explaining different physiological 
behavior. We showed that there is a significant change in the extracted 
phasic component when there are motion artifacts present in the EDA 
signal. Thus, EDA features extracted from the phasic component were 
found to be significant in distinguishing motion-corrupted EDA data. 

Since we validated the machine learning models using the LOSO 
validation technique, we can assume our machine learning model is 
relatively devoid of subject bias that may arise if the models are vali
dated using the typical separation of random training and testing data
sets. The comparison of the machine learning models with two baseline 
classifiers show that machine learning models consistently perform 
significantly better. The F1 score of the GradBoost classifier is 42.64% 
higher than the baseline 2 and 12.68% higher than that of the EDAQA. 

The performance on the independent CNS-OT test dataset shows that 
the Kleckner et al. method [25] (EDAQA) performed better on this data 
than it did on the EDA motion artifact dataset. This is most likely 
because the artifacts in the CNS-OT dataset were more prominent when 
compared to those in the motion artifact dataset, and EDAQA is spe
cifically designed to identify large spiky artifacts. For example, EDAQA 
is designed to look for outliers of amplitudes that are out of the typical 
range (0.05–60 μS) and dynamics that change quicker than 10μS/sec. 
The SVM classifier implemented from [30] showed the lowest accuracy 
and F1 score among the three compared methods. This could be for two Fig. 5. Comparison of proposed framework with EDAQA.  
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reasons. First, perhaps the features used in SVM were not sufficient to 
characterize the motion artifacts, or second, the training samples may 
not have been sufficiently diverse, hence, it did not perform well on an 
unknown dataset. 

For our machine learning framework, the performance decreased 
slightly for the CNS-OT dataset, although it was still higher than that of 
EDAQA. We believe this is because the EDA motion artifact dataset is 
smaller than the CNS-OT dataset (3,496 segments vs 5,142 segments). 
Hence, increasing the number of training samples will increase the di
versity in training and may improve the accuracy on the independent 
testing datasets. The fact that the performance of our machine learning 
method was more accurate when compared to the SVM classifier pro
posed in [30] indicates that the proposed feature set better characterized 
the motion artifacts than did the one used by [30]. 

Note that the sole purpose of having a reference EDA dataset was for 
the purpose of accurate annotation of clean versus motion-corrupted 
data. The data collected in this work is limited to some of the most 
common scenarios of movement, but we cannot claim to have accounted 
for all types of motion artifact scenarios. However, even with this 
limited training dataset, when the machine learning approach was 
tested on an entirely different dataset, the CNS-OT dataset, our results 
did not differ much, albeit they were slightly decreased in performance. 
This suggests that, once the machine learning model is built with suffi
cient training data, no reference data is required during data collection. 
Note that accelerometer data are often available with wearable devices, 
including EDA. Hence, the accelerometer data can also be used to 
discriminate severely corrupted data. However, there are cases when 
accelerometer data are not useful. For example, poor EDA data due to 
bad electrode contact with skin, not motion artifacts, would not be 
detected if only accelerometer data were being relied on. Moreover, in 
certain cases, although accelerometer data may indicate motion cor
ruption, the EDA may not be as affected. Hence, some portion of useable 
and good data might be discarded if the motion artifact detection is 
based solely on accelerometer data. 

4.1. Limitations 

This study has some limitations. One limitation of the study is that 
the data were collected from only 20 subjects and they may not reflect 
the overall population. We considered a limited number of movements 
to mimic common motion artifacts, hence, they might not be sufficient 

to characterize most typical types of motion artifact. Moreover, as there 
are many modes of EDA sensors, depending on the sensors used for the 
EDA collection, retraining of the machine learning model may be 
required. 

5. Conclusions 

We presented an automated and accurate EDA motion artifact 
detection approach based on machine learning. We created an EDA 
database that is annotated as either clean or noisy data using a reference 
signal that is devoid of motion artifact for more accurate adjudication. 
This annotated database will be available to researchers upon request. 
For machine learning, we used a set of features that have been noted to 
be useful in the literature as well as new features we found to have good 
ability to identify motion artifacts. We investigated several machine 
learning algorithms and evaluated their performance using the subject 
independent LOSO validation strategy. Our results suggest that the 
proposed machine learning method performed significantly better than 
both the baseline classifiers and a recently published promising method, 
which we considered for comparison with our method. Moreover, the 
performance of the proposed machine learning method maintained its 
accuracy on an independent dataset, suggesting that most of the dy
namics associated with motion artifacts have been accounted for. As we 
combine EDA motion artifact dataset along with other EDA datasets, we 
can then build a more comprehensive and accurate motion artifact 
detection method using machine and deep learning approaches in the 
future. 
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