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Abstract—Objective: With the increasing use of wear-8
able healthcare devices for remote patient monitoring, reli-9
able signal quality assessment (SQA) is required to ensure10
the high accuracy of interpretation and diagnosis on the11
recorded data from patients. Photoplethysmographic (PPG)12
signals non-invasively measured by wearable devices are13
extensively used to provide information about the cardio-14
vascular system and its associated diseases. In this study,15
we propose an approach to optimize the quality assess-16
ment of the PPG signals. Methods: We used an ensemble-17
based feature selection scheme to enhance the prediction18
performance of the classification model to assess the qual-19
ity of the PPG signals. Our approach for feature and subset20
size selection yielded the best-suited feature subset, which21
was optimized to differentiate between the clean and arti-22
fact corrupted PPG segments. Conclusion: A high discrimi-23
natory power was achieved between two classes on the test24
data by the proposed feature selection approach, which led25
to strong performance on all dependent and independent26
test datasets. We achieved accuracy, sensitivity, and speci-27
ficity rates of higher than 0.93, 0.89, and 0.97, respectively,28
for dependent test datasets, independent of heartbeat type,29
i.e., atrial fibrillation (AF) or non-AF data including normal30
sinus rhythm (NSR), premature atrial contraction (PAC), and31
premature ventricular contraction (PVC). For independent32
test datasets, accuracy, sensitivity, and specificity rates33
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were greater than 0.93, 0.89, and 0.97, respectively, on PPG 34
data recorded from AF and non-AF subjects. These results 35
were found to be more accurate than those of all of the 36
contemporary methods cited in this work. Significance: 37
As the results illustrate, the advantage of our proposed 38
scheme is its robustness against dynamic variations in the 39
PPG signal during long-term 14-day recordings accompa- 40
nied with different types of physical activities and a diverse 41
range of fluctuations and waveforms caused by different 42
individual hemodynamic characteristics, and various types 43
of recording devices. This robustness instills confidence in 44
the application of the algorithm to various kinds of wear- 45
able devices as a reliable PPG signal quality assessment 46
approach. 47

Index Terms—Biomedical signal processing, feature ex- 48
traction, machine learning, photoplethysmography. 49

I. INTRODUCTION 50

IN RECENT years, the use of modern wearable devices 51

such as smartwatches, fitness and health trackers/bands, 52

and health patches has been growing for monitoring of human 53

vital signs. PPG sensors are common in wrist-worn devices 54

and are often accompanied by accelerometers to measure body 55

movement. PPG is a non-invasive sensing technique to record 56

tissue and blood volume alterations through optical absorption 57

and scattering that enable monitoring of heart rates (HR), heart 58

rhythms, and hemoglobin oxygen saturation (SpO2). 59

The reliability of the estimated HR is highly correlated to 60

the quality of the underlying recorded PPG signals, which are 61

susceptible to different types of noise and artifact, particularly 62

motion artifacts (MAs). These artifacts can be in the same fre- 63

quency range as the HR signal and thus, motion artifact reduction 64

for these devices is challenging. In many applications for PPG 65

signals, quality assessment algorithms are used to recognize 66

and reject the noisy PPG segments. PPG quality assessment 67

becomes more challenging when ectopic heartbeats, e.g., PAC, 68

PVC, and AF are present. The waveform characteristics of the 69

PPG signals during these ectopic rhythms can resemble the 70

artifact-contaminated PPG segments. 71

Increased frequency of PACs increases the risk of mortality 72

attributable to myocardial infarction, heart failure, and sudden 73
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cardiac death [1]. Further, frequent PVC is associated with heart74

failure as well as serious heart arrhythmias such as ventricular75

fibrillation (VF) and AF [2]. Thus, it is crucial to differentiate76

between clean and corrupted PPG signals in the presence of77

these ectopic heartbeats.78

Several computational approaches such as machine leaning79

(ML), deep neural network (DNN), and heuristic rules-based80

frameworks have been proposed to detect the artifact parts of81

pulsatile physiological signals. Sukor et al. [3] employed a82

simple decision-tree classifier using waveform morphological83

features of the PPG signals. The performance of their algorithm84

was validated on 104 signals included 7669 beats. They achieved85

a mean Cohen’s kappa coefficient (κ) of 0.64 and the mean86

sensitivity, specificity, and accuracy were 89%, 77%, and 83%,87

respectively, based on the definition of a positive being a clean88

pulse. In [4], dynamic time warping was applied to nonlinearly89

stretch each beat to fit a dynamic beat template and combine it90

with other related features. Then, a multi-layer perceptron neural91

network was used to determine the signal quality index (SQI)92

using an expert-labeled database of 1,055 6-sec PPG segments,93

during both normal and arrhythmic events. The authors in [5]94

proposed a combination of morphological characteristics and95

temporal variability information in the PPG signals to yield an96

adaptive SQA approach.97

In [6], the authors developed an algorithm to segment pulse98

oximetry signals into pulses and estimate the signal quality in99

real time. Cross-correlation of consecutive pulse segments was100

used to estimate an SQI, which was significantly lower in the101

presence of artifacts compared to SQI values of clean signals102

in the test dataset. The authors in [7] proposed an SQI based103

on adaptive template matching between the average PPG-pulse104

waves and each individual PPG-pulse to assess PPG signal105

quality for reliable heart rate detection using wearable sensors.106

The authors in [8] developed and tested eight SQIs based on107

eight features for 106 annotated 60-sec recordings of PPG data.108

To identify the best feature, all indices were evaluated using109

four classifiers. The author showed that skewness outperformed110

the other features with overall F1 scores of 86.0%, 87.2%, and111

79.1%, to discriminate between excellent PPG and acceptable,112

acceptable combined with noisy, and noisy recordings, respec-113

tively, when clean PPGs are positives. Dao et al. [9] proposed an114

approach called TifMA, using the signal time–frequency (TF)115

spectrum developed based on a TF technique named variable116

frequency complex demodulation (VFCDM) to detect the mo-117

tion artifact-corrupted PPGs. In [10] a real-time automatic SQA118

algorithm for PPG was suggested based on the hierarchical de-119

cision rules in combination with simple features. The algorithm120

achieved an average of 99.29%, 95.31%, and 97.76% for sensi-121

tivity, specificity, and accuracy, respectively, when positives are122

acceptable PPG segments. In [11], six morphological features123

were proposed using beat-scale SQA for PPGs using machine124

learning approach. Forty-six 30-min annotated PPG segments125

from patients with atrial fibrillation, hypoxia, acute heart failure,126

pneumonia, acute respiratory distress syndrome (ARDS), and127

pulmonary embolism were tested. The authors showed the high128

performance of their constructed support vector machine (SVM)129

model in terms of sensitivity and positive predictive value (PPV)130

on their test data. In [12], temporal and spectral features were 131

extracted from each PPG segment recorded from patients with 132

atrial fibrillation. The authors achieved accuracy of 0.9477 and 133

0.9589 from fingertip PPG and radial PPG, respectively, using 134

an SVM classifier. 135

In this study, our main objective was to identify the best feature 136

subset to ensure accurate noise detection and quality assessments 137

for PPG signals with a diverse range of morphologies, for both 138

non-AF and AF data, as the latter can be mis-detected as noisy 139

non-AF PPG signals. 140

II. METHOD 141

A. Dataset Description 142

This section consists of descriptions of the datasets used in 143

this study, including the data collected in our current study 144

(Pulsewatch) and our previous study (UMMC Simband), and 145

publicly available datasets (Stanford University’s PPG dataset 146

and MIMIC III). 147

1) Data Collection—Pulsewatch Dataset: The PPG data 148

were collected in a multi-phase study called Pulsewatch. Details 149

of the study phases can be found in [13]. The study consisted 150

of two parts. Design and development of the Pulsewatch system 151

(app and watch algorithms) were completed in Part I. Part II 152

included data collection in clinical and AF trials For the clinical 153

trial, participants with a prior history of stroke/transient ischemia 154

(TI) (n=90) were asked to use the gold-standard Cardiac In- 155

sight cardiac patch monitor device, smartwatch, and a Samsung 156

smartphone that had the Pulsewatch study apps downloaded on 157

it. For the AF trial, the patients with confirmed persistent AF 158

were recruited for a short duration experiment (about 20 min) 159

(UIDs #301-329, see Appendix I) or 7 days data collection 160

(UID #400, see Appendix I). Formal ethical approval for this 161

study has been obtained from the University of Massachusetts 162

Medical School Institutional Review Board (approval number 163

H00016067). Written informed consent was collected from all 164

patient participants. The reference ECG and smartwatch data 165

were simultaneously measured from the chest and wrist using a 166

2-lead rhythm patch device (Cardea SOLO, Cardiac Insight Inc., 167

Bellevue, WA, USA) and, Samsung Gear S3, or Galaxy Watch 168

3 (Samsung, San Jose, CA, USA), respectively. The patch ECG 169

data, which were used as the reference, consisted of one-channel 170

signals sampled at 250 Hz. The smartwatch data consisted of 171

a one-channel PPG signal and a one-channel magnitude of 172

the accelerometer (ACC) signal. Smartwatch signals were all 173

sampled at 50 Hz and were automatically segmented into 30-sec 174

lengths. The enrolled patients wore the smartwatch and ECG 175

patch 24 hours a day with no restriction on their regular daily 176

activities, for 14 consecutive days. Due to the 7-day battery 177

limitation, patients switched to a second new ECG patch on 178

the 7th day of the trial. Smartwatches were charged daily for 179

1 h. 180

2) UMMC Simband Dataset: 37 patients (28 male and 9 181

female), aged 50-91 years old participated in the smartwatch 182

study at the ambulatory cardiovascular clinic at University of 183

Massachusetts Medical Center (UMMC). Their recorded signals 184

contain AF and non-AF data including cardiac arrhythmias, such 185
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as PAC and PVC. Details of subject characteristics, monitoring186

duration, and arrhythmia burden are provided in [14]. Reference187

ECG and smartwatch data were simultaneously measured from188

the chest and wrist using a 7-lead Holter monitor (Rozinn189

RZ153+ Series, Rozinn Electronics Inc., Glendale, NY, USA)190

and Simband 2 (Samsung Digital Health, San Jose, CA, USA),191

respectively. ECG data were composed of 3-channel signals,192

each sampled at 180 Hz. Simband data were comprised of193

8-channel PPG signals (sampled at 128 Hz), three-axis ac-194

celerometers and a one-lead ECG. Only the 5th PPG channel195

(green LED color, wavelength 520–535 nm) was used for data196

analysis since it consistently provided the best signal quality.197

The alignment of the Simband and Holter ECG signals was198

performed by estimating the cross-correlation between them.199

In this study, PPG and ACC data were segmented into 30-sec200

length segments with no overlap and down-sampled to 50 Hz201

and 20 Hz, respectively. This dataset was created as part of a202

preliminary study conducted previously at University of Con-203

necticut (UConn). The dataset is available for download on our204

lab’s website listed in the Supplementary Materials section.205

3) Stanford University’s PPG Dataset: An open access206

database has been provided by Stanford University, which col-207

lected the data from participants undergoing elective cardiover-208

sions (CV) or elective stress tests to develop a convolution neural209

network (CNN)-based AF event detection model called Deep-210

Beat [15]. Data were extracted from a wrist-based PPG wearable211

device (Simband), sampled at 128 Hz, and partitioned into 25-212

sec segments. Average monitoring time was about 20 min post213

and 20 min prior to the CV procedure for 132 participants with214

confirmed AF diagnosis undergoing direct current cardioversion215

for the treatment of AF. Average monitoring time was about216

45 min for the 42 participants in the elective exercise stress test.217

4) MIMIC III Dataset: The publicly available Medical Infor-218

mation Mart for Intensive Care (MIMIC III) database provides219

continuous ECG and pulse oximetry waveforms (PLETH) from220

patients in critical care at a large tertiary care hospital [16]. All221

signals were originally sampled at 125 Hz.222

In this study, we used data that had been prepared for a previ-223

ous AF study [17], in which four batches of 50 ECG recordings224

from patients hospitalized with sepsis were randomly selected.225

The ECG signals were annotated by board-certified physicians226

specializing in AF management. Then, one batch was used for227

training, which contained 25 AF subjects. Since each subject’s228

recording contained hundreds of hours of data, a subset of 5229

AF subjects’ corresponding ECG and PPG data were randomly230

selected and annotated. In this study, we used the PPG data from231

those 5 AF subjects to have a comparable number of AF and232

non-AF segments for testing. The data were down-sampled to233

50 Hz and partitioned into 30-sec lengths with no overlap. The234

MIMIC III data used in this study is available for download on235

our lab’s website https://biosignal.uconn.edu/resources/, listed236

in the Supplementary Materials.237

B. Signal Annotation238

PPG signal annotation is known to be a complicated and239

subjective procedure. Hence, to have consistent annotation, the240

Fig. 1. The block diagram of the proposed approach for PPG signal
quality assessment.

heart rate extracted from a PPG signal was compared to the 241

aligned ECG HR as the reference for clinical and AF trials, 242

Simband, and MIMIC III datasets. Two people with significant 243

experience with PPG signals reviewed all segments manually 244

and performed the annotations. The final annotation was based 245

on the consensus of the two experts’ adjudications. When a 246

segment adjudication by the two experts was in disagreement, a 247

third expert reviewer’s opinion was sought and the final decision 248

was based on the view of the majority. 249

The experts performed adjudication by observing the PPG 250

pulse waveform and comparing the heart rates extracted from 251

PPG and the corresponding ECG. A PPG segment was annotated 252

as being noisy if the HRs calculated from the PPG segment 253

deviated more than 5 seconds from clean ECG heart rates or 254

the PPG waveforms were corrupted for more than 5 seconds, 255

otherwise, it was annotated as clean. We chose the 5 s limit 256

on the corrupted signal as our previously AF detection study 257

has shown that in a 30-sec data segment the AF detection 258

algorithm’s accuracy is not affected with less than 5 seconds 259

of noisy data [18]. 260

In addition, annotation of the PPG signal rhythm was per- 261

formed by three experts. Each PPG segment was annotated using 262

two labels: AF or non-AF (including NSR, PAC, and PVC). 263

The aligned ECG signal was used as the reference for rhythm 264

annotation of the PPG. 265

C. Preprocessing 266

Fig. 1 illustrates the overall block diagram of our proposed 267

approach for SQA of the PPG segments. In the preprocessing, all 268

PPG segments were first filtered by Butterworth high-pass and 269

low-pass filters with cut off frequencies of 0.5 and 20 Hz, respec- 270

tively. The filters removed baseline wander and other types of 271

noise such as ambient light noise. Subsequently, PPG signal peak 272

detection was performed using the waveform envelope peak 273

detection (WEPD) algorithm [19]. In the WEPD algorithm, a 274

waveform envelope is used to remove excessive beats caused by 275

the dicrotic notch in the normal sinus rhythm (NSR) data, while 276

still retaining sensitivity to irregular heartbeats in AF data. 277

https://biosignal.uconn.edu/resources/
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TABLE I
FEATURES EXTRACTED FROM PPG SEGMENTS

*cA4, cD2, cD3, and cD4 represent the approximation coefficients scale 4, detail coefficients scale 2, detail coefficients scale 3, and detail coefficients scale 4, respectively.

D. Features278

A number of features for classifying PPG signals as either279

clean or corrupted have been introduced in previous studies.280

We categorized the features extracted in this study into tem-281

poral, morphological, and statistical features in time and time-282

frequency domains (see Table I).283

1) Non-Template-Based Features:284
� RMSSD: The root mean square of successive differences285

(RMSSD) was extracted from the intervals between con-286

secutive heartbeats, also known as interbeat intervals (IBI).287
� Skew: As a measure of the probability distribution sym-288

metry, skewness was calculated for each PPG segment.289
� Kurt: Kurtosis, which is a statistical measure to describe290

the distribution of observed data around the mean, was291

calculated for each PPG segment.292
� pNN40/pNN70: Percentage of successive IBI that differ293

by more than 40/70 msec was calculated.294
� SampEn: Sample entropy of each PPG segment was calcu-295

lated. Entropy quantifies how much the probability density296

function (PDF) of the signal differs from a uniform dis-297

tribution and thus provides a quantitative measure of the298

uncertainty present in the signal.299
� W-STD/W-Skew/W-Kurt/W-MSubEn: By transforming300

the signals from the original time domain to the time-301

frequency domain, it is possible to observe the variability302

in the spectral power of the different frequencies over time.303

We applied a wavelet transform for each PPG beat and304

then, extracted the following measures from approxima-305

tion and detail coefficients: standard deviation, skewness,306

kurtosis, and average of sub-band energy.307

2) Template-Based Features: Six features suggested308

in [11] were adopted in this study, however, a different strategy309

was used to select and update the template segment. Time310

intervals and morphological features were extracted from each311

PPG beat based on a distance from the baseline values obtained312

from the template segment (see next section).313

E. Feature Extraction 314

To extract the template-based features from each PPG seg- 315

ment, we selected a clean congruous PPG segment as the tem- 316

plate segment, which was used to extract the template beat and 317

baseline values. We developed an adaptive framework to update 318

the template segment in order to extract the characteristics of 319

varied waveforms that arose from various arrhythmias or indi- 320

viduals’ activities. To this aim, the first recognized clean PPG 321

segment from each subject’s data was considered as the tem- 322

plate segment. According to the non-stationary characteristics 323

of the PPG signals, the template segment was updated for PPG 324

segments, which showed different dynamic characteristics over 325

time. Thus, we updated the template segment for a predefined 326

number of segments (which was 10 in this study). 327

1) Selecting and Updating the Template Segment: To 328

select an initial template segment, a clean PPG segment was 329

recognized based on the specific criteria below: 330

1) Number of detected peaks, which estimates the number 331

of pulses, should be more than 80% of length of the PPG 332

segment. Therefore, the number of peaks should be more 333

than 24 in a 30-sec PPG segment (25 pulses or more in 334

30 seconds). 335

2) It is known that amplitudes of peak points are almost 336

constant in a clean PPG segment [3], [6]. Hence, peak 337

amplitude dispersion is a quantitative indicator for mor- 338

phological variability of the waveform. We used normal- 339

ized peak amplitude dispersion as an index to identify the 340

clean signals: 341

D =
s

μ
(1)

where s and μ are standard deviation and mean value 342

of the peak amplitudes within the PPG segment, respec- 343

tively, and D is the Coefficient of Variation (CV) [21]. 344

D, also known as the relative standard deviation (RSD), 345

shows the extent of variability in relation to the mean 346

of the peak amplitudes. To combine CV calculated for 347

both positive and negative peaks, the measure Dcomb is 348

computed as: 349

Dcomb = e−(|D1|+|D2|) (2)
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where D1 and D2 are CV values for positive and negative350

peaks. By applying a threshold (Thr) on Dcomb, the PPG351

segment is clean when: Dcomb > Thr.352

As the first PPG segment in the data set might not satisfy353

the clean segment criteria to be the template segment, we354

searched all PPG segments to find the first segment that355

met the criteria. Having the initial clean segment as the356

template, the features were extracted from the previous357

and subsequent segments. The template was updated to358

extract the features from subsequent segments, when a359

PPG segment was recognized to satisfy the criteria.360

To extract the features, first, the baseline values were gen-361

erated from a template segment. Then, the features were362

extracted from each PPG beat based on the (dis)similarity363

between each PPG beat and baseline values or template364

beat as proposed in [11].365

To identify the best feature subset, a comprehensive fea-366

ture set is desired. The likelihood of selecting the optimum367

feature subset is higher when there is a large number of368

features in the feature set. Thus, we extracted different369

types of features to constitute the initial feature set (134370

features).371

As the features Δp, ΔP−, ΔP , W-STD, W-Skew, W-372

Kurt, and W-MSubEn were extracted for each PPG beat,373

the average, standard deviation, skewness, and kurtosis374

were calculated for each PPG segment (see Table I).375

2) Feature Selection Procedure: Once all the initial fea-376

tures were extracted from the PPG signals, feature selection377

was performed to specify which features are important for PPG378

noise detection. Among a number of approaches, a filter-wrapper379

feature selection method based on the IWSSr algorithm [22] was380

used in this study.381

3) Improved IWSSr Algorithm: IWSSr uses symmetrical382

uncertainty (SU) to rank the features based on their relevance383

to the class labels [23]. Then, the optimal subset of features is384

selected using an incremental procedure, in which one feature at385

a time from unexplored features is added to the selected subset386

based on the performance of the selected subset on a minimum387

number of folds and average of the performance over all folds388

as the significance testing. Adding the features to the subset was389

accomplished repeatedly until no improvement on the subset390

performance occurred.391

In this study, we improved the IWSSr algorithm by applying392

the backward search strategy to the feature subset as a revis-393

ing step to the classic IWSSr algorithm (Algorithm 1). Using394

backward search strategy, higher computational efficiency was395

achieved during training the model, and model generalization396

error and feature redundancy were reduced by eliminating the397

irrelevant features. In our approach, the Minimum Redundancy398

Maximum Relevance (MRMR) method [24] was used to rank399

the features and then, a selected subset of features was created as400

in the IWSSr algorithm. In the second phase, the wrapper-based401

backward search was executed on the selected subset to remove402

redundant features by evaluating the obtained subset. Backward403

steps were accomplished as long as the evaluated performance404

improved, reducing the size of the subset by one feature.405

4) Ensemble Feature Selection: The aim of the ensemble406

feature selection is to generate an ensemble of feature subsets407

Algorithm 1: Pseudo-Code for Improved IWSSr Algorithm.
Input: Data D, feature set F , class label C, and
minimum number of folds with specific accuracy nf

Output: Selected feature subset S
Initialization: Rank the features using a filter method //
We used MRMR method;
S = R1 //The first feature is selected
accuracy=evaluate(DC,D↓S∪{C}); // DC: Discriminant
classifier

1: for i = 2 to n do
2: bestOp=null;

// Replacement
3: for j = 1 to length(S) do
4: Snew=update(copy(S),swap(Sj , Ri))
5: [accuracynew, num]=evaluate(DC,D↓Snew∪{C});
6: if accuracynew > accuracy && num ≥ nf

then
7: bestOp=swap(Sj , Ri);
8: accuracy = accuracynew;
9: end if
10: end for

// Addition
11: Snew=update(copy(S),add(Ri));

12: [accuracynew, num]=evaluate(DC,D↓Snew∪{C});
13: if accuracynew > accuracy && num ≥ nf then
14: bestOp=add(Ri);
15: accuracy = accuracynew;
16: end if

//Replacement or addition
17: if bestOp!=null then
18: update(S,bestOp);
19: end if
20: end for

//Removing (backward search)
21: accuracy = 0;
22: while accuracynew > accuracy && num ≥ nf do
23: for j = 1 to length(S) do
24: Snew=update(copy(S),remove(Rj));
25: [accuracynew, num]=evaluate(DC,D↓Snew∪{C});
26: if accuracynew > accuracy && num ≥ nf

then
27: bestOp=remove(Rj);
28: accuracy = accuracynew;
29: end if
30: if bestOp! = S then
31: update(S,bestOp);
32: end if
33: end for
34: end while
35: return S

and then aggregate them into a single feature subset under the 408

assumption that the aggregated feature subset is more stable than 409

each of the single results; by combining multiple feature subsets 410

we reduce the probability of choosing an unstable subset [25]. 411

Ensemble feature selection approaches have shown superior 412

potential to remove less important features. This improves the 413
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Fig. 2. Diagram of the ensemble feature selection approach.

robustness and yields more efficient results compared to the414

standard feature selection algorithms. Feature subsets selected415

by standard feature selection techniques are more likely locally416

optimal, while the ensemble feature selection approaches show417

more capability to achieve a better approximation to the opti-418

mum feature subset by averaging different hypotheses [26]. The419

strategy that we used in this study is termed functionally homo-420

geneous ensemble selection, in which the data are partitioned421

by samples and a single feature selection method is applied to422

all partitions of the original data (analogous to data perturbation423

in the field of ensemble learning). Our employed scheme for424

feature selection can be summarized in three steps (see Fig. 2):425

1) Divide the training dataset D into several partitions or426

subsets by randomly drawing observations containing427

80% of D,428

2) Apply a single feature selection algorithm to the subsets,429

3) Combine the selected feature sets into a single feature set.430

5) Aggregation of Feature Subsets: Different ranked fea-431

ture lists extracted via the ensemble selection strategy, should432

be combined into a single list, which is the final ranked feature433

subset. Thus, an appropriate aggregation function (also, called434

combination function) is required to assign a score to each fea-435

ture as the feature’s score across all feature products. As one of436

the most commonly used approaches in classification, majority437

voting, which is based on the most-agreed upon class label,438

has been adopted for ensemble feature selection [27]. In this439

approach, which was also used in this study, the decision for each440

component i of the ensemble can be shown in a Boolean vector441

DMi with the size ofM , whereM is the total number of features.442

Then, the decision for the ensemble is represented by anN ×M443

matrixDM , whereN is the number of ensemble components. In444

this representation, the binary cell valueDMij indicates whether445

fj ∈ Fi, where fj is the jth feature among total features and Fi446

is the feature subset resulting from data partition Di. Then, the447

ensemble vote (agreement) vj is calculated for each feature fj448

based on the ensemble decision matrix DM by: vj =
∑

i DMij

N .449

The threshold Th (0 < Th ≤ 1) for ensemble votes can be450

applied to control the number of features being included in the451

final feature subset FS comprised of features with vj > Th.452

6) Ensemble Vote Threshold: In order to determine the453

optimal threshold of votes (v), [28] proposed to find the value,454

which minimizes the fitness criterion f(v) based on the training455

classification error (E) and percentage of retained features (P ).456

f(v) = αE(v) + (1− α)P (v) (3)

where α is a parameter with a value in the interval [0, 1] that 457

measures the relative relevance of both values. The main dis- 458

advantage of this approach is that by involving a classifier to 459

calculate the training classification error, the obtained threshold 460

is dependent on the selected classification method. Another 461

approach as proposed in [29], is to use problem complexity (or 462

difficulty) measures to involve the features which reduce the 463

complexity of the data. Complexity measures can examine the 464

capability of a single feature to discriminate between classes. 465

A well-known measure called Fisher’s discriminant ratio (FR) 466

calculates how separated two classes are according to a specific 467

feature [30]. The generalized Fisher’s ratio for a binary or 468

multiclass problem is defined as: 469

FR =

∑C
k=1 nk · δ(μ, μk)

∑C
k=1

∑nk

j=1 δ(x
k
j , μk)

(4)

wherenk denotes the number of samples in class k, δ is a metric, 470

μ is the overall mean,μk is the mean of class k, andxk
j represents 471

the sample j belonging to class k. 472

As the problem difficulty is inversely proportional to the 473

Fisher’s discriminant ratio, we proposed an efficient criterion 474

based on the cumulative relevance of FR values as the com- 475

plexity measure used in the fitness criterion below: 476

E(v) = αCM(v) + (1− α)R(v) (5)

where R is the retained feature ratio and CM is the complexity 477

measure calculated by: 1∑
j FRj

for the features with vj > Th. 478

As a high FR value represents high discriminability of the 479

input feature, a low CM value is desirable. By increasing the 480

number of features the CM value reduces, however, the R 481

value increases. Thus, there is a trade-off to reducing CM 482

and R values. By minimizing the fitness function E(v), the 483

optimum threshold of votes and feature number are achieved. 484

The pseudocode for the proposed algorithm is presented in 485

Algorithm 2. 486

F. Experimental Design 487

1) Training Datasets: In this study, 3432 PPG segments 488

were selected as the training dataset from 53 subjects from three 489

datasets: the clinical trial, the AF trial, and Stanford University’s 490

database. Table II shows the number of selected segments from 491

the three datasets for training the classification model. Training 492

data from the clinical trial were comprised of AF and non-AF 493

PPG segments. To select the non-AF training data from the 494

clinical trial dataset, we divided the data into hourly blocks. 495

One hundred 30-sec segments were extracted from the hourly 496

blocks of the two first 24-hour periods of data recording. The 497

blocks were randomly selected for each subject. AF training data 498

segments from the clinical trial included 806 30-sec segments 499

extracted from randomly selected blocks from one subject, who 500

demonstrated AF during recording. However, a few segments 501

were excluded from the clinical trial training data due to data 502

recording issues such as recording when the watch was not being 503

worn by the subject. In total, 2793 30-sec PPG segments were 504

selected from the clinical trial. Fig. 3 shows the distribution of 505

the non-AF training data during the two first 24-hour periods 506
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Algorithm 2: Pseudo-Code for the Proposed Ensemble Fea-
ture Selection Scheme.

Input: Data: D(N×M)= training dataset with N samples
and M features
X ← Set of features, X = {f1, . . ., fM}
s← Number of subsamples of D
DMi← Decision matrix for each subsample i of D,
|DMi| = M
α← Relative relevance of complexity measure and
selected feature ratio

Output: Final feature subset FS (FS ⊂ X)
//Obtaining a decision matrix to show selected features in
each data subsample

//Initialize DMi

1: for i = 1 to s do
2: Di← subsample of D, maintaining the class

distribution
3: Apply the feature selection algorithm on Di

4: Fi← features selected by the feature selection
algorithm

5: for j = 1 to M do
6: DMij ← 1 if jth feature is in Fi, otherwise DMij ←

0
7: end for
8: end for

//Obtaining a threshold, Th, to select the feature subset
9: vj ←

∑
i DMij

10: for Th = min(v) to max(v) do
11: FTh ← subset of features with vj > Th
12: FR← calculate Fisher ratio for each feature within

FTh

13: CM ← 1∑
j FRj

14: R← Ratio of retained features
15: E(Th)← α× CM + (1− α)×R
16: end for
17: Th← min(E), Th is the value, which minimizes the

function E
18: FS ← subset of features including the features with

vi > Th
19: return FS

of the 14 days of the clinical trial data collection. The training507

dataset from the AF trial was comprised of 439 30-sec PPG508

segments, including AF and non-AF data. In addition, we used509

the dataset provided by Stanford University (henceforth referred510

to simply as DeepBeat dataset). We randomly selected 200511

25-sec PPG segments from the segments showing AF in the512

DeepBeat dataset.513

2) Test Datasets: Clinical trial dependent test data are the514

left-out data originating from the subjects whose data were used515

for training. Independent test data are the sampled data from516

participants whose data were not employed in the training proce-517

dure. Table III reports the number of subjects and PPG segments518

used as dependent and independent test data. To sample the519

test data from the clinical trial dataset, the participants’ data520

TABLE II
DATASETS AND NUMBER OF SELECTED SUBJECTS AND SEGMENTS USED

FOR TRAINING

*One subject has both AF and non-AF segments. (Sub.=Subject. Seg.=Segment.)

Fig. 3. Distribution of the non-AF training data from the two first 24-
hour periods of 14 days clinical trial data collection.

TABLE III
NUMBER OF SUBJECTS AND PPG SEGMENTS UTILIZED AS DEPENDENT AND

INDEPENDENT TEST DATA

*One subject has both AF and non-AF segments.

recorded during 24 hours of the day were split into 6 blocks (each 521

includes 4 hours) based on the daytime and nighttime definition 522

in this study. Ten 30-sec (i.e. 5 min) segments were selected 523

from each block of a day, which yielded sixty 30-sec segments 524

for each day of each subject. As the time duration of the data 525

collection was 14 days, ideally, the total number of segments 526

would be 840 segments for each subject. However, there might 527

be blocks with no recorded data, since the daily adherence of 528

the Pulsewatch participants to the Pulsewatch system was less 529

than perfect. Fig. 4 illustrates the distribution of the clinical trial 530

data sampled for testing the model during 14 days. 531

The DeepBeat testing dataset was randomly drawn from AF 532

and non-AF data segments from held-out DeepBeat subjects. 533

Further, five and eight subjects with AF from MIMIC III and 534
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Fig. 4. Distribution of the testing data in 24 hours of day during 14 days.

UMMC Simband datasets, respectively, were used as external535

independent test datasets in our study. Since the ICU recording536

for each subject in the MIMIC III dataset contained hundreds537

of hours of data, we only used the data from five subjects,538

whose data had already been prepared for an AF study, in539

which cardiologists adjudicated the presence of AF in those540

recordings [18], [31].541

3) Classification Algorithms: Four classification542

algorithms—AdaBoost (decision trees), SVM, KNN, and543

discriminant analysis were compared to identify the optimal544

size of the feature subset. The classification abilities of the545

constructed model were compared by estimation of seven546

statistical indices: accuracy (Acc), sensitivity (Sens), specificity547

(Spec), positive predictive value (PPV), negative predictive548

value (NPV), G-mean, and F-measure (F-meas). Positives were549

noisy and negatives were clean segments. All algorithms were550

implemented in Matlab 2020b and 2021a using the Statistics551

and Machine Learning Toolbox (Mathworks Inc., USA).552

III. RESULTS553

In this section, we give an overview of the most significant554

results. In the first subsection, the data preparation and feature555

selection results are presented, while the second subsection556

summarizes the performance of the signal quality assessment557

approach and comparison of the findings to the other methods558

proposed in the previous studies.559

We present the results compared to three methods: Method560

I [18], Method II [9], and Method III, which is a deep neu-561

ral network method called DeepBeat [15], via implementing562

their algorithms on the appropriate test datasets. We selected563

these methods as they are representative of the state-of-the-art564

heuristic (time domain), combined machine learning-heuristic565

(time-frequency domain), and DNN frameworks, respectively.566

As these approaches have been only adjusted or trained based567

on specific PPG data (with certain waveform) recorded using568

a particular device, we used the congruous data for testing to569

make fair comparison across the test datasets. PPG waveforms570

of individual datasets recorded by different devices is shown in571

Fig. 5.572

A. Feature Subset Size573

As mentioned earlier, the ensemble feature selection method574

does not specify the number of features, but rather a ranked575

Fig. 5. PPG segments from different datasets: (a) Clinical trial, (b)
UMMC Simband, (c) MIMIC III, (d) DeepBeat.

Fig. 6. Classification (a) AUC, (b) Accuracy in terms of number of
selected features for different classifiers: AdaBoost (Ada), SVM, KNN,
and discriminant analysis (Discr).

list of them as the final feature list. In order to determine the 576

optimal feature subset size, a classification model was trained 577

and evaluated for each feature number. 578

Fig. 6 displays the average accuracy and Area under the 579

ROC Curve (AUC) over a varied number of features via 5-fold 580

cross validation by the mentioned classifiers. Performance was 581

measured using AUC, where the receiver operating character- 582

istic (ROC) curve itself is a plot of True Positive Rate (TPR) 583

versus False Positive Rate (FPR). A growing trend of both AUC 584

and accuracy can be observed at the beginning of the curves 585

for the lower number of features in all classifiers. AdaBoost 586

classifier achieved stable performance in terms of both AUC and 587

accuracy (values higher than 98% and 93%, respectively) when 588

the number of selected features was more than 12. We therefore 589

used AdaBoost with at least 12 features as the proposed classifier 590

and feature size, respectively. 591

A common drawback of feature selection algorithms is that 592

the large subset size still shows the highest performance value 593
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TABLE IV
PERFORMANCE OF THE QUALITY ASSESSMENT METHODS FOR CLINICAL-TRIAL DEPENDENT SUBJECTS’ TEST SET

TABLE V
PERFORMANCE OF THE QUALITY ASSESSMENT METHODS FOR CLINICAL/AF-TRIAL INDEPENDENT SUBJECTS’ TEST SET

Fig. 7. Fitness function values for different numbers of features and α.

(as can be observed in Fig. 6). Hence, we used the fitness value594

criterion to minimize both the complexity and feature subset595

size as much as possible, without reducing the performance.596

Fig. 7 shows the obtained values of fitness function for different597

numbers of features and α values 0.3, 0.5, and 0.7. According598

to the figure, a feature subset size of 18 is the optimum value599

which minimizes the fitness function. Thus, we selected 18 as600

the optimum number of features, which was obtained with α =601

0.7. Although we cannot recommend an optimal value for α,602

as a general rule of thumb, we suggest that if the goal is to603

reduce the complexity measure at the cost of a slight increase in604

dimensionality, 0.7 is a suitable value for α.605

B. Model Evaluation on Test Datasets606

After training the AdaBoost classifier using the most suitable607

feature subset (18 features), we tested our model on the test608

dataset to quantitatively explore its performance. To compare to609

the previous studies,The clinical/AF trial and UMMC Simband610

datasets were used for Method I evaluation. Clinical/AF trial,611

UMMC Simband and MIMIC III were used as the test datasets612

for Method II. For Method III, the UMMC Simband, DeepBeat,613

and MIMIC III datasets were used to evaluate the model’s 614

performance (see Table III). 615

1) Clinical and AF Trial Test Results: Tables IV and V 616

provide the quality assessment performance of the classifier 617

model on clinical trial dependent and independent test datasets. 618

The results illustrate high performance for both dependent and 619

independent datasets (accuracy > 0.93, sensitivity > 0.90) 620

independently of heartbeat type (AF or non-AF). Further, the 621

specificity rate is higher than 0.98 and 0.86 for non-AF and AF 622

segments, respectively. 623

Compared to Method I and Method II, our approach indi- 624

cated a higher accuracy for total, AF, and non-AF segments 625

in both dependent and independent test datasets. In compar- 626

ison to Method I, our approach yielded much higher speci- 627

ficity and PPV, and comparable sensitivity and NPV values. 628

Although Method II showed higher sensitivity and NPV (by 629

reducing the false negatives), it achieved this at the loss of 630

specificity and PPV, leading to the low values of G-mean and 631

F-measure. 632

2) DeepBeat, UMMC Simband, and MIMICIII Test Re- 633

sults: We examined the classifier performance on held-out sub- 634

jects from the DeepBeat dataset The results shown in Table VI 635

demonstrate the consistently high performance of our approach 636

(accuracy > 0.91) independently of heartbeat type (AF or non- 637

AF). Further, sensitivity and specificity rates are higher than 0.86 638

and 0.98, respectively, across total AF and non-AF segments. A 639

comparison with the Method III is also provided in Table VI. 640

Although the sensitivity and NPV are higher for Method III, 641

the high number of false positives effectively reduces the other 642

classification indices. 643

Performance of the quality assessment for Simband test data 644

can be found in Table VII. To assess the quality of the Simband 645

data, the combination of PPG and ACC signals were used in 646

this study. An important source of artifact in PPG signals in 647
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TABLE VI
PERFORMANCE OF THE QUALITY ASSESSMENT METHODS FOR DEEPBEAT DATASET

TABLE VII
PERFORMANCE OF THE QUALITY ASSESSMENT METHODS FOR INDEPENDENT SUBJECTS WITH AF FROM UMMC SIMBAND DATASET

Fig. 8. An example of cyclical noise in UMMC Simband segment. The
PPG segment seems to be clean, but the ACC and misaligned heart
rates (of reference ECG and PPG) indicate the motion artifact corrupted
signal.

wearable devices is attributed to the air gaps created between the648

skin and sensor during physical activity. High amplitude cyclical649

movement can cause quasi-periodic waves resembling the PPG650

signals (see Fig. 8). Therefore, it is necessary to recognize the651

segments which are corrupted by cyclical movement and classify652

them as noisy segments. Obviously, wearable device movements653

can be detected using an accelerometer, as the magnitude of the654

ACC signal changes significantly with sensor movement.655

Hence, in this study, a threshold-based artifact detection656

approach was performed using the ACC signal to detect data657

segments which have been corrupted by high amplitude motion658

artifacts, prior to PPG-based classification. Three features were659

extracted from ACC signals: mean absolute deviation, sum of660

time-domain energy of the signal, and sum of the signal power661

in the frequency domain. Appropriate thresholds were estimated662

for each feature, based on the non-AF cohort from the UMMC663

Simband dataset. Derived thresholds were applied to the testing664

data to detect segments with significant accelerometer motion,665

to mark them as artifact-corrupted segments, as a primary step666

before the PPG-based quality assessment. Table VII represents667

the evaluation results on the UMMC Simband testing dataset. As668

can be observed, Method I, Method III and our approach exhibit669

comparable performance, while Method II represents very low670

performance in terms of specificity, NPV, and G-mean due to 671

the high number of false positives. 672

The quality assessment results for MIMIC III test data are 673

shown in Table VIII. Accuracy, sensitivity, and specificity of our 674

approach are higher than 0.95, 0.83, and 0.98 for the PPG test 675

subset from MIMIC III AF subjects. Accordingly, the results re- 676

lated to this dataset demonstrate the superiority of our approach 677

compared to the Method II and Method III, which showed very 678

low performance in terms of specificity and PPV. 679

IV. DISCUSSION AND CONCLUSIONS 680

Heart rhythm monitoring of cardiac patients requires reliable 681

quality of the signals recorded from patients during their mon- 682

itoring, screening, or treatment period. The main objective of 683

this study is to provide labels demonstrating the PPG segments 684

suitable for further processing, e.g., for HR value estimation and 685

AF detection. 686

In this study, we proposed a comprehensive approach to 687

employ the most relevant features, which have the capability 688

to differentiate significantly between clean and corrupted PPG 689

segments. In our approach, a combination of different types of 690

features was used to capture various characteristics of the PPG 691

signal. Then, the ensemble feature selection and vote threshold 692

aggregation methods were used to provide the optimal feature 693

subset which enhanced the resultant performance of the signal 694

quality assessment compared to the previous studies. This is 695

especially evident in the achievement of high performance of 696

the quality assessment for both AF and non-AF segments from 697

different test datasets. 698

Multiple studies have been conducted to assess the quality of 699

the PPG signals using various methods, such as machine learn- 700

ing, deep learning, and heuristic rules-based methods. Various 701

types of fiducial and non-fiducial features have been used in 702

previous PPG signal analysis studies. Statistical, morphological, 703

energy, temporal, and time-frequency attributes of the PPG 704

signals have been widely used for PPG SQA, and arrhythmia 705

and HR detection [8], [12], [18], [32]. The main benefit of 706

using non-fiducial features is to eliminate the risk of fiducial 707
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TABLE VIII
PERFORMANCE OF THE QUALITY ASSESSMENT METHODS FOR INDEPENDENT SUBJECTS WITH AF FROM MIMIC III DATASET

point detection errors. On the other hand, using data-driven708

template-based features leads to taking into account morpho-709

logical characteristics of the PPG signals.710

While these studies have attempted to discriminate between711

clean and artifact-corrupted signals, none of them have investi-712

gated the effectiveness of their techniques on a wide range of713

PPG signal types, including long-term real-life PPG data record-714

ings as well as publicly available datasets recorded using various715

types of recording devices from patients with different types716

of arrhythmias, such as AF, PAC, and PVC. Pereira et al. [12]717

proposed a machine learning approach for quality assessment718

of the 30-sec PPG segments collected from patients admitted719

to the neuro and general ICU, in which the neuro ICU data720

included at most 22 hours of continuous PPG signals. However,721

their proposed model may not be appropriate for real-life PPG722

data, when the PPG waves might be distorted substantially by723

participants’ physical activity and motion. Further, the heart724

rate variability (HRV) is considerably affected by daily phys-725

ical activity during long-term recordings. To capture all these726

alterations, we used the template-based features, which reflect727

any kind of individual hemodynamic characteristics as well728

as waveform and HR variations occurring during the 14 days729

recording time.730

We also, directly compared our approach to other methods731

proposed in previous studies, whose models have been devel-732

oped based on other databases. Using congruous test datasets,733

Method I and Method II showed a low number of false negatives734

at the cost of a very high number of false positives. Our approach735

indicated acceptable false negatives and much lower false pos-736

itives (compared to Method I and Method II), which leads us737

to increase the coverage (usability) of the clean PPG segments738

for further processing for diagnosis and treatment. We achieved739

more robustness and consistency against the PPG signal varia-740

tions caused by different recording devices across all datasets.741

Particularly, the limitation for Method I as a heuristic method742

is that it is required to adjust the features’ threshold values for743

each individual dataset to maintain the high performance.744

The limitation of using individual datasets is more crucial745

for deep learning-based approaches. Deep learning model in746

Method III was pretrained using convolutional denoising au-747

toencoder on over one million simulated physiological signals.748

Using this large amount of training data, it is expected that749

the model has been trained on diverse PPG waveforms and750

morphologies. The model is supposed to have the capability751

to be generalizable to apply to various PPG signals recorded752

by different devices. The results illustrated that even though the753

Method III showed high performance for UMMC Simband and754

DeepBeat datasets, its performance on the MIMIC III dataset755

was low. In addition, it failed when it was evaluated with the756

clinical/AF trial test dataset. This might be due to the differences757

of the PPG waveforms of its training dataset with the Pulsewatch 758

and MIMIC III datasets. Therefore, the association of the model 759

performance to the training data waveform is the main drawback 760

of the Method III that restricts its usability to the specific data. 761

One limitation of the present study is that we only used a 762

limited number of data segments from each dataset as testing 763

data due to the annotation burden. The datasets used in this study 764

contain thousands of data segments recorded from hundreds of 765

subjects. The way we selected in this study to address this limi- 766

tation was to use the randomized sampling of the data segments 767

to approximate the algorithm performance on the whole dataset 768

(as has been described in section F). 769

Consequently, the main contributions of this investigation can 770

be summarized by two aspects. First, we proposed an optimized 771

feature selection scheme to provide the feature subset as a com- 772

bination of various types of features. We improved the IWSSr 773

algorithm in the backward step to eliminate the redundant and 774

irrelevant features and obtain the most efficient feature subset. 775

In addition, by proposing a complexity measure based on the 776

inverse of Fisher’s ratio, the optimum number of features was 777

estimated that maximizes the discriminative power of the feature 778

subset. 779

Secondly, the study was mainly performed using the Pulse- 780

watch dataset collected from a large number of cardiac patients 781

with a history of stroke/transient ischemia during 14 days of 782

recording. We examined the robustness of our approach for 783

normal and arrhythmic PPG data recorded in real-life conditions 784

with varied levels of noise and artifacts. In addition to the 785

dependent dataset, our approach was evaluated on independent 786

external test datasets to account for a wide variety of PPG 787

wave morphologies caused by different recording devices. The 788

results indicated the high discrimination ability of our con- 789

structed model for all test datasets and, more importantly, its 790

reproducibility and generalizability for arrhythmic PPG signals. 791

Particularly of note is the performance on AF PPG data, which 792

might be potentially mis-detected as noisy non-AF PPG signals. 793
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